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THE MINIMOM WEIGHT RODTED ARBORESCENCE PROBLEM:
A BRANCH ARND BOUND SOLUTION

»* : %
V. Venkata Rac and L.F. Mc Ginnis

I. INTRODUCYION

In thig paper we develep z branch aﬁd bound technigque for tha minimum
weight rooted arborescence problem in an acyclic graph with weights on nodes.
This problem was not studied in the literature before. The importance of
the problem liss in the fact that the uncapacitated plant location problem is
a Spaciél case of this problem; also, the problam was encountersd by the
authots as a sub-problem in a decompusition strategy for the optimal lot @
slzing problem in multi-stage preduction systams [j{] » It ig to he
emphasi sed hepe that the arboraécenca we deal uith-need not be a spanning
arborescence, and hencs our problem is differont from tho minimgm weight rootsed

spanning arborescence problem [:%] “

il. TERMINCLOGY AND NOTATION

We deal with graphs which satisfy ths faollowing prupertiﬁs: (1} Each arc
uf-#he graph is directed, (2) There are no dirscted cycles embedéed in the
orephs; (3} The graph is connectod; one of the vertices which does not have
'any incoming arcs, and which has a commected path to every other node in thg
graph is specifiad as fhe root of the graph, (4) Associated with svery

vartex J, thers is a weight gy s+ which can bg positive, negative, or zero,
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(5) Arcs do mot have any weights. In odr futuro discussion we refer to a graph

such as the above by the symbol G.

G cnﬁsists of N nodes, ¥ » 03 they are indexed with consseutive
integers 1; ceeesy, N in tho ordef exactly nppasits tc the topological orderd
thet is, each arc in the graph is directed from a higher numbered rode to a
lpwar mumbered mde, IF an arc is directed from node 1 tu mode J, i1 is said
.tn bo an immediate predecessor of J, and J an immediate successcr of i.
According to this temmirmclogy the oot does not have any prodecéssurs and baars
the imdex N. Tho sot P(J} consists of the indices uf the immodiate predecessors
nf 3, and 5{J) the indicos of the immediate succossors of J. F and L are sets
consisting of vertex imdices such that J ¢ F» P{(J}) =¢ , and J& L+ 5(1) = g[‘..

Aecording to this motation ¥ = { N} .

A subgraph S of G is called & rocted arborgscence (RA) if

{1) S contains thae ruot as one of its vertices.
{2) S is conngcted, amd (3} ®: two arcs of S are directed twwards tho same

vertox.

Tha sum of weights of the vertices in the arhorescence is called the

weight of the amtboroscencs.

A rootsd path in G is a sequence of nodes am! arcs which can be written
as (N, (N,3), 3, (3,K)},eave,(br 1), I}. The first vartex in a rooted path must.
be the rocote The sum of weights of tho vertices in a moted path is called

the weight of the path,

The minimum weight rooted arborescence (MRA) problem in an agyclic
graph G with weights on nodes is to find a rooted arborescence in G that has

a weight luss than or equal to the weight of any other rooted arborescence in G.



Figurc-1 gives an example of MRA in an acyclic graph.
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(a) Rooted acyclic graph G. (b) Mitr of G.
Welght of ML = -4,
Ploure~1, Il1lustraticn of MAs.

Mathematically the problem can be statad ast

o

MRA Problem

-
fia
o~

Y, » 3= Treaay N1, = (1)
i& P(I1)

Y €o0,11}

[— N
Min b3 oY
L Ja=1 JJ

L.

In the above formulation Yj's arc zoro-one varizbleos which inlicate the
presence (YJ = 1) or absancc (YJ = 0) of each node in the selsctod
arborescence. The above formulation is c.uncerned only with nodes. This is

because the arcs of the graph do not have any weights; therefore, cnce wo



 know which vertices ara to be included in the arborescenco, salection of arcs

for the arhorescence is simplo.

IIY.. RELATIONSHIP BETWEEN MRA AND THE UNCAPACITATED
FACILITY LOCATION PROBLEM.

