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ABSTRACT

Ietﬂign be the set of all doubly stochastic square
matrices of order n 1i.e. the set of all n x n matrices
with non-negative entries with row and column sums equal
to unity., The permanent of an n X n matrix 4 = (aij)

is defined by
P(A) = z ;ﬂ: &, ....(l)

where Sn is the symmetric group of order n., van der
Waerden conjectured that P(A) > n !/n" for all
Aeﬁan with equality occuring if and only if A = Jn’ where

J, 1is the matrix all of whose entries are equal to 1/n.

The validity of this conjecture has been shown for
a few values of n and for general n under certain
agsumptions. In this paper the problem of finding the
minimum of the permanent of a doubly stochastic matrix has
been forrmlated asgs a reversed geometric program with a
gingle constraint and an cquivalent dual formulation is
given, A related problem of rcversed homogeneous

posynomial programming problem is also studied.
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Let-ﬁE;. be the set of all doubly stochastic square
matrices of order n i.e. the set of all n x n matrices
with non-negative entries with row and column sums equal
to unity. The permanent of an n x n wmatrix 4 = (a.ij)

is defined by

i
&
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)

P(4A) ol s
tes, i=1 +T) (1)
where S n is the symmetric group of order n. van der

Waerden (4) conjectured that P(A) > n !/n" for all

AP, with equality occuring if and only if A = J_, where

J, is the matrix all of whose entries are equal %o 1/n.

The validity of this conjecture has been shown
for a few values of n and for general n under certain

assumptions. See, for example D, London [2] and Marcus




and Fewman [5]. In this paper the problem of finding the

ninimum of the permanent of a doubly stochastic matrix has

been formulated as a reversed geometric program with a

single constraint and an equivalent dual formulation is

given. A related problem of reversed homogeneous posynomial

programming problem is also studied.

Programs

Let P(t1, ves tN) be a posynomial i.e., of the

form
M
P(tys eee g ty) = 35103 Ly (545 eee 5 by)
- ( o) = Ao,
Il- t ] [ I 3 ’ t = -b.
g " i=1 1

and cj>0 for j = 1,2, seee s M (M ) N). bij's are non-

negative integers. ILet us further assume that P(t1, coey

N
is homogenous of degree n, i.e. 3 b_.= n for each

ooy B3
j =1, eee 5 Mo PFurther assume that b11= b22 = by

Consider the seometric programming problem ¢ Find

; = A
inf P('t1, 'bz, sscoes tN) /1

)



subject to

(1)

.b >O ] >O, LA B BN t~>o.

e
1 Y2 i

Problem (I) is a 'reversed! geometric programming problem.

N
This is because in (I) the constraint % tj= 1 can be
J=1
N
changed to 21tj % 1 without changing (I). Note that (I)
J= :

;’s are % O.

is a minimization problem with cj >0 and bia

Consider therefore the problem I(a) : Find

inf P(t1, .e tN)

subject to

t1>o 9 t2>0, o0 ¢ 00 tN>O
We sbate the following theorem:

Theorem 1 :  Suppose that there exists a point with
* , *
t1>0, ess  Tx>0  at which the infimam of Problem I(a) is

attained.



Then we have

81?(‘1:1, tN)

;
!
}

]
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t
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where
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Proof of Theorem 1

¥* »*
- /
5 = DRy e By )
*
b=t p=1,2, .. N

= (t1, cos tN)

First we gtate and prove a lemma.

Lerma: Under the assumptions of Theorem 1, consider the
Problem : (II). Find
inf Bty e ty) = A,
subject to
| =0 c, ‘“‘%
‘1 \%2/ *w

Then )1= ;2

121,2, vee N

with A, defined in I(a)



Proof of Lemma : From (2) and the geometric inequality

we have

/ o -\.062 (04 N
1< f'-J-G-1>1 (i%) Y XEREK] (f_l\l. N \< th
\a1 az \aN 3=1

Thus a feasible solution to (II) is also feasible for I(a).

Thus;}

-

o ¥ A 4o If (£, .. %) is feasidle for I(a), by

N
choosing a; = ti/ ‘Z1tj, i=1,2, «« N, we havc
J=
% N %2 oy =1
<_-_t_1> :_t_%> ssss e :EE\’ = E tﬂ \< 1
104 [0 AN
a1 2 N/

This implies by continuity ;\2 < /\1. Hence ;§1 - ;}2 and

this proves the lcmma.

