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Abstract

In this paper we show that every choice problem in a finite-
dimensional Euclidean space can be viewed as the budget set
corresponding to an economic environment (possibly non-linear) in

consumer choice theory.



Introduction:- "To economize is to choose..." This is how
Richter [1971] describes the fundamental problem of economics.
In this sense, the problem that economics addresses is one and

the same as the problem that choice théory deals with.

One of the most basic problems of economics is that of a
consumer, confronted with a money income and a vector of
prices for the commodities available in the market. He/She
has to exercise his/her discretion and choose a consumption
bundle from the available set of consumption bundles. Such is
the problem of consumer choice theory - an age o0ld problem,
with some of the most revered names in the profession having
expended their efforts and energies on it.

A possible generalization of the above framework has been
indicated in Peters.;nd Wakker [1991]: the case of non-linear
budget sets. This occurs when the expenditure on a commodity

is a non-linear function of the amount of the commodity

purchased.

It is easy to visualize situations where this phenomena
may arise. Consider a consumer who has available with him/her,
some positive amount of an infinitely divisible consumption
good today, which must be allocated either for consumption
today or for production of consumption goods at a future date.

If the rate of interest is assumed to vary both with time as



well as with amount consumed, then we will be essentially
confronted with a non-linear price schedule for each dated
consumption good. The problem for the consumer is to choose a
consumption level for today as well as for all future dates,

within a finite time horizon.

Axiomatic choice theory, which originated in the seminal
work of Nash [1950], has developed into a rich field concerned
with picking a point given any non-empty, compact, convex,
comprehensive subset of the non-negative orthant of a finite
dimensional Euclidean space, each such subset admitting a
strictly positive vectér. This field has been surveyed in
depth by Thomson [1995]. Such problems have been interpreted
as games of fair division by Lahiri [199?]. Peters and Wakker
[1991] indicate that the budget sets studied in consumer
choice theory, whether linear (competitive) or non-linear are
of the above type. Richter [1971] also draws a distinction
between competitive and non-competitive budget sets, thereby

implying that sets such as above could also be considered as

budget sets.

In this paper we show that each set such as above is
indeed a budget set with pricing rules being convex, non-
decreasing functions. This would endow axiomatic choice theory

with a much desired expression - as a meaningful theory of

consumer choice.



The Model and Notationg:- Consider a consumer who 1is
confronted with the problem of allocating a positive amount of
an infinitely divisible good for consumption over 1 + 1
periods; t = 0, ..., 1. The consumer is endowed with W > 0

units of money. Confronted with an expenditure function

p.: R -R, fort =20, ..., 1, he must part with p, (c.)

units of money, if he wants , > 0 units of the good at date

't'. The consumer's budget set is given by

-

S(<pyse..pyiw) =cy,0,...65) / €20, t=0,...,1 and

1
Eo p, (c,) < w}

We will assume that for t =0, ..., 1, p, : R, -~ R, satisfies
-
the following properties:

(ii) p. is a convex function which is non-decreasing



(iii) p. is continuous and non-constant.

Under the above assumptions, S ( <p,, ..., P»; W >) is a

non-empty, compact, convex subset of RI!'! satisfying two

other properties:

(@)  o<(cpcyh...0y)<(dy,dy,...,d;)) €S(py,...,DyiW>)
implies (c,,c¢;,...,C;) € S (KDy,+..,D;iW>)
(b  3I(c,, ¢, ....c;) € S(Kpy, .. .,p;;w>) Buch that
c,>0, V t=0,...,1.
E=<p, -.., Pr; W > satisfying the above properties is

called the economic environment of the consumer. & denotes

the class of all admissible economic environments.

Given Ee&, S(E) is called a budget set. If BE =< Py, ..., Pi;

w > € g is such that p, is a linear function for t =0, ...,

1, then E is called a competitive economic environment for
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the consumer and S (E) is called a competitive or linear

budget set.

Now let us define a choice problem. A choice problem (of

dimension (1+1)) is any non-empty subset S of RI* satisfying

the following properties:

(i) S is compact, convex;

(ii) S is comprehensive i.e. 0 < x<yeS-xeS

—

(iii) I xe 5, with x> 0.

Let B denote the class of all choice problems. Thus, for

all fpe &, S (E) e B.

In the next section we shall show that given S ¢ B, there

exists E e & such that S = S (E). Thus, all budget sets are

choice problems and all choice problems are budget sets.

The Resultg:- Given x!,...,x*¥eR!'™, 1let co. (x!,...,x%



denote the convex hull of !, . .., xk

A choice problem S ¢ B is said to be a polyhedral choice

problem if there exists a finite set A such that if c, c¢' € A

with ¢« ¢/ then ¢, + c! whenever t = 0,...,1 and such that S

= co. (AU{o})

Now we state the main theorem.

Theorem 1 :- Let S € B. Then there exists EFe & such that

S =8 (E).

Proof:- Follows as a consequence of Theorem 2 which is proved

below.

The Intertemporal Investment Planning Problem:- There is yet
another interpretation of a choice problem, which goes to show
that each choice problem in B can be obtained as the budget

set corresponding to a economic environment belonging to a

strict subset of & This corresponds to the situation where



the money available for expenditure on dated consumption goods

is simply the consumption good available at period zero.