'fhe Uncapacitated facility location problem (ul) [1] » which is an
NP-Compl ete problam, can be formulated as an MRA probleme Sinco UL is a
apecial case of MRA problem, it is unlikely thot an sfficient algorithm exists
for MRA problem sither, Problem UL can be statod verbally as belows Supposo
there are n demand points sach of which has a non-zero <emarnd dJ, d = T5400aeyn
for a particular commaodity. Suppuose the demands can be mot by establishing
facilities at some or all of m given sites {or sources). Location of a
facility at site 1 will incur a fixed cost Fi § to moct a unit of demand-fnom i
‘@ource i to destination J will inwnlve a cost Cij » There are mo capacity
restrictions at any of the facilities. The problem is to detormine the sitas
at which faciliéies are tc be located and the guantity of demand of market J
to be met by the facility at suurce i such gﬁat the total fixed and variable
costs arc minimissd. Because thare is no limit on the capacity of any facility,

there exists an optimal soluticn for UL such that each destination is suppliod

by not more than one SQUTCO.

The problems MRi and UL can bg shown to be related by first propusing an
acyclic graph G(UL) to represent UL, Assign m rodes, one for each site, and
let the weight of each of the nodags be tho corresponding fixed cost of
losating a facility. Rssign mn nodes, called trans-ghipment nodes, ono for
each spurce-destination pair. Let the weight of cach of these modes bo the

ﬁ?ﬁfﬁlwygriabla cost of mecting all ths demand for the corresponding destination

i



fram the corresponding sources. Furthsr, assign one node for each doestination

and let the weight of eadh of thosg nodes bo a large nugative rumber such

that its absclute valus is graator than the sum of weights of any péir af

source and trans-shipment nodus, In arddition, let thero be a root mode with
weight zerc. Tho root is connccted with every swufce nodo by an arc directed
away from the root. Each source node is connectaed with its corrosponding

.'tfans-shipment modas by arcs dirocted towards ths trans-shipmant modes,
Similarly cach trans-—shipment noda is connccted to its corresponding destination-

node by means of an arc directed towards the lattur rcriec.

1t can be casily shown that an optimal solution of UL, in which sach
demand point J is supplied by only one scurce i, can be representoed as a
minimum weight motod arborescence in graph G{UL). Similarly it can bo shown

that given an MRA of G{UL) an optimal soluticn to UL can be casily cnnstructqd[:dl

1y, LINEAR RELAXATION OF MRA-PROBLEM AND ITS DUAL.

In the branch bound method tu be developed later in this paper, at each
node of the branch and bound treoe ws haVe to dual with a restricted vorsion of
MRA problem, which will be roferrud to as Mﬁﬁe « In Nﬂﬁ@ s we have to find
a minimum weight rooted arborescenco among all the ruoterd arborcscencos which
' Iﬂclude certain vertices, specifiod by a sot 0 * anc excludo caertain other

vertices, spocified by a set 6 the remaining modes, freo to be included

cut !’

oT axcluded are contained in a third sct © .
frec

At each node, in addition to Mﬂqa s we will bg intergsted in two

H

related problemss (1) the linsar relaxaticn, PRR9 , of the problem MRA,

and (2) ths dual, DRA 6 °? of the linecar program PRAO o The three problems



are stated below in a form convenicnt for algorithmic revelopment.

MR o Min
S g
S.t.
PRAG Min
S.t.

By assaciating the

{11), we can write Dﬂﬁe
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If ail Jts are in efrae then PR/‘\B will bo referrsd to as PRA and

DRFI 0 as DRH-

Aefara presenting the branch and bound scheme for the MRA pooblem, lat us
present splution algurithms for ity and Dmb ¢ beoause these will be used

in thg branch and bound schemc.

Y, A AEJRISTIC FOR T‘}Rﬁa .

The heuristic constpucts a mooted arborescence which includes and/or

gxcludes any cdesired nodas, and has 2 Yow sum of node weights.

