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ABSTRACT

In this paper we discuss a simple fully Bayesian analysis of the change point
problem for the directional data in the parametric framework with circular
normal distribution as the underlying distribution. We discuss the problem of
detecting change in the mean direction of the circular normal distribution when
the concentration parameter is unknown. Beginning with proper priors for all
the unknown parameters, the sampling-importance-resampling (SIR)
technique is used to obtain the posterior marginal distribution of the change
point. The method is illustrated using the wind data (Weijer's et. al.(1995)).
The method can be adapted to a variety of situations involving both angular
and linear data and can be used with profit in the context of statistical process
control in Phase | of control charting and also in Phase Il in conjunction with

control charts.



Introduction

The onset of an abrupt change, which usually leads to poor quality
products, is a phenomenon which is common in the industrial context. Several
of the techniques discussed commonly under the heading statistical process
control (SPC) are for early detection of any sudden change in the process
parameters. Some examples are Shewhart control charts and its variants,
Cusum charts, EWMA charts etc. The primary aim of charting in the context of
SPC is to detect the occurrence of such a sudden change in the value of a
process parameter or quality characteristic as quickly as possible. Woodall
and Montgomery (1999) consider change-point estimation as an important
research area in SPC. Stoumbos et. al. (2000) advocates a greater synthesis
of theoretical change point and applied SPC literatures. It is of interest to note
that the formulation of the change point problem as given by Page (1955)
does not consider any possible correlation between the successive
time sequenced observations which makes it markedly different from the
usual time series models. The problem of detecting whether at all there is a
point of abrupt change in a given dataset thereafter the problem of detecting
the change point has received a lot of attention. Over the last fifty years the
problem has been examined extensively for the case of linear data. The two
main streams of work pertain to the parametric set-up with normal distribution
as the underlying distribution and the non-parametric set-up see eg, Chernoff
and Zacks (1964), Hinkley (1970), Sen and Srivastava (1973, 1975a,
1975b), Chen and Gupta (2000) etc. The change-point problem assumes
great practical significance in the context of many real-life encounters

with directional data, e.g. in applications relating to meteorological data like



wind directions, movements of icebergs, propagation of cracks, biological
and periodic phenomena (like circadian rhythm) etc. Lombard (1986)
initiated work in the context of directional data in the non-parametric frame
work. As in the linear case in the angular case also, the change point problem
has an important role during the Phase | (retrospective analysis phase) of
control charting. The construction of control charts for angular variables and
definitions of some associated process capability indices are discussed in

Laha (2002, 2004).

In this paper we discuss the change point problem for angular variables in the
parametric framework with circular normal distribution (also called von Mises
distribution), the most popular distribution for directional data, with probability

density function given by
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where (k) is the modified Bessel function of order 0. If the angular random
variable ® follows the circular normal distribution with parameters pandx then
we write ® ~ CN(u,«). The parameter pis called the mean direction and the
parameter x is called the concentration parameter. The circular normal
distribution is a symmetric unimodal distribution with mode at x. For more
details on the circular normal distribution the reader may look into

Jammalamadaka and SenGupta (2001).



Gibbs Sampler

One of the most popular tools for sampling based inference is the Gibbs
sampler. In this section we discuss the construction of a Gibbs sampler for the
change point problem for the mean direction of the circular normal distribution
and point out some difficulties encountered in using this approach. Damien
and Walker (1999) demonstrate the use of strategic latent variables to
construct a Gibbs sampler for analysis of circular data, having the circular
normal distribution as its underlying distribution, which has all full conditional
distributions of known type. We use an approach similar to theirs to construct
a Gibbs sampler for the change point problem with circular normal distribution

as the underlying distribution. The details are given below.

