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ABSTEACT (within 250 words)

{¢ deseribed along with computer-based algorithms for the solution of the
netuork model. The network model described is semeral as it.cen be.applled
for the optimization of varioug physieal, economic and social systems,
o.g. water supply and wastewater system, traffice and transportaiilen

systenm, solid waste nandling system, natural gas and petroleun plpelines,
commaication systens, ete.
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Realistic nonlinear cost functions reflecting ec onomies-of-scale are

woe fop flkow »bhnough -the .aras «of the -systen notwork. - -Thasa-menlineer cost
funetions are usually nonconvex in nature, and various complexities are
encountened - mknimiaation .problems Anvokving -bhese -funotions; -speci-
i\'j.gg.}ly"bp,e difficulty ob obtaining globally optimum soluticns.

To algor{thns Wt{11Z1ns dpprotinating fierative ‘Sonémés ‘déveloped ‘during
an, ongoing research project are described in this paper. These algorithms
have beel aPplied Vit slidowys' 1H Watel’ wuply Plendimy and vestaddter
trestamnt and dispossl system optimization,

In this peper, a network programning meqel with nonlineaw cogt fugctions
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A WsIWORK FROGRMMITG MODEL WINE
HONLINELE CCST FURGT TOME%

In this peper, 2 nstwork programming model with nonlinesr
cost furietions 1s described slony with comrmiter-based
algorithms for the-solution of the network model. The
network model described is goneral as it can.leanpliel
for the optimization of various physical, “conomic_: and
sociel gystems, &.g., water surply and wastewster syatem,
traffic and tram,snor‘tatmn system, sotid wsste Elam:l",;mg
.ayé%em, natural gas and vetroleum Dlpe“r-"-", cemrinica-
tion systenms, etc. '

Realistic nonlincar gost. finetions reflecting sconomiec~
of-s¢ale are used.for flow through tha ares of *he syster.
network: These nonlinear cdst f.\mnt.lcns zre usually nen-
convex in nature, and various’ comnlex:ttj.cs ars encountersd
An minimdgation vroblems {*volving these functicns,
specifi 2 113' the difficulty: bf ‘obtaini ng globally optimm
solutiens,

Two alg«,rlthms utiiizing awronrm.t ing. iterative schemes
developed durmg an ongein. research ﬁmmcf are deseribed
-in this papér. These ?J_gont‘lms havé heen amplied with
success in water sepply plamning and wastevrtsr treaument
" and d“spos'al ‘system optimization.

Introduction

: 4 large number of optimisation problems imvolving nhvsieal apd
aconomic systems ¢an be successfully described arnd silved bty ontmizznﬁ
the distributien "of flow through s _conceptual network as has hasn..
evidenczi in 1it eratm'e, ses, [ 3./ foriz Jbiblicgrashy. "X network
ponsists in-gensral of a collection of =ledents polled godes or vertices™
same of which-are conhscted. by -branches cv ares.’ The nodes mey be.
dlvidei into’ three categaries -7 | mvcesf '}at" which. flow
is generated, ‘'sinks! gt which ~~ flow is  consumed. .

* Presented e:s the Fourth Srnal -Gonrention of O"‘e?‘"ilonﬁl Fas ,1r-éh
Society of. Ind:t.a, III‘, Madrns, March 2~4, 19'72 . :



and 'intemediate' nodes ~r junctions at which flow is conserved. The
arcs are usually associated with minimum and meximum captcifies »f flew
. \in one or hoth dlrectlms) of some coxrrwdity per unlt timd. '

The Letwork Model censists in- rapresantlng the functiomning »f 2 physi~
cal or economic system by the conccpt »f flow through & netwark »f nodes
and arcs, and detemining an optimum desizn snd/2* operating, vian for the
syster. by findlng 2 minimum cost flow through the system networx. 4 wide
variety of systems. involving production, transportstion,. stomge, proces—
sing and consumption can bée represented. by the hetwotk model. Usually the
production centres become the sourca nodes and the consumptisn centres
become the sink nodos; altematively the flow enters thz system boundary
through the source nodes and lesves the system boundary through the sink
nodes.. Activities such as tremsportation, storage, pracessing, ote. .
become the arcs of the network, their capacity being limited by the plant,
ecuipment or trensportstion capaclty and the unlt cast is detemmined by
the process cast., Junction pointa, nodal transfer prints, .ete. .arc. deseribed
by intemediatg nodes.. -