R key idea on which the houristic is bezacd is thist in a ruvoted

arborescencs, every modoe is connected to the rcot by a directsd path; hance,



we can look upon a moatad arburuscancﬁ‘as a union of rocted pathe., Therefore,
- for cur purposes; we would like to chovse a coullection of rooted paths whose
union is an arbcrescence and which has a low sum of node weightse In choosing
tﬁe rozted paths, we will be concernud with selocticn of rurtes omlysg if any
such saloctod node has more than anu are ingidant an i%, we can drop all but

one such are to got the rootod arborcscence.

The heuristic cansists of threu phases, Initially, we will remove frgm
the graph all the ncdes prohibitad from appearing in the arburescencey along

with thoss rnudes all the arcs incident on them will also be ramavad.

e will sat twe buckets B1 arnd 82 antt kegp filling them with node indices
as the algorithm pogressus. When certain conditions are satisfied the
indices from 82 will be transforred to 813 under some other conditicns, some
indices in 81 will bo erasod. Finally, when the algarithm ends, thae indices

in 31 correspond to the nadoes in tho seluctod arboresconco,.

Phasg 1. For cach noda in the grapbh we find the minimum wsight path from
thg roots If the minimum of the minimum weight pathas found above has a
negative weight, then we place thg imdicos of all the nodos in that path in
bucket 51. Thar the woights of solacted rModes are updetod to zero., Omee
again, in the updated graph the rooted path with minimum weight is foumd, and .
if its weight is negative, then all its mode indicos are entoered in 81, while
at the same time uprdating the weights of its nodes t zarc. UWe continua ﬁhis
procaess until thg minimum woight rooted path in the graph happsens to have a

non=negative weight.

‘We can stop hers consicdering the nudses in 8, as constituting the rooted

1

arborascencey but such a strategy might lead to some obvious omissiung and



hance might result in poor soluticons, Phaso-2 helps to aveid suCh cmissions.

Fhase-~2. #As long as thurslare nugatively woighted nories in the graph
we cantinie to select the minimum woicght rooted nath and update the weights
of its podos to zern. But, this tims, we nlace tho imices »F tho sclected
nodas in bucket Bz; Also, we keop a running toual of the original weights of

noces in 82 s when this totsl becomas negatiue all the indices in 82 arc
transferred to Bq. This pbasc would end only whon mo negative—weight nodes are

left in the graph.

Phase=%. Thaerg is a chance that sven after the above two phascs some
verticos reguired to be prasent in tho rooted arborescence aro not sclectod for
the arborescencs. We have to force in such left wut nodes into the
arborescence. To accomnlish this, we cansirder cach nerde in the graph and
wheneyer we ancuinter a mods which is tn B, , and mct in 81 « then weo

i1n

selcet the minimum weight path from root to the mude and enter the indices of

-

the nodes on the path inte 81

At the end of phase--3 the indicas in B

5 correspnne to the vortices of the

desired rooted arboroscencos

Exomple=1. Suppose wc want to develop an Mﬂﬂ(fnr ths graph givon in Figure-2,

using the algorithm describod sbeove. Lot ein =1 4, 5} amd © out = {3 l.
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Ws have tao consider tho granh, ofter remrving nude 3. In phase-1, the
node with the minimum weight rooted path turns out o he node B, and thg
corresponding path ig 12-10-8-8 with the woiQTF =23+ Tharcfore, 81 is filled
with indices 12, 10, 9, 8 and ths weights »f thesc nmodos aro updated to zorp.
In the updated graph, mode 3 has the minimim weight rooted path, which is
12=10-9=7 with the weight —{. Thgrofuru, noda 7 gets added to 81 y ard its
weight is updated to zero., In the updated graph et this peint thore is no noda
with a minimum weight rooted path of negative weiyhts but, theru aroISOme
nddes with negative weights. Therefore, .we begin phase 2. Tho nodes that
ara entered first in 82 are 1 and 6, bocausse at this stage tho minimum of the
minimum waight rooted paths is 12-10-8~6-1, of which the modes 12, 10 and 9
are already selectad for 81 . At this stage the sum of the original weights