Let the joint prior distribution of (s ty, K,7) be
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where p(r)is a probability mass function on {1,2,...,n}, I(» < n)is the indicator
function of the event {r <n},and R,,R,,u,,u, .c are all constants. In what
follows I(H) will denote the indicator function of the set H . The posterior
distribution of (u,,u,,x,r)is then
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where m=c+n, R, and u , are obtained by solving simultaneously the system

of equations R, cosu,, = R, cos i, + Zcos 6, and R, sinu,, = R, sin u, + ZSin 0.,

=1 i=1

R, and u., are obtained by solving simultaneously the system of equations



n n
R, cos i, = R, cos u, + Zcos 0, and R, sin u,, = R, sin y, + ZSin 6. . We now

i=r+l i=r+l

introduce latent variables ¢,vandw and define the joint distribution of
(1, 1y, 5,7,t,v, w) to be
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Note that the marginal distribution of (,, u,,x,r)is same as that given in (2)

above. Now since /,(x) =Y 4" where 4, = (k!) 0.5 . Therefore the above
k=0

joint distribution can be written as
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Introducing the latent variables u=(u,u,,..)andx we define the joint
distribution of (4, 1,,x,7,t,v,w,x,u)as
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It is easy to see that the marginal distribution of (u,,u,,x,r)is same as that
given in (2) above. To implement the Gibbs sampler we need the full
conditional distributions of each of the variables given the rest. These are
given below. Let U(a,b) denote the uniform distribution on the open interval
(a,b).

(i) The full conditional distribution of xis U(0,w" ™).



(i)
(iif)

(iv)

(V)

(vi)
(vii)

(viii)

(ix)

The full conditional distribution of zis U(0,R[1+ cos(z, — 1.,)]) -
The full conditional distribution of 4 is U(a,b) where
A=(a,b)={u:cos(u—p,)>(R,x) " Int -1}

The full conditional distribution of v is

U(0,&R_,[1+cos(u, — p.,)))if r<nandU(0,1)if r=n.
The full conditional distribution of w4, is U(c,d) where
A=(c,d)={p:cos(uu—p1,)>R,x) ' Inv-1} if r<n and g, =y if
r=n.
The full conditional distribution of u,,k =1,2,...is U(O,e“”””).

The full conditional density of wis given by
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The full conditional density of «is given by
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The full conditional probability mass function of ris given by
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The Gibbs sampler can now be implemented quite easily.

In the above we have tried to look at the Gibbs sampler along the same
lines as of Damien and Walker (1999). However, we have not yet been
able to establish the necessary conditions for the ergodicity of the chain.
We feel that an in depth theoretical study will be required to verify the
existence of a stationary distribution for this chain. In this paper, we thus
divert form that theoretical route and propose another approach which can

be easily implemented in practice.

SIR in Change Point Problem

Let ©,,0,,...,0, be independent observations. We are interested to test
the hypothesis
H,:0,,0,,..,0, areiid. CN(g,, )
against the alternative

H, :0,..,0, areiid.CN(y,,x)and ©®

1<r<n-1.

0, arei.id. CN(y,, k), i, # 4, for somer,

PR

The parameters y, 1,k andr are all unknown. Laha (2001) analyses this

problem from a frequentist perspective and proposes an NR-type test for this
problem. In this paper we take the Bayesian route using the Sampling
Importance Resampling (SIR) technique to obtain the posterior distribution of
the change point. The use of SIR in the context of change point problem even

in the linear set-up has not been reported previously in the literature.



In the SIR methodology a prior (joint) distribution is specified for the unknown
parameters. Samples are then drawn from this prior distribution and the
likelihood is calculated for each such sample. The prior is then resampled
using the likelihoods as weights. The resample constitutes a sample from the
posterior (joint) distribution of the parameters. The posterior of each of the
unknown parameters can be obtained by finding the appropriate marginal
distribution. For an elegant discussion of SIR methodology the reader may

look into Smith and Gelfand (1992).

We apply SIR with the prior joint distribution of z,, 1,k and » taken to be the
product of the four individual prior distributions. The prior distribution on
4, and 1, are both taken to be circular uniform, that of x is taken as
exponential with rate 1 and that of ris taken as discrete uniform{71,2,...,n}.

Thus the joint prior distribution of 1, 1, x and r is
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e
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It is to be noted that » = n implies that there is no change point in the data set.

The likelihood function is
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L(py, tty,%,736,,0,,..0,) = exp[K{ZCOS(ei - ﬂo)}i| ifr=0
i1

(27, (x))"

For each prior sample, (x,,u,;.x;,1;) Wwe attach the weight

200

q. = Lo - 53,713 0) where 0 = (6,,6,,...0,) and m is the number of prior

2 Lty 11555 7,30)
j=1

samples drawn. We then resample the prior sample, using the weights ¢,, k

times to obtain a sample of size k from the posterior distribution of

Hos t,kand 7.