The flow of one commodity »f prime importance is considered- thrcugh
the network. The {low of miltiple commodities through network weuld

- resuire more sophisticated modelling techniques. %o agsume that there is
no loss or gain of flow in the network. The case of netwdrks with gains
have been considered by Jewell / 5_/ by using arc mltipliers. . The modcl
described in this peper can be generelized to consider lcsses or gains
during flow through the arcs of the network v using & specAEI. algarithm
for Pinding minimum-cost flow,

Some of the specific systems that can be represented by the Vetwork
Model arc: Urban Yater Supply/Waste Treatment and Disposal Svstem; Jolid
Wagte colleetion, Treatment and Dispossl System, Natumal Gas and Petroleum
Distribution System, Electric Power Transmissiaon 3vstem, Commmnicatlon
3ystems, General Trausportation and warchousing System, Postal Delivery
System, eate. _

Jne of the common problems conmnected with "1ows in networks is o
determine the meximal flow through a netvork with. snnc:r.ﬁed arc capacities.
It is algso plausible to assume 2 cost of fow in each ar: of the network
such cost being insurred for the creation of the fecility {e.z2. plpeline
ughway) represented by the are and/or its operstion (e.g. pumping cost,
freight rete). 2n interesting problem with wide~mnging soplications is
to find the distribution of flow that minimizes the total cost »f Lrang-
porting 8 given amount of flow through the network, if feasible. The
well~knnun trensrortati~n and trashipmens problems fall in this category.

The cests may be linesr or n'_:rn};in-ear functions of flow ased on
paysical and economic lavs applicsble t> the situztion. The linenr cost
case has been described extensitvely in litemture and severl zlgovithms



-3 .

are available f 1, 3 /. 4L method for convex cost_flow problems bassd or

a shortest p&th alg‘?arif"nu ia descibad “v Hu [s__7.f Another aleorithm

for the convex cost cadze is descibed by Fillet eof =1 [é:__? wnich finds

a negative locp in a3 relsted network. In 8 larze numbern of applieati~-s,
the cost functions are eoncave reflectlrg either-!'fixed charze’ ~r ccoiimies—
of-sezle or brth,  Zangulll [ £ 7 nzs given golutiecn methcds [~ certain
specially stmctured networks with concave costs.  Sandsrson AR / describes
a 'branch and hound'! algorithm for geneml mecevnae 1inear none Mvex

cost functions. darayenerurthy / 3/ &lsn dese rines 2 "ransh a2 bound!
method for monobone networks with piecewise linesr noncomvex C° Sts baged

on 2 method described by Minty / 5_/ £ar monstone networies.

In tkis peper, two slgnrithms utilizing 1terative schercs are
described for continuous nonlinear cos=t functions, These alegorithns
were daveloped for application to optimal _design of wrter cupoly, waste~
witer treatment snd disposal svstems / 7_/. The ccst functions encoun-
tered were gencrally nonlinear and concave reflecting decreasing marygiunal
cost of freilities with increasing capscity. Minirum concave coct network
flow problem is mathemetically difficuls t» solve the main droblem being
that an algorithm mey converge to a solution which mav be s locel winima
but aot 2 global me. Technigques of ronlinear progremming will uquall\r
converge o sush & Incal minima with no assurance of its belar the globel
one ar with no indication rpgarding existence af other 1loeal wmlvm in
the solution sst. :

The first algorithm describel in this psper has shown gord comvergence
property bul hes no device to stop cowergénce at a local minima. In the
second 2lgorithm a 1ower bounding schene is devaleped for the glebally
optimim solution 2nd the algerithm is. directed Lo converre within a
specified range of this valus.

Mathematicael ¥ormulstion of Network Flew
Froblenm

The mathematlcal formulation of the minimum cost networr 7T prohlen
far & closed network is given below. The network is called closed in the
gense that there is 8 nowccst retum sre of very large capscity conmecting
the sink node to the scurce node and the flow in the network 1is considered
as a-cireulation. In this fommlation. scurce, sink and mtemed;.ate noges
lose thelyr distinctions and flow mnet be ¢onserved at all nodes »2-the ..
network.’ Only cne s-urce sud dne sink nrde is considered hare as multipm
source and sink netwsrks could be cesgily. ﬂanvertcvﬁ mte this typs by the '
addition of appropmate du.mmy arcs and nodes.
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Gpes 1 U T =

.