of 82'3 contents is -6+10 = 4. In the updatod graph, vertex 4 has the shortest
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path from the rpat. Thérufore, 4 is entourwd in 82 , andl Tt wsight of

vertex ¢ is updated to zoro. Tho cuntents of B2 at this stzge are 1, 4 amd 6
and tho sum of thair original woichis is =~6-5410 = =15 sincc this sum is
negative, the indices 1, 4 and“gﬂﬁra'ﬁ!hnuud from 82 art gntered in Bﬁ. In
the graph with updated weights there are Mo nogative woight nodes. Honco,
phase—2 omds. At this point the voertices in 81 arc 4, 4, 6, 7, 9, 8, 10, 12,
Sinco the nodes 2 and 5 which arc tho mombors of @in arc not in 81 y we have
to execute phase-3 which brings 2 and 5 inte 81 . Thus, the sclected

arborssconce, shown in Figure~3, consists of modes 1, 2, 4, 5, 6 7, 8, 3, 10,

and 2.

A "‘—\ - -\

{10
~ |
7 N
{12/

Fiqura—S

VIi. A HEURISTIC FOR DRQB .
DRnB is a linear program. We proposc hera a heuristic that constructs

a good foasible solution toc DRA » The rezson for using a heuristic instead

D

of the simplex method is that the heuristic can exploit the speocial structure
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uf the problam and hence might consums 1css sturaye sproe and computaticnal

tima.

The Heuristic oxploits the fillowing usoful fasturss of tho curistraints

¢

of DRA . 3

e

3e

o
There is = cne~to-nna currespuntence betwoon the vertices af § and the

constreints nf Dﬂﬁe .

cach node J of G, axecept the r.at, has two varicbles UJ and V_ associated

J

with itg the root, N, has only the variable V, but dous not have U's,

The variablos that appear in the constraint for a nede 3 aros UJ, UJ
ani the U's corresponding to all immediate successors of J. Thus, U's
serve as the link-variables betwoon difforont cunstraints, Thao V's aon

the other hand de not ropeat themsslvos. Figuroe~4 illustrates the abgve

features pictorially.

Figure-4. Constraints in oRA o 3 i Typical Situation.
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Thu above featurus suggost a usoful guicdaline for sur houristic.
Suppose we arrive at a feagiblo soluticn somohow, ant! thon want to improve
it. In the process of matification, if we werec to chanoo the value of UJ at
a node J then the change would get transﬁitted o all tho preodscossors of 3,
because the valucs of the right han. sideg of thase constraints will chango,
Thus a change in UJ is likely te ripple down the graph nucessitating furthor
changos at tho praedecessars of J. ‘\ change in U3 » 2N the other hand, by
itself does mot disturb the veriahles at othor ncﬂus,unless it is accompanied
by a changp in UJ.
In the heuristic to he describoed below, which is a multi-pass heuristie,

we first find a feasiblc solution, and then try to improve it by making sovcral

passes through the graph. ' 3

In constructing the initial faasible sclution, wc congider mordas in tha

increasing order of node index K, assigining valuss to UK and UK

the decision table given in Table-1. The major idea hehird the givon rules

according to

ig that initielly, tho surplus, that is ‘the valus of left hand side minus the
value of right hand side, af each constraint should be as small as possible,
and that at the same time tho valus of U should bo as large a non-negative
valug as possible. Sdch a precodure is likely to yicld a fuasiblo solution
with a large value of UN and would be particularly amocnable to improvement by

the strategies to bs described lator.

after the initialisaticn, we will attempt to improve the solution. The
improvement procedura consists of cycling through the graph, visiting each
node in the dacreasing order of mode index in cach ecyclo, and attempting to

change the valus of Vv corresponding to the node being visitod. The type of
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change heiny attempto? is not the same in cunscoutive cycless Thare are two
types of changes, typo-i and typo-B. e alternate hetwoun thuse two changes
from cycle to cycla. The rules in the tuo types of chanuos arc so dusigned
that thc solutions bafore‘and after a chango erc fessiils, am! the value of
the objeetive function aftor = chanye is not worss than that before tho change.,
We keep executing ono cycle after anothsr till we happen to exccute cne which
canmut bring abuut any change in the sclution. Another important aspect of
the changes is that whon we change the variables at the node under cansidora-

ticn, tho changes do mot got transmitted beyond its immeriste Nl CCESsoTrs .
b g v} i

The difference between the tws typos of changes is as belows
In type-i change we attempt to improve the solution by docreasing the value
of V at tha node under consideration; whercas, in type=-8, wo attempt to hrfng
aﬁaut an improvement by increasing the value of V at the nor's under

cunsideratian.

