L4k

Worklng Paper

25 VAR

LT T TR0 &
f:?qb (424)
P = - !
™ _ |
:t IIM ' |
g WP— 4 I“
4 JIlg!

W, P.: Z,fuglr




ON THE COMPUTATION OF HODGES-LEHMANN
EFFICIENCY OF TEST STATISTICS

By

M. Raghavachari

WP No. 424
April 1982

The main objective of the working paper
series of the IIMA is to help faculty
members to test out their research
findings at the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD-380015
INDIA




1., INTRODUCTION

Hodges and Lehmann [4] proposed an efficlency measure
for the asymptotie comparison of test statistics and
computed the same for a few tests in the case of normal popu-
Jlations., Another measure of efflciency was proposed by
Bahadur [1] and since then there has been a vigorous develop-
ment in this area., The study of Hodges - Lehmann efficiency
pas not progressed fast in comparison with Bahadur efficiency
ﬁerhaps becauselthe former is generally harder to compute,
Bven in simpler situations like X - test, sign test and
t~-tests for testing the location parameter of the normal
distribution, Hodges and Lehmann [%] had to obtaln precise
estimates of the tail probabilities of the normal and bino-
mial distributions when the true parameter lles in the set
of alternatives. Since, in general, the distributions of test
statistics under the altarnatives are difficult to study
wmalytically, the Hodges-lehmann efficlency has not been
romputed for many tests. Bahadur's method of computing effi-

jencies 1is relatively easier because one has %o work
ostly with mull distributions and in this case large devia~
\on probabilities can be obtained with less difficulty.
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Yet anothef approach to the computation of Bahadur
efficiency was proposed in Bahadur and Raghavachari [3].
This approach énables one to compute the efficiency without
obtalining large deviation probabllities explicitly., In fact
it was pointed out in their paper that in some cases the
large deviation probabilities can be obtained after caleula-
ting the efficiencies. This approach also applies to the
calculation of Hodges and Lehmann efficiency and this wag
indicated in Bahadur and Raghavachari [3, P.137]. The
objective of this paper is to exhibit this approach . of the _
computation of Hodges - ILehmann efficiency for a few examples.
Many of these examples are new and these indicate the power
of the method which does not entail the computation of
the tall probabilities for the distribution of the test
statistic under a specific alternative. The Bahadur efficiency
has also been obtained for all the tests considered in

these examples. An'example 1s also provided where the ranks
are asymptotically fully informative in Hodges - Lehmann

efficiency sense but not so in Bahadur efficiency sense.

2. HODGES -~ LEHMANN EFFICIENCY :

Broadly speaking, the rate at which the power of a
test at a specific alternative tends to one as the sample

size tends to infinity is an indication of the performance
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of the test at the particular alternative. Suppose for
definiteness the null hypothesis is a simple one and © is

a particular alternative. For a given level as; let

(1 - B, (a)) be the power of the test under consideration
based on sample size n., In many situations, Bn(a) + 0 as
n + exponentially fast. i,e. there exists a parametric
function 4(8) (independent of ¢ ) defined on the alternative

set with o0 < d < o© such that

n~t 1og Pplad -+ -*gégl— as n -+ oo,

d(8) is a measure of the efficiency of the test and has been
called by Hodges and ILehmann as the index of the test.

For the Bahadur efficiency, one fixes the power at a specific
alternative ® as B, 0 < B < 1 and considers the exponential

cohvergence to zero of the size Ay of the test,

Bahadur and Raghavachari [3, Theorem 4] proved a
theorem and indicated that the dual of the theorem can be
used to compute Hodges - Jlehmann efficlency. We state this
theorem which gives a scheme of computing Hodges - Iehmann
efficiency. The proof of the theorem is omitted since it

parallels that of Theorem % of Bahadur and Raghavachari [3].
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Conslder a space S of points s, a o -field .)4 of sets
of 8. iet {@n tn=1, 2, «uss } be a sequence of
o =fields such that

ﬁn C.ﬁ D=1y 25 avsievssces

et P, and £ De probabllity measures onjg. We assume
that P, and F; are mitually absolutely continuous on@l, and
let

d‘PO = rn(s) dP on @n

where Ty is@n - meagsurable, o < I, <0 N =1y 25 seaes
Let
Kr(ll) (s) = n~t log r,(s)

det ¢ be given, 0 < ¢ < 1 and for each n, let 1 - B, = 1 =B, (a)
’be the power of test when Pe obtains based on r, with level