Hdimimize C =

;mbjegf th 113. < fy S ¥y Torallams (4,1 ¢4 (2)
and Z £ L i‘:'k- = 0 forall nodes § EN (3)
o ieg U ven d :

where

4 is the collection.of all nodes in the network
4 is tha collection »f all srcs in the networlk:

(i,j) _ié..é:z_dii'ec‘:teé.am sta'rting_ at nade i-‘énd- ending.
et node j.

fij_is the flow in arc (i,j), £i 20
1,. 1§ the lower bound on flow in arc (£,3), L,.>¢

ij . Jii-
L is the upper bound on flow in 2re (i,§), Uy 3..111.-_.} 0
4 (fi,]) is the unit cost of flow in a’m' (1,31 T

corresponding to & flow fi-j--

C is the total cost of flow in the netunrk.

kquatfon (1) stetes that the totsl cost of flow aver.®Il arcs 2f the .
network mist be minimized, subject to the arc caprcity constraints expressed
by equation (2). Equation (2) is the flow conservatfon constraint,

Usually there are & lsrge number of feasible flow patterns in the net-
work satisfying the are capacity constraints. The eonstreints on the network
flow due to the demands st sink nodes and the availabilities at the source
nodes are also expressed through arc capecities.. i nizhly rowaritl computa=
tional method for solving minimum cost flow problems in retworks witk . .-
constant unit arc costs (representing linesr cost. functions) is provided
by the Ford-Fulkerson "Jut-sf-kilter! aleorftha (3).  If equation (1) above
is replaced by equation (4)-below, where cy is 8 constant” for each arz
(1,j) A. Eguations (2}, (3) and (4) will represent & minimim cost-flew
problem which could be easily solved by the application cf the " ut-of-
kilter! algorithm even for very large networks congisting »f thougands
of arcs and nodes.

Minimize C = I ST A (4)
(i,3) € & J ] '



The basic procedure ol 'aul-of-kilter' algorithm to solve minir u. cost
network flow problems is explsined below. It is clear that equasion (2)
to (4) define a Linear Prygremme. 7fuel variables. may be defined T
for e2ch i d for the constraints in equation (3) along with a, .
correspohding to the copstraints fi' < uij ~and ‘bij correspondifi;z to the
coastraintd lij-_( f,. £ each '(i,jg € 2. The variables m, are often

called 'node. prices.' Then-the dnual linear pfogramming problem correspmd-
ing to the minimum cost flow problem with linesr eost becomes

-y

Maximize z ( ~m . &, + 1., e, .) (3,
(i.,j) £ A . 11 ij by il
ject i - - + = ( i) & 4
subject to . -y aij bi.j o for all (i,5) € 14 (7)
5 >0, bij > 0 for_é]_l_(;,.i)‘ € 8 (3)

- 'The optimelity conditions for complimentary slackness for all sres
(i,1) A yield - .

c,., * T, - W, Do i es f,, = : (s
1] i ] inplies f, Y (9)
. . _ <& 0 implies 7 =

ij Ty "J o 1] S He
c . - ;o= 0 impli < Cug

13 7" ] mplles 1oy Sy S owy (11)

The relationships (9) to (11) represents the necessary and <+ fficiant
conditions to be satisfied ty 2 flow solution.of the minimum cost flow
Problem represented by equations (2) to (4) to be optimal, '