Figure~5 gives an algorithmic description of the houristie,



YRR GaRaHHA L ishAKY
il WY 0f ESE IS = )
AL THRARUN. AHMEDARAD

Begin
FOR 3 =1 TO N o
Find U3 ’ UJ using Taola—
El\bFUR

Type of change in noxt cycle « Type-a.
REPEAT
EASE © Type of channe OF
TYPE-i i X+ 0
FOR 3 = N1 DOWNTO 1 Do .
Change Variables at J and all K, K & P(J)

using the algorithm in Figure-a6,

ENDEOR
IF the solution did not chamgs in the above
pass THEN X « 1 ENDIF
Type of change + Typ.o—B

TYPE-B s X +(0g
FOR J = i OOWNTG 1 Bo
Changs variahlus at J, and at all K ¢ P(3J)

using the alguorithm in Figure-7,.
ENDFOR
IF the variables did rot changé in the abgve
pass THEN X <1 ENDIF
Type of change + Type-p
ENDCASE

UNTIL X =1

END.

Pigure=5. Algorithm to find a foasible sslution to DRA.
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BEGIN

s «0

For gach K e B(2)

Ferform cne
applicabile,

e

i (€]
(1) ke in

2

(i) K e out

-

(iii) Ke ©

freo

ENDFOR

A {u

< Min 3

v

3 v

3t &

3 +UJ -

r W each K € P(J

U A

If Ke eFrea

ELSE V¥
ENDIF
EADFOR

END

oC

af tho follcwing 3 cases, whichevur is

g

) oD

Ty

fMax K

I <
THEN UK

Figure=6. algorithm to apply type-fi change at a node 3J.
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(Surplus (3} = (Loft hand side ~ Riyht hand side} of tho cunstraint for J.)

BEGIN

IF SURPLUS (J) > 0O THEN

Perfurm one of the following 3 omsss, whichover is applicablc.

(1) J¢ BFrQB : A+ fin { V., SURPLUS (3}
(11) 2 sein 3 A+« SURPLUS (3)
' (1ii) Je amut : A+ O
UJ + 'u‘z - A
U; *Y;

ELSE

fir each K e P(3) oG

Ferform uns af the following 5 cascs whichwever is applicable,

{i) Ke@, art SURPLUS (K} > 03 x «Min{ o , SURPLUS (K)}

(ii}) F(EOin and SURPLUS (K) = O

L>
4
-]

(iii) Ke E)”ut A« A

(iv}) K €8p g, M SURPLUS (K)> 0 ta « Min{ a , SURPLUS (K)}

(v} KeOppo, and SURPLUS (K) = G 3 4 « O

ERDFOR

IF Je 93, THEN A + A

' A
ELSE IF 3 eg . A« O ELSEA«MIN{ 5 , V )} EIIF

t

contd .
Figure=7
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ENDIF
IF Ao >0G THEN
U_j “"ua—-ﬁ 3 U:l*" U,] + 4
Foit sach K g #{J) Do
IF Ke 8,4 THEN ¥, +UK + Fax{ & - SuRPLUYS (K), O}
EMDIF
ENDFOR
ENDIF
ENDIF
END

figure=?., Algorithm to apply type=-8 change at nade J.
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-

Exampl g~2Z., €nngidar tho graph of Figure-8. Let all nndes be in eFroo'

Suppose we apply the houristic of Figure-5 to DF{I\B corresponding to this

graphe. The initial solution is as shown in Table-2. Tho value of 8UJ far

the initial sciution is 33.