[0 B

Theorem 1@
Suppose that Klgn (s) — K(D ag n+% a.o. P (or in
Po- probability) where K(l) is a constant, o < I{(D < oo,

Then for each a, n~t 1og By ad ~ - K1) a5 n oo,

3. EXAMPLES:
In the following examples (¥ is the o -field induced
by T,(s), the test statistic based on independent observations
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X1y eeesoe Xyo The simple null hypothesis is indicated by
& = 6, and a specific alternative by e. P,  refers to the
null hypothesls and Py to the specifiec alternative under

consideration,

Example 1: X179 X535 eecee x£ are independent and identieally
normally distributed variables with mezn © aﬁd variance 02
(known). Consider testing Hy 36 = 6 = 0O against

Hy 16 > O, Take T, = X and take a specific 0 > O,

log r (s} 5/2 2 a.e. P and the Hodges
Lehmann index 1ls 92/ 02. Thé index fbr this case was
originally obtained by Hodges and fehmann [4] by evaluating

tail probabilities.

Bxample 23 If one takes in Bxample 1, T, & ( # of Xy 2 0),
the test based on Tn 1s the sign test, In this case,

gl log r (s) —» - % log (+ pg) a.e. P, where P (X4 > 0) = p.
The index is therefore -log (+ p gq). This was again
originally obtained by Hodges and Lehmann [%] by obtaining
estimates of the tail probabilities of the binomial distri-

bution,

Example 3t X1y Xpy esse X, are independent and identically
distributed as Polsson with parameter 6. Suppose that

H 19 = BO and Hl H 8 > eon Take Tn = Xl "'9(2"- aes F xno
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Then AT log rn(s) + 6~ o + o (log b, = log )

a.e. P The index is therefore 2( 6w 8,) + Zso(logeo - log8),

OI
The Bahadur exact slope turns out tc be 2 (80 -6) +

26 (loge - log 8.).

Bxample %t Consider testing H, + 6 = 08, against
Hl 2 0 < BO in the negative binomial case,
/ AN
( n+ t-1 }
_ _ ] =t t
P{Tn - t} - \.m n"'l l.'i e;rlq 9 t ?, 199 te e
" (.’ q K -

i

9 q
The index is verified to be -2 { log (=) + ¢ BO ) 10g(_%_)}.
o 0 o

The Bahadur exact slope is given by

8

2{ log (2= ) + (&) 10g (L) 3.
) 95 .

Example 5t X1s Xpy - 4ees X are independent and identi-

cally normally distributed with mean & and variance 6,
Consider testing H, 3 8 = 8, against Hl : 9 > ® 5. Take

n Z
T = ) (x; -x) . It can be verified that the index

i=1 <

8
is [log 0“%1") -1+ eo 1. The exact slope is
o) ‘

) -1+ ]. The exact slope was also

0
[log (—=2
<] BO

obtained in GsSievers [8] using different methods.
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Exam 6 X719 X0y seeees X, are independent and identically

normally distributed with mean & and variance o..

Y19 Y25 eeees ¥, are Independent and identically normally

2 2

2
distributed wdth mean n and variance - ¢ let o = crl/ o

2.
Consider H, & & = 90 against Hy ¢ 8 > 6, Take
T = §%5° whero & = 3 5 ‘
m,on - 1/S; where 87 = iil xy -x) / (m-1) and
2 n - 2
82 i .‘IE_'L (y.‘l -y) / (n=~1), TLet N = mtn and let m and n

tend to infinity in such a way that m/N—+x , 0< A < 1.
It can be verified that the index is given by '

. .
log( A + (1 =2) —5= ) ~ 2(1- 1) [log 6, - log ],
When X = 1/2 (equal sample sizes case), the index reduces to
- log 2 + 1og ( 8+ Boj—log 85

The exact slope can be verified to be

0
e}

log(a+ (1= 2) )+ 2(1-1) [log & - log o]
Example 73 Let (x7) ¥1)y (Xps Vo) eees &Ky ¥,) be
independent and identically distributed in the bivariate normal
form with correlation coefficient ¢, 0 & < 1. Consider
testing H, ¢+ ® = O against Hy t 6 > O, Take T  to be the
sample correlation coefficient: r. The density of r when As

‘the population correlation coefficient is
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n-1 n-i 1
oy o 220 )% (19 2 1 (l—v)n-2{ 1 ;'}2'
£ (r) = lsv(lter)} dv.
) TT(l- er)2n53 O (2le/2 2
Observe that for -1 < r ¢ 1 and © <L vl
_1/2
A< [1 - % v(l +0r)] < B
"
and ¢ < (1 - £v)2 ¢ D
with 4, B, C and D are constants independent of n.
It can then be verified that
2n-3
lin -1, ()= Hm =1 (1- op) * :
1900 og T, (s n ool og -
(1- 67)2

a.e. when 8 > O obtains. Thus the index in this case is

- log (1 - 92). It is also the exact slope in this situation.