Under the assumptions of the ftheorem, the proof of the lemma
shows that the infimum im (II) can be rccplaced by minimum,

o1 o AN
Denote a4 @, seee Gu by B . For a given vector

. =1, (II) becomes a standard

of a‘s such o. > 0 and
J 1 J

tm=

J

posynomial program., The dual to this geometric program is ¢

~-11 - —
maximize h (u) ='_1_1_14 (2 “"(Pﬂi b (3)



B.t. u.1+u2+...+u.,=1 (4)

Zb-u-" av= 0, p=1’2’ ...II

- (5)
u.?,O V}O j=1, ooocoM

Since £ Db

= n, for each j=1,2, ..M, the constraints (5)
p=1 ‘

PJ
M

imply on adding that n I 1,1j =V
=1

Thus v = n by (4). The dual problem therefore reduces to

-/
Mo, s\
maximige h (u) = _:/ <E&) 1 gt
Log=1 .
NS /
‘ M
Set. I ou, =1
=1
M
(111) , - . =
321 bh3 By D =0 p=1,2y.¢ N (6)
uj ’>/ 0 j=1, X M ) (7)
For ¥ N
or 3 «.= 1, the equalities (6) when added yield £ u.=1
i=1 1 j=1 9

and hence the constraint (4) can be dropped.

N
Thus for given «; >0, X a, =1, (II1) is equivalent to
i=A A

~



u 3
maximize h(u) ( ~\
. : C.
3—1
M
S.t Zb . L. = Nno "—'—O =1 2 s e e N.
121 pi 3 o ’ P=lscy ’
uj >0 J=1,25 eeey M

(1V) |

The primal program (II) is super consistent as defined in
Duffin, Peterson and Zener (P 80, 1), This is to say that
there exists at lcast one veetor (t1, tos eees tN) with

_ - -
t; >0, 3=1,2, 4uu, N such that B 5,7 t, 2 ...t 1,

N
We can take, for example all tj =2, J=1,2, eue N,
Then A
-0 -
1 2 -0, o o
t . i) - 1 2
Bty %, ceer By =B (27) =ay a4
oy
ceses Oy /2\< 1/2
sup
o e
. 1 2 o
Since aj>0 a1 o . - N _ 1
. 2 N
Eaj=1

Further we can find a point u = (u1, Usy sees uM) with

positive components that satisfies the constraints (6).



Take for example uj}s such that

uj = /afor 3 = (N“"l), sseee M
M

= no i b . =2 e}
n‘l_p D /OjE-N-M Dj y P=1,2, s N

/0 >0 is chosen such that

M
fg < minirmum ne X b .
P j::N'i"l PJ
) % b, >0
p - .
j=lf+q P

By Theorem 2, p 120 of Duffin, Peterson and Zener (1],

the primnl function P (t1, cees tN) attains its constraired
minimum value at a point, say (t}, .., ﬁ;) satisfying the
constraint of (II). The conditions of the first duality
theorem of geometric programming (Theorem 1. P.117 of
Duffin, Peterson and Zenecr [ﬁ}-are satisfied. Hence we can

assert that

(i) In the dual program (IV), the duwal function h ( u )
attains its constrained maximum value at a point

(u1* s sess uM#) satisfying (6) and (7).



(ii) The constrained maximum value of the dual function
is equal to t he constrained minimum value of the
primal function. h (W) = B (b, , tyseees by )  (8)
b1j Doy PN

»* *

»*
Gii) n (u*) u; o=c, b Bo eeses by 53 = 1,2, 0l (9)

j

We have h (u*) > O so that from (9) we have

|

*
uj /03 I_}: 't * lJ h(u*) s 3 = 1,(-,.0.M (10)

l
t1* 3 P(t,l*, ase tN )9 3”1 2, LY M (11)

Since b11 = b22 = 44 = bNN =n and bij = O for
i A3 and i=1,2, eeee N, 3=1,2, «.eeN we have

upf//cp

/h('li*) H p=1,2’ ees N (12)

. 1/n
%l (u.*) U.p / Cp} ’ P=1’2,ooa’ N

From (10) and (12) we have therafore

it

N ,
uy /o =[p=1 p) 2 ] Bt pot P n/h(l}f)