] - o
3 U‘j UJ |
1 5 D
2 0
3 a
4 o
5 17 b
6 G
7 - 33

Table-2. Initial solution to DRAQ of thy graph in Figuro-8,
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The first pass thruugh the graph applying Type-n change at each mode
i .
will result in the improved scluticn, with T UJ = 23, as shown in Tahle=3.
3=1

The next pass, in which a type-B change is attemptud at sach nodo, does not
tring about any change in tho scluticn. Henco we stup with the scluticn shown

J UJ UJ
1 0 5
2 0 0
3 0 5
4 0 6
5 0 7
6 D 0
7 - 0

Tablo=3. Final solution for DRHD of thg grapbh in Figure-8,

VII, A BRAANCH AND BOUAND TECHNIGUE FOR

MRa o PROBL EM,

We propose here a branch and bourd technique which uses a binary tree
_ l:ét] « The branching variables are ijs. At each rorde in the branch and
bound tres, wo have some YJ'S fixed to 1, some to zerc amd the cthers freoe.
The two descendents for a node are obteined by fixing one of the free YJ's to
1 in one descendent, and tc @ in the othsr. Tho very first candidate problem

in the branch and bound method corrasponds to MRA problem, whersas the othor

candidate problems are of the type MRA, (2) - (9).
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Bounding. Whon we pick a candidato problom, we first develop a feasible
sclution to it, using ths heuristic of sgctinn V, bocauss the candidate

problem is of the form MAR Tho solution so conerated is feasible to MRA

e L]
also, bgzcause MRA o is @ restricted versicn ~F FMith. Thus at gach nodo, a
feasible solution to MRA is ganerated, and ths best among the feasible

solutions generated hocomes the incumbent. The incumbent nuts updateod as tha

pTOCEIUEG ['PNgTGSSES,

Fur sach candicdate problem  MRj g + the correspunding Dﬁﬂe is solved

using the algorithm of Figuro=5. Lot the value of the scluticn to DRAe thus

generated be V(DRA o Yo V(ORA, ) is a lower bound on the nptimal value of

¢}
MRHG $ henco, if U(Dﬂne ) is greater than tho value of the incumbent the
candidats under consideration can bo fathomads othcruisé, wa nead tu branch

from the candidato.

Branching. In chuasing a YJ for branching from the cardidate problem, we

make use of thg Following complementary slackness comditicns which correspend
' ~
to the primal-dual pair of preblems PRA and DRA,

Uy =Yy+ Y, =0 1 ¢F (19)
i€ p(J)
v, {1 -YJ) = 0O 2ll 3 (20)
LA 03+UJ+U:])=D JetL {21}
v, (a3+u3+u3- Ly, = 0 3¢, 3¢, (22)
ie RB{(J)
Y, (a3+u3- zui ): 0 Jef (23)
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In the current ecamdidats wu cxenind ench Jg 8 in increasing ordar of

frog

J. Supnasa we find that K Eefrﬂe vinlates ong oF the complimentary slacknuss

conditions. If K wvivlatos thr o oxtiticn (20), then VK is forecd to 1 in the

rizht branch and to zore in the lefty  otherwise, if K viclates (21), (22} or

{23) *hon Y, is foreed to ©§ in the richt branch and to 1 in the lofty

K
ozharwise, if K wviclates {19) wn ccan all predecessors of K ard choose a
note m, such that Ym = 1 in the feasiblg soluticn tn currcot candiﬁata and
o ERE 3 and make Y{m} = 0 in tho right hranch and Y{(m) = 1 in the
1oft. If all nodes sétisfy tha camplementary slackness condlitions, then for
branching we select that vertax in @erG which has the maximum rumber of

successors. If the chusun vertox 3 has  g(J3) >0 then Y., is foreed to O in

3
Sha right branch and to 1 in the lefty otherwise Yj is forced to 1 in the
right and to zerc in the left. The candidate prablom For the rinht branch is

enturod in the cendidato quoue First and then the left one.