The out~of-kilter algorithm (3) starting with an arhitrary set of
‘node prices T, 2nd any set of flows fij satisfying equation (7)

builds flow circulations 'anc_l/ozv-'changes node prices in the netwoir with
~ the ngectlve of fulfilling the optimality criteria expressed in relatisn.
ships (9) to (11) for eseh =1+ in the network. Any arc for which anvy of -



thtose mlatmnshiwam not satisi‘ied ig-said to be ‘out-of-kilter,! Tis
'kilter number! specifymg ‘the amount_ of violatisn. The algrrithm uses a
laboll:mg routing to send a flow circulation (breakthrough} thaough-that
age in the forvard - o7 MEVerds dlrectlon desighed to reduce the I—Tlter
number of the particular arc while ust incressing the 'kilter mber' of any
<her @rc in the process. . If such labelling is not possible (nm-breal-
trrough) then some of the node prices arse changed vased m the condition
0 arcs conhecting labelled and unlabelled nodes. . This mey lead to another
£ owciroulbition or breakthrough. This procass 1s continued until all arcs
ara put in "kilter! or it is lesmed thet certain arcs camnnst all be in
]-cl_tar simultaneously indicating that the problem is infessible. £ intcger
va,uze are used for all the variables, costs and flow bounds, it is_oagily
Preven thet the slgarithn tereinates in a finite number of steps £ 5_/..

don; ineéi- i&etwork Programming Model

The conceptual system netwer¥ is develoved from the specification
an¢ properties of the system under study. Enginecring and sciemtifio.
juégement iz needed to design the concepatal gystem network so:that most

- of the altemative system designs are considered and & solution. iz techni-
cally fessible and implementable. Cost functions are developed: for flow.
thrtugh each are of the concepitsl nctwork basad on the pricess that are
revresents. 3Such ¢ost functions become 2n integral part of the netwdrk
mofel for a porticular system. The cogt functions quite commly encoun-
tered by the suthor in studving several physical svstems hsd a common
preperty. It was observed that umit costs »f flow vhen plotied against
f.¢w on & log-log peper result in Linear or piece-wise lineay fom~finmms.
Th2 bagicd eguation representing the unit cost functions is thus czrived
from the values #t two points n the same Linear ‘segment of the oizpH.and
is represented by

C.{(f) = a. f“"1

N - \ .
ere b = A lc/ey

fZ/fE_ ’ C f]_

c{f). = ‘unit cost c-orrespoz;’c-i'i_ng t5 5 flow ™

£ 7 = flow mte

:l'__ o= unit cost. narrespcndmg to = flow rate. f
2 = unit co-st'comspandmg to a flow rate £,

A representative cost functi-n is ghown in Figure 1.
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More than two breakpoints are includek if there are more than one

- linear scgment in the logelog plot of the cost funetion. The enct
functions deséwibed above are conteve and usually monotone nondec reasing.
The method described in this paper should be arplicable to generel class
of continuous monotone nondec reasing functions,

In dpﬂ.ain aprlications it may be possible to aproximate the c¢omtinu-
~is nonlinear cost functions by piecewise linear cost functions. Using this
approach an enl2rged network can bé constructed with mltiple arcs domnects
ing a yai¢ of nodes each such ore having a ¢ast davresponding to the linear
segmeht it represents. = In the case of convex casts, a dirvect application
of 'out-dfakilter algorithm will solve the pmblem wheregs in the non-
commx chse 2 ’oﬁnch and hound method / 97 could be uvseds

4 Nenlineay Network Prcgrammg Model was develoiped which can eccom—
modate conbinuods nonlinesr cost functioms. This model usass 8 lineaf
minimum ¢odt network flow programme (out~of-kilter slgorithm) in an itera-
tive pattem; so that mit arc cnstd (which sre dependent sn arze flow) are
corrected for the next iteratinn after each flow assignment by out-of-kilter
algorithm. The commiation is teminated when the total costg d» not chinge
beyond a specified small percentage beiwveen successive ttemtioneg the '
temmination and itemtive rules are slightly different for the two algorithms
propased for the nonlineer network progremming model as described in the- o
next two gections. But for both algoritims it was found that ~ften the seme
optimal solution is repeated in successive iterstions when the solution
converges indicating & manpe for arc unit costs within which the optimals
solution doss Aot ch#nge due ta sma].l changes in the unit ar cogis.

The model basically comsists of three commuter pmgzrammes contmlled
through an execuiive routine. The Prepricessing Progrmame %012~ the .
ntnlinear cost funcilons for esch src of the network and comput™: the unift
cost as a function of flow rete.for esch are of the netwoarkc from tasic input
data regarding the costs of the process represented by the 2re, Frem ini-
tiallv assumed flow velues in the input date unit arc eosts are commted
and these are used by the 'out-of-kilter' network programmd. 'hen new flow
valunes bre generated, new unit ard costs are commuted and these c¢rgs valtes
replace the 0ld ones. .