J
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*\ Ppy/™
_ :? Yo \ Je(N+1), 2oay M
p=1\’r /
*~\b_.
N * II\: h _1%1 for p=1y.k
= i = A Tty
since p§1bpj N, Since U, /cp - cp .
we can state generally that
w0 /0
W. /O. = _]I £ j.1, ese M (13)
J J =1\ C
P D
'From (III) we have
*
Mo/ X% 0
ho(u¥) = (4 B
-~ 3=1 J
M *
- Z u b_.
¥ /2 ¥\ =1 9 Rl
p=1\"p
~=al
¥ /u * P
- (3 , by (6)
= b

Z
m
=
N
C
"
o
7 i
o
N~
d
K
© (]
R
Fal



S A s
i D a1
p= TXE*) JY
N o no N
= hn(w) @ (=B ) P since I a=1.
~ p=1 tp p=1 P

N o nap
Since h(u*) > 0 we have II -1-;-:9* = 1}

-
4

Hence : 1 P
N /o o . *
1 = II_(;EE* p = 8 t? seese Ty
P=1\"p
Further, substituting uj* as given by (11) in (6), we have

‘b
M *13 _ N N
j§1bpj Cj IIti P(t1 » vod tN )-nap—O, p—1’..’ N,

Using the definition of P(t1, .;., tN) this can be

rewritten as

* *
nap P(t1 9 eae)y tN ) = O’
t_*

p

‘WbP(t1’ 29 tn) -
ot
P ¥

?

T p=1,e00 M. (15 )
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Since the infimum is attained in (II) and also because of

(14) there exists an optimal solution to (II) with a =t ,

. _ »
p=1, «« N. TFor the choice of oy b ocpr-"tp s D=1y eeu Ny
¥
t is optimal for (II) and hence we have from (15) that
~

aP(t-‘l’ [ XX} -b_N;?‘ l

ot
By ' p=1,2,...N

| ) .
=nP (5, * 0N )

The theorem is proved,

Minimum of a Permanent of doubly stochastic matrix and
reversed geometric programs

In this section we formulate the problem of finding
the minimum of the permanent of a nxn doubly stochastic

matrix as a reversed geometric programming problem,

It is well known that a n x n doubly stochastic
matrix A‘n can be eXpressed as a convex combination of the

n! permutation matrices . igce

A, = by D‘1-‘+ 5, D, ke ¥ by Dy

with N =n \. s D D‘é" “ses Dy are the permutation matrices
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of order n ; tj sy 3=1, ... 1n are such that tj >0 and

N
I t.,=l, Tke permanent of An can then be expressed in
J=1

. M
t = 4y
terms of the t's say P(t1, .e tN) j£1Lj (t1, .o tN)
‘ - n) N b
with M= {(pe1) ! /N and L.(t,, oo t ) = 1L . ij
S it N iz 1+
N
(b_.) satisfy the properties that % b_. = n for each
bd p=1 pJ

J=1,.« M and they satisfy a further property that

M
z b_. 1is the same for each p = 1,2, .. N.
i=1 DJ

N N
Since X I b_. = Mn , +this stated property implies

p=l  j=1 PJ
that

!
Tb_. = Mn/N for each p = 1, oo N& (16)
3=1 bl

Further b.11 = b22 = see = bN-N = Ne

Since the permanent is a posynomial belonging to the class
of posynomials discussed in section 2, the results proved
'ih that section are applicable here. It is also to bé-notedr
that the permanent satisfies the further property (16) which
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secns to be Important in the settling of van der Waerden
Conjecture. Stated in the dual form, corresponding to (II),
the problem of finding the minimum of a permanent is

given by the following min max problem subject. to linear

constraints:
-u,
no no no M J
minimize maximize g(u, a) = a ! 2 o N I (uy)
8l & 1 % % =1 9
o u
7~ ~
gubject to
M '
b, u, = a«a =0 .
351 pi 3 n P y b= 1’2’ « N 17
u.j ) 0 ;
I
x =1 3 a_>0 = ese N
pet P *p p=1s
A : N
Note that min max g(u, a) subject to fa_ =1 ;
04 i ~o~ p:‘l p

T u. =13 uj;O ’ %1>O irlesN is equal %o
= j=1 ,OQI'T

N/n" with the optimal solution corresponding to ay E'% H

uj E.% « This solution corresponds to the doubly stochastic

wilh
‘matrix,oorresponding t; ='% s 1=1,..N which is the Jn matrix
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‘with all elements equal to %} If the van der Waerden
‘conjecture is true, the structure of the matrix B = (bpj)
: NXM
will have to be exploited to show that the constraints (17)

could be dropped without changing the dual problem (V).