Example 8: Consider testing H ¢ & = O against Hyte >0

on the hasis of a sample of size n from a p~variate normal
distribution (p 2 3) with 0 as the multiple correlation
céefficient. Take Tn = R, the corresponding sample multiple
correlation coefficient. It is known (see for example
Lehmann [6] p. 320 or Simaike [9]) that among all tests based
on R, the uniformly most powerful test rejects Ho for large
value of R, The density of R2 when the population parameter

1s 6 is proportional to



n-l n-p-2 p=h
g, R)=(1-F) 2 (18%) §(RP2y 2 g — 1 at
-R 0 (Cosh P -et)

v (3.1
See Kendall and Stuart [5, p. 339].

By maling the transfermation sech B = (1-v)/(1-6tv) and

simplifying, (3.1) equals

= B
n-1 Ne=p=2 2 .2 1 =2 2
(1-¢)%  (1-R%) § s (§ 172 (15v(1+et)dvidt
~R . (l— et)"T—-L 0] (2\?’)
We have D -(3.2)
2 inP-3
2 2 S d
IR (R ""t J _ Rp_3 j_Tr n ‘J} !pan e (3-3)
-R =3 e (1 ¢R 5
(l_ et) o l- 98 cos ¢

(3.3) can be seen to be true by making the transformation
t =R cos y in the integral on the left side of (3.3). The
right side of (3.3) is < RF™3 (1 - epy~(@-30/2 oo o

after
have/some reduction,

g, () , - &3
- < ¢ (1 -89 (1 - & R)
go®) -

- where C does not depend on n. Since R - & a.e. when 6 ob-
. n —+ <co

tains,

1
limsup In log rn(S) S "%' log Cl - 92) A2, P . (3!"")

n-£o o
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Observe now that the integral on the left of (3.3) equals
(by making the transformation t = z R)

=3 &

| , R
- 1- (1-27) \
-3 gt ) = dz 2 R"3 § f:z L.
=1 (1. esz*2”3 1--% (1- 9 zZR) 5., .
ceres (3.5)
and the right side is - (23_3) | EE&
>R 1 -erQ -1 G-y [1- -3
n n

After some reduction it can be shown that

Mol 3l log () 2 Flog (1 -6 aee Py waee (3.6)

Combining (3.4) and (3.6), we conclude that the index equals

f% log (1 ~ 62). The Bahadur exact slope can alsc be shown
to be equal to ~ —%- log (1 = 92); Note that the exact

slope and index do not depend on p.

Brample 93 (Rank test for one sided distributions):

Lot Xqy Xp, ....,.Xm be independent and identically
~distributed with contimmous distribution function F(x) with
CFA) =0, <A™, Tet Yq, ¥py ..ey Y, be independent
and identlcally distributed with c.d.f, G(x) = Fk&x -o). For
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the test of hypothesis H0 t 8 = O against the alternative
By ¢ 8 > 0, consider the non-parametric rank test (V-test)
which rejects when V = 81 1s too large where S; 1s the rank
of the smallest Y in the combined samiple of the X's and Y's.
This rank test does not seem to have been discussed so far
'for the location problem. Consider also the 3-test that
rejects H for large values of Z = min (Y15 eeeer X )= minCKl,..,X ).
We shall evaluate the Bahadur efficiency and Hodges-ifehmann
efficiency ' of the S-test relative to Z-test when the under-
;gging distributkons are exponential, that is,

F(x) = 1 - exp(-Cqu)), x 2 A, First we have

Lemma 1: If F(x) = 1 - exp(-(x-A)) for x 2 O, then the V-test
is uniformly most powerful among all rank tests to test the
hypothesis H,30 = O against the alternatives le 6 > 0,

Proof: We lmow by Hoeffding s theorem see dehmann [6], p. 237
that 1f F and ¢ have densities f and g such that f is posi-
tive whenever g is, the joint distribution of 517 Soyeey Sn
is given by

g(V(Sl) e g(V(S h) } (N)

“Pi‘Si":s_l’ Sp=sate.es Sp=ap} = [E f(V(Slj.... £ (Vo))

where Xl, Xz, vese X are independent observations from the
distributions with c¢.d.f. F and Y15 Yoy sesy ¥, are independent
observations from the distribution with c¢.d.f. G
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th) < V(2) € vaen € V(N) is an ordered sample of size