The optimiza Thgrarme; essentially an ‘out-of-kilter! alecritihm,
s0lves the linearized problem with given unit arc cost data And arrives at
8 least=cost flow pa’ctem. The Recegting Programme is used to2 correst.
the error introduced by linearizing the problem araing @ given flow sgeign-
ment. It takes the least-cost solution from the ortimizatisn prgremms
and based on this Teassigns flows in the input date for the preprcessicg
pProgramme. The whole computationzl process is then repeated with the
Preproceasing progremme commuting new unit arc cests for the nevly asgigned
flows and the network programme finding a new least-cost flow sohtmn.




The total syastem cost is computed =ft.er ‘each itaration and & ¢hook 1o male
nsing a specific temminatim nile tysed on: perceutage error Wit h iotal cost.
In all cases where the programme was used;” ‘convergance to 8 enlitien has
been obtained within & few (-‘J-o) iteratlans 3f the- ref'aﬁiing '‘Bargramm

Jetwork Modsl Algorithm 4

. The iterative scheme for Algonthm ‘A ape déscribed below. . Tr*o urder
lying logic A3 quite simple.  large walues 4f asguped Tlow aro teed as the
beg:mning For' eomrntl‘ng unit costs which-are corrected 'in subsaguent .
iterstions based on the optmal ‘solution 'of ‘the 11nearized pr"h':l."m. Tha:
unit are eosts in arcs heving zer flow grc ara kept low'so B threw gould
beome candidates during subsequent Aterstions., However, once Ay 8¢
has & positive flow, its unit cost-is corrected to the correspording value
at the next iteration. Though the convergence: pmpert*v of the nlzorithm:.
is quit.e fast there is mo-guarentee that the sslutisn: sbbeined 45 glo hally
op‘t.imm No indication is available regarding the existence ?-fﬁth 2
nidime, no bounds ayre available. for-the globallv optimm askt tion. T
ahtain‘s’ufficimt assurance that a globslly optimim solutien has been
obtained, the problem can be s2lved starting at seéver=l remdom bﬂginni
solutions to, check if the same solution-is obtained.

Step 1 ¢ Eanter with assumed flows (1} for eaeh axc:
These flow arc chogen so that for esch are
with concave :mst functions, the maximum
possitle flow i; used consistent mth the
physlcal constraints »f the network.

Sfep 2 : Complter ﬁnaar arc costs (1) uging the pm—-
protessing progxamme and assumed flows (1)

"Step 3 3 Enter opbimizatian pmgmme l.ouf'-bf- Fii¥er

' s3lutions) with zéro or some feasible flow |
and find the optimum solutiom with tatal enst
(1) 2nd -optimal flow {1



Step 1:?  Eeedw with assumed flow (3} which is
computad from assumed flaw (1) ang »ptimsl
flew {(1). For the ards for vhich 9?**17*“1
flow {1) is zemm, set assumed flow kr”
equal tc essumed flow (1). For the arcs
for which optimal flow (1) is nositive,
set assumed flow (2) equal to optimel
flow (1}&

Step 23 qomputpr lineat ard costs (2 uéﬂ'nsz the
preprocessing vrogramme and. agsumes?
flow (2).

Step 3+ Enter optimization programme with ortimsl
flow {1) and linear are costs {2); find
“the opbimal solution with total cost (¢)
and optimsl flow (2).

Step 4:  Compute 100% x  Total cost {2) — Total cost {1)
Total onst (2) ‘
If the awsnlube value of this peicentage is
less than ths specifizd terminetion value
(1=25), terminste. Otherwise enter Loon 3.