The vrder of retrisvel of candidatos from the branch and bound trec is

Jast~in~first-aub. n foreal statenent of the algarithm is given in Figure-9.
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nlgorithm 6.1 (Branch and Bound Mathod for FRA Erablem),

BEGIN

» The prodlem at the very first moce is MR, whare

5] - { 4 H e = [
. - ‘i.N} ] Omutiﬁ aofrua {19 ’N-1}

« Enter tkc first node in the camiidats gueuc,

» Value of incumbent <« w,

REREAT

» Ramove the last cariidate (i.e., the camdidats that ontered the
queuc most recently) from the camiidate queue, and make it the

current mde,

» Attempt to comstruct a foasible sclution i MRR@ » whera @ in !

<] and © corrospnid to the current mado.  (Algorithm of

out free

Sacticn V).

L
If thers is a feasible solution to NRW} THEN
i3 U(Mﬂae } < valus af the incumbent sulutinn THEN

« Value of incumbent snluticn U(F"]RAE9 )

« Incumbent solutiun « soluticn obtained for MRp

EMDIF
« Construct a feasihle solutiocn o Dﬂﬁa(ﬂlgorithm of Figure-5)

Ir u(ofm@ ) > value of the incumbont sulution  THEN

+» Fathom tha curront modo

(COntd-)
Figurg-9
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ELSE

. k. e
If Grog L8 not empty THEN

. Branch from the curront rode {(Algorithm 5.7)

E13]

Fathom the curront node

{There is rmo feasiblc soluticn to MRQD

Fathom tho current node

ENDIF
UNTIL the candidate gueue is empty
Lﬁ_ value of incumbent == - THEN
There is mo Fuasible'solutiun to the PMRA problem,
ELSE
.
Optimal scolution + incumbent solution
ENDIF
END

Figure-9. 8ranch and Bound Algorithm for MRA Hroblem.



VIII. COMBUTATICNAL EXPERIENCE

We report hore briofly the porformsnce of tho aluorithm in finding MRA
fur acyelic graphs ranging from four vertices to thirty vertices (Table-4).
‘Tha algurithm was coded in Fortran=y ard exécuted nn CYBER~74 system , ¢
GuorQia Techs Within the range of the testing, most problems eould be solved
in a fraction of a second; bhowever, as this is the first pver attompt to
solvu this problem, we cammot Judge whethor the performance reparted here is
efficicnt, lThJugh our computational expsrignce is too limitod to draw any
specific conclusions, the following two obsorvaticns are worth mentionings
(1) the oxecuticn time of the algorithm, as expected, increasss with the siza
of the prablem, and (2) when used for solving uncapacitated facility location
prablems, our algorithm proved inmforier to Erlenkotter's (Erlenkotter, 1878).
In Table=4, scrial number 10 corresponds to a facility locotion problem with -
4 sites and 4 marksts., 4 Fnurésite, fiva~market problem could not ba
completed in thirty seconds. This is heeausg, ag we increcasc the number of
sites or markots in UL, the number of morios and arcs in G(UL) incroascs

graatly.
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Tabl e-4.

. - ~ - - .
serial ST TE TR T in Geench am | DOt Tino
vertices ATCS,. Bourd Treo
1 4 5 1 0.0
2 & 9 1 0.018
3 7 10 5 0.09
4 9 21 7 0,186
5 10 18 1 0.04
6 10 13 1 0.04
7 18 28 1 0,05
8 19 21 9 [ 0.38
9 21 30 7 0.28
10 24 40 27 145
11 30 30 3 0.7
12 30 3a g 0.7
13 30 30 17 3.5
14 30 30 5 1.0
13 30 36 1 0.442
16 30 36 1 0.442
~

Computational Results of ths Branch znd Bound Algorithm,
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Concluding fiemarks

We studicd in this paper the M4 prebleom defined on an acyclic
yraph with weights on modes. It is also possible to cefine a corresponding
problem for a rooted graph with weights on arcs. Such a problem can bag
solved by developing a suitalle transformation of the weights-on-arc graph
to weights=nn-nudas graph, or by modifying the algarithms of this neper o

deal with ths weights-iun-arcs casc directly.
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