N=m+ n from the distribution Fand 89 < 83 < «ev < Sn are
thé ranks of the Y s in the combined sample of the X's and ¥ s,
Here g(y) = exp{-(y - 8 =)} for y 2 © + A and = O otherwise,

50 that we have

= s, = 8y - - YNV
P {8; = 5118 = spi... 38, = sy} = exping} P{VIUIDAY/(

eee (3.7)

-Eet us denote by H CSl) the c.d.f. of V(Slj. The most powerful

i

test for testing H: 8 © against the alternative Kte = 6 > 0O
rejects when Sl 2 C where ¢ does not depend on By, Hence

the theoren.

Remark: dLemma 1 can also be deduced from a result of I.R.
Savage [7] regarding uniform distributions.
For a given ® > O, we have from (3,7) that

N- N
Pﬁ{sl=s} = exp(ne)- (n_i) P{W(Sj > 8 } / Ln) sese (3-8)

whare W(S) is the sth

order statistic of a sample of size N
from the exponential distribution with densitys exp(-x}, x 2 0.
It can be shown (we omit the details) using the relation
‘between the exponential distribution and the uniform distri-

hution that

§ 108[P(51=8) / Po(8;=83] =(§) o + <~ Log piul ¥-st1) ¢ om0}
(X NE] (3093
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where U(N*S+l} is the (N-s+l)th order statistic of a sample of
slze N from the uniform distribution over (0, 1). It is well
known that |

| N
plu-stl) ¢ -9y - I (N-stl, s = Fg_sEl( 3)“3 (1-" L. (3.20)

where ﬁe have written .u for exp(~g). It can be shown that
as N -+ 00 such that m/N -+ 3, 0 < » < 1, 8y/N =+ A(1-exp(~0))
with probability one when & obtains, It follows from (3.2),
p. 332 of Hodges and dehmann [4] that with

v=1<12 (1 - exp(- 8)),

%log P{U<N'S+l?<1ﬁ :;:;z' r logly/v] + (1-v) log{(1~w)/(1 -V}
. . a8 e w (30113
with probability one when 8 obtains. ' (3.9)

Denoting the right side of by M{8&) we have from/that
-1 ' -
N loglP,(8; = 8)/ P,(5; = s)1 + (1 =) & + M(e) with

- probability one when ¢ obtains.

We proceed to obtain Hodges-fehmann index and Bahadur
exact slope for the test relative to Z-test, Theorem 1
is not readily applicable here because in the original &, yJ
space of cbservations, P, and P, are not mitually absolutely
:gontinuocus, lFor 8> 0, P, << Py but P, {4 P,. However

rote that N 1log (Pa<sl==sJ/Po(sl =833+ (1L -6+ Mand
_ AR o+ 00
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-xe a.e. Py and P_ respeciively. Further since by (3.9)

1

N log (Q, (Sl = 8) / P, (Sl=sDJ is strictly increasing in

sy the tests based on 84 and P, (Sl=s)/Po(81 = §) are equivalent.
A slight change in the proof given in Bahadur [2] p. 316~317

for Stein's lemma shows that the Bahadur exact slope and
Hodges~kehmann index for the V-test are still given hy

&.e. C%,) 1imit of N~ log [P, (5y=s) / Po(Sl = s)] and

a.8. (Po) limit of ¥+ log [PO_CSl = g} / %}(Sl = g)] respec-
tively.

The exact slope is thus 2[(1 -») s + M(e)]. In orgder
to compute the index, note first that SI/N-+ 0 a.e. Pjyand

n -+ <o
from (3.11) M(9) = -6, The index is therefore

-2[ (L =-2)8- ¢ 1= 22x8,

For the Z-test, denoting by ¢ ( 8) the density of Z when
obtains, it can be verified that Tl log [ 2 (e)/ 9( )]

- (1 ~-2)8 a,e. & obtains and + -1 98 under H,. The
n -+ o :

Hodges-iehmann index for the Z-test is therefore 2 16 and
 the'exact slope is 2(1 = 1) 8, It can be seen therefore that
-the V-test and Z-test are equivalent in the Hodges-ilehmann
efficlency sense but V-test is inferior fto  Z-test (since

M(®) < 0O ) in the Bahadur efficiency sense., This shows that
for the exampls under consideration, ranks are not fully

informative even asymptotically in the Bahadur éfficienny

sense while they are fully informative asymptotieally ;n thg_'
Hodges—Lehmann efficlency sense.
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