Logp 3 '...n (where m i3 the mavimum ellowable 1aen).
' These lpops #7e similer to Loop -,

Netwrrk Model ilgorithm 9

The iterative Algorithm.B deseribed in the following steps is a
improvement over the 4lgorithm 4 though they sre quite similar. Zaoe
adventage -f this algorithm:is that for any psrticulsr case af the
netwsrk model with given boundary conditions it provides & lower “ound
value of the total cost at sach loop oy iterstion. The sSbtained : slutinm
is compared to the lover haund and 1mpmv~=ments are made st tne next
loopto tighten the lower bound: Thus one always lmows ‘the mer’am
error Trom the globa 11}' optimum sohitiom and in subseanent iteretisns
this errer is reduced. - With luck, the Lower bound solutinsn and the
model solution my bhe. 1danticai in which ecase the model solutlen is a

global optime., The lower bound solutions 2re-slways globslly optimum
solutioms as they use linear {convex) envelopes of the concave am cost
curves, . Thé behdviour -f the sclution totsl costs and the lower bound
cast-s is ‘schemstically shown in F‘igurﬁ 2.
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Tteretive Scheme for Algorithm B

Step 1L ¢ ° - Enter with -agsumed Flows {1) for each arc.

" These flow values are chosen so that far esch
arc with concave cost functimns the mxinum
possible flow is used.: Thege flow values axz

" obtained By examining the physical network and
various solution modes. Ume shwld mot mat
arbitrmrily large flow values, as then the |
lower bound on cost will betoo much lower.thmm
the globally optimsl sclution.  But care sheuld
be taken that these flow vslues Gre large
enough ao that for sny arc no.subsequeni
solution flow yalues .do ‘not.exceed these assumed
flow values.

"Comp;te linesr arc costs (1) neing the Drepro-
cessmg programme and sssumed {lrws (1},

»*” \

‘Step 2

Step 3. & Enter optimlzatlfm programme (mt—-of—kﬂ"ar
: network optimization subroutine). with uers o7
‘some fessible flow snd find the optimum s-lu-
tion with total eost (1) and osptiml flew (1).
Total cost (1) ig the lower bound cost {1).

- .

Step 4 Enter prevrocessing prasrranme mth- "ptmvm fl:w
(1) end compute true src costs:(1). Jommute
corrgetedstotal cost. (1) by mulsiplying optimal
Ty fi} by tme arc rosts (1).

Step 5 By deﬁ.nitlen-, orrected cost (1). Total ecast (1).

Gomp.xte 100.;_,: Corrected Total Cost {1} - Total Cogt (1)
T . Total cdet (1)

_If thia percentage. :Ls legs than the specified .
‘tarmipgtion value’ (14 %s = good guess), termi-
nave, - O‘hhemise enter Loop 2.




AT

“Loop 2.
Step 1.: Fnter with assuméd flow (2) ‘which is commuted
from assumed flow (1) and optimel flow {1).
‘For the arcs frr which optimsl flow (2) is
zeto, set assumed flow (2) equal to assumed
flow (1). Fof the ares for which optimal flow
(1) is positive; assumed flow (2) is equal 1o
optimal flow (1):
Step 2 : Compute linéar arc costs (R) using the pre-
processing nrogrsmme and d@ssumed flow '{3)-
3tep 33 B Enter optimization programme with optimel
. ‘flow (1) and linear arc costs (2); find the.
optimal solution with total eost (2) and .
optimal flow (2). Totel cost {2) is the lower
bound cost (2) and it can be easily prved -~ -
that lower bound cost (2) lower bound cost (1).
step 4 3 Enter prepmcpss;ing: pmeramme with optimum -
flow (2) and compute tue arc costs (2).
Compute corrected total cost (2).
Step 5 : Compute ‘percent error. If this error is mo re
than temination value and optimal flow (2)
Is not equal :tn optimal flow (1) for all ars,
g3 to Lonp 3; ctherwise teminate. C
‘Loop 3 ... n (whers n is the maximum allowsble loop)
Th_ese loops are similar to Loop 2.
Conclusions

The Nonlinesr Je‘work Model snd the associated algorithms discussed
here have proved successful in the solution of sevéral optimization studies
of physical systems formilated as network flerw provlems. A résearch
project is being continizd to improve upon the model and develnp slgorithms
with better convergence properties towards. globa 11y optimal solutiens.
Experimentation with nonlinear cost functions of different forms are needed
with special emphasis ¢n non-convex cost function to study the convergence
properties of these algorithms. Theoretical investigation in the working
of these algorithus are a1sn being continued. The developmeni »f an
efficient algorittm for wswwork flow problem with nen~convex cost functions
wilq. enhance the application of this highly vowerful operaticns mesearch
technique to various comp.ex physical, econcmic end socisl systems which
could be concerutally modeled t¥ networks. ' |
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