We shall illustrate the ideas developed so far
in verifying the van der Waerden conjecturc for n = 2 and

‘in discussing the case n = 3,

. 1 0
Case t n=2 The permutation matrices axre ; and
. 0
o 1
1 0
1 0 o 1 t t
t, +t2 = 1 2
0 1 1 0
for t1zo ’ tzzo and t1 + t2 = 1, The permanent equals

t12 + t22. The reversed geometric programming problem

ig therefore
ninimize t

Set Ty o+ ts 21

450 $,%0
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This problem is equivalent to :

inf LTRAT

t1>o ’ t2>)

with B = a4 ay 3 aq 20 xy >0 , @, *a, = 1

For a given Ggy Oo the dual is

o 1 2 v
maximise h(u1, uz) = u u, B

s.t. 2u1 - a1v = 0

Thus ¢ = 2 3 Uy =0y, Uy =0 for which

ay Uy
and this takes minimum value for a, = a, = 1/2
and the corresponding value of B = % = i%

For the case n = 3, we give below the expression of the

permanent in the posynomial form and give the dual problem
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which finds tye minimum value of the permanent,

Cagse n =3

A doubly stochastic matrix has the form

100 10 010

t1 010 + tz 01 > t3 100
00 1 010 01

0 010 001

* t4 + t5 0 1 ¢ t6 100
100 100 D10

6
with £.30 , T t. =1
_ J j= J

t1 +» tz t3 + t5 t4 + t6
= t3 + t6 t1 + t4 tz +» t5
t4 + ts t2 + t6 t1 + t3

The permancnt is a posynomial ¢

: " - 3 3 3 3 3 3 2
. P (t1, t6) = ByTH BT BT 0 BT BT 4%,

2 2 2 2 2
ty ¥+ T, 0, * t1t2 + t2 tg * t2 t

ot e B,

5
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2 2 2
+ t3 t6 + t t1 > t3 t5 + t4 t1 + t4 t5

2 2 2 2
* E57t, ¢ 5578,

2
+ t6 t2 + t6 t3 + t6 t4 + t1 t3 t4 + t1 t5 t6

+ t1 t2 t6 + t1 t2 t5 + t1 t2ft4 + t1 t2 t3

t t, t

tg * T 5 By s

g By Tg + T

t: t

+ 1 3 Ug

t4 t5 + t2 t3 t4 + tz t4 t6

5 * Ty ts %6 * by oty g

+ t1 t5 t6 + t4 t5 t6

Here M = 48 3 N =6 ., The problem of finding the minimum
of P (B, eee ) is equivalent to

] .

i
minimize maximize g(u, a) = L u 53
o u ~ j=i 3
48
s.te Y u. =1
=2
48
j2=1 bpj ua- B(XP-—O, p—1’2,... 6
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a)O =12.-.N
D P y %

A lower bound for the permanent of a doubly stochastic

matrix

Using the dual formulation (V) we can immediately

give a lower bound for the permancnt of a n x n doubly

stochastic square matrix., TFor a given ap 9
N
pzir= 1, ap>0 it can be verified that Uy = s P =1,...8

and u. =0 for j = (N+1), eee.s M ig feasible for the

congtraints (17).

_ N no, M Ty
Thug max glu, ¢) = 11 « T (u,)
u ~ o~ pet P j=1 9
/\/
N
(n=-1)a
o P
?F’ p
1

b,
/ 1
N(n.--‘l)

>O, p=1,‘co N and I« "'1. ’

for every {?é} such that « D

D
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Thus min max g(u, a) > —J—u—n Of course this bound

« u o~ ~ e
~
-(n-1)
N is smaller than the conjectured bound N/n".

A question was raised whether van der Waerden Conjecture
ig true if we alliow negative entrics in the matrix whose
row sums and column sums are equal to unity. The following

example shows that the permanent of such a matrix can be

negative.

Example 1 : Consider the 3 x 3 matrix
-9 5 5
5 =9 5

The rwo sums and column sums are equal to unity. The
permancns is however equal to = 1154 which is less than the

‘conjectured bound,
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