Example

In this section we apply the above methodology to a dataset of wind directions
given by Weijers et. al. (1995). They investigated the horizontal perturbation
wind field within thermal structures encountered in the atmospheric surface
layer boundary. A field experiment with four sonic anemometers on the
vertices and one in the centroid of a square was performed to obtain the
necessary dataset. Structures were selected on a typical ramp-like
appearance in the temperature time series. Altogether a set of 47 ““ramps"
was obtained. Ensemble averages of turbulent temperature and horizontal
and vertical velocities were constructed using conditional sampling and
block averaging followed by a compositing technique. We are interested in
the behaviour of the direction of the horizontal wind field as recorded by the
anemometer at the centroid for the 32 bins after the ensemble averaging

procedure. The method of construction of the bins and the ensemble



averaging procedure show that the bins have a temporal ordering. We
retrieved the actual data from the graphical representation presented in the
paper. Exploratory data analysis conducted on this dataset using the
Changeogram and circular difference table developed in Laha(2001)

indicated the presence of two change points.
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Fig 1: Changeogram of wind data

In this paper we obtain the posterior distribution of the first change point using
SIR. A Changeogram displays pictorially in terms of directed arrows, each of
unit length, the direction in terms of the angle as given by the corresponding
observation. The circular difference table is constructed by considering the

change of direction between two successive observations. For eg. if 6, and

6. . are the two successive observations then we consider the difference to

t+1

min(| 6, -6,,, |,27-16, -6, |). The Changeogram and the circular difference

table has been incorporated in DDSTAP (SenGupta, 1996), a statistical
package for the analysis of directional data. From the Changeogram (Figure
1) one notices that there are possibly two change points one around 17 and
the other around 23. Since we are primarily interested in the posterior

distribution of the first change point the data beyond the second change point



were omitted. Thus, we consider only the observation numbers 1 to 22 for our
analysis. The marginal posterior distribution of the change point based on

69511 samples from the posterior joint distribution is given below (Fig. 2):

Prob.
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Fig 2 : Posterior distribution of change point for wind data (Obsns. 1-22)

From the above posterior marginal distribution we see that the posterior
probability of no change is quite small. The posterior median is at 12, the
posterior mode is at 14, and the posterior mean is 10.57. The approximately
90% posterior credible set of the change point is {2, 4, 10, 12, 13, 14, 15, 17}.
The circular difference table for the wind data (Observations 1-22) is given

below (Table 1).



t Diff t Diff t Diff
1 2 8 6 15 31
2 7 9 13 16 8
3 7 10 8 17 73
4 3 11 10 18 8

5 1 12 10 19 29
6 8 13 9 20 32
7 4 14 19 21 22

Table 1 : Circular Difference Table for Wind Data (Observations 1-22).

The above dataset is analysed from a frequentist viewpoint in Laha(2001). It
is reported therein that when Lombard’s non-parametric test (Lombard, 1986)
for single change point is applied to this dataset it indicates the presence of a
change point at 5% level of significance and identifies 13 as the change point.
When the NRTT, a parametric test derived under the assumption of circular
normality in Laha(2001), is applied to the same dataset it also indicates the
presence of change point at 5% level of significance and identifies 17 as the
change point. It is interesting to note that both 13 and 17 are included in the

90% posterior credible set for change point mentioned above.




Concluding Remarks

SIR provides a very simple approach for identification of possible location of a
change point through examination of the posterior marginal distribution of the
change point. The method can prove to be an extremely useful tool in the
context of Phase | studies for SPC. Even in Phase Il when on-line control
charting is in progress these methods can be used very profitably to reduce
the work-load of the process engineers when a control chart indicates an out-
of-control condition. The process engineers can look at the points with high
posterior probability of change more intensely than spreading their effort
equally over all time points since the time when the last out of control
conditions were detected. The method though discussed in the context of
directional data in this paper can be easily applied to other set-ups like normal
or exponential. Also the method can be easily adapted for the case when the

data set is suspected to have multiple change points.
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