Hence, the function p, : R ~-R has the form

+

Dy lcy) =¢c,Vc,eR,.

Let,

Z-= {EeZ/E'=<po,p1, ....py;w> implies py(c,) = ¢,V c,eR,}.

Given Fe & if E= < p,, P.sy -.-» Pr; W >, then

let £ denote < p,, ..., P; W >. Thus E conveniently

.

represents a generic element in g .

Given Ee & let

14

- 1
S(E) = {(Co. .0 Cy) € Rf”/co + Zp.lc,) < w} where
t=1

- ) WIRRAR SARABRA! UBRANY
E =<Dys....Dyiw>. IRDIAN INSTITUTE OF MANAGEMEN
VASTRAPUR, AHMEDABAD-380015
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Clearly S(E) e B whenever FEe &.

Lemma 1:- Let S be a polyhedral choice problem. Then there

exists Ee & such that g = g(E).

Proof:- Let u,(S) =max{c,/(cy,...,Cp-..,c;) €5 and let

w=u, (S).

Let $S=co. (AUlo}), where it is being assumed that A is

minimal i.e. there is no proper subset A' of A such that

s =co. ( A7U{o}),

1l

For (c,,¢;,...,C4,...c,;) € 8 if Co = W, then define,

p.(c) =0,¢t

i
=
~

Now let ¢, < w with (¢, ¢, ..., €, ...,C ) € A. Then

there exists a unique A > 0 such that
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1
co+tA e, =w.
t=1

Put p, (c,) =12 c,.

Here ) may depend on the point in A that is chosen.

Let ¢ € w (S). Then, there exists ¢1,...,cke A, such

that ce co.{c?,...,ck} and c does not belong to the convex

hull of any proper subset of {c!,...,ck}. Let

T ) . k.
c = Xa‘ci. with o<ai<1,i=1,...,kand I eai=1.

i=1 i=1
L 1

Put p, (c,) = Za'plce), t=1,...,1;
=1

1 ko 1 k 3
~ o+ Ep.(c,) = Da‘cy + E Ra'p.(cy)
t=1 i

i=1 t=1i=1
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K
= ¥ al
i=1

o1 . ko
co + Ept(c;;')] = Ta'w=w.
t=1 I=1

Thus p,:[0,u,(S)] - R, 1is convex, continuous, non-decreasing
and non-constant with p. (0) = 0 for all
t=1, ..., 1.

Extend p. beyond u, (S) so that < p,,...,pP.; W > € &.

Thus S = S (E) where E=<p,...,p;;w.

-

-

- O.E.D.

BEquipped with this lemma, we can now prove the following theorem:

" Theorem 2:- Let SeB. Then there exists E e & such that S=S (F).

Proof:- Let SeB and let {S*} be a sequence of polyhedral choice

problems with

Skcgk*t Yk e N, u, (8% =u, (S), t=0,...,1 and ke N and

lim §¥ = § in the Hausdorff topology. Let w = u, (S) and as in
k~o
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Lemma 1, let pX: [0,u,(S)]-R, be defined such that

1
sk={(c,, ..., c;) e R /c,+ Zpflc,) < wh
=1

For 0s<c,<u,(S),let p,(c,) = lim pf(c,); let
k==

p(u.(8)) = 1lim p.(c.).

Coe~u,(S)

Thus p.(0) =0, p, is convex, continuous, non-decreasing and non-

constant. Extent p. beyond u, (S) so that p. continues to remain

convex. Let E =<p,...,p;;w>. Clearly, S =S (E).

Note 1:- In Lemma 1, we mention that p.: [0,u,(S)]1-R, is a convex

function (the other properties being easy to verify). This property

is verified, by considering the set

14



T=1{(co,C) /(Cos v v uCpuv..,C,)€S8,C,=0 for k+0, t}

By construction,

T=1{ (¢c,,c,)/cy, + D (c,) < w}i.

The set T is a closed convex polygon and the function p, is

piecewise linear.

Let (c,, c.) and (c},c.) belong to the Weakly Pareto Optimal set

of T.

Thus, ¢, +p, (c;) =w and ¢} + p,(cl) = w.
Let us assume towards a contradiction that -
p.(ac,+(1-a)cy) > ap(ct'f*r(l—a)p(d) for some a e (0,1).

Then ac5+(1—a)c$+~pt(ac:+(1—a)c§)

>a [cg*p, (C,)] +(1-a) [co+p, ()] = w,

which is impossible, since,

(xco*(1-@) c3, @c,+(1-a) cf) € T.

Thus p., (as defined in Lemma 1) is indeed a convex function.
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Conclusion:- Our efforts in this paper go to show that axiomatic
choice theory, developed in the tradition of the Nash ([1950]
tradition can now be applied to diagnose problems of consumer

choice theory. In axiomatic choice theory a choice function is

defined as a function F: B~ R!"™ such that F () e SV Se B.

’

Since each such problem can now be viewed as a budget set, a
choice function is economically meaningful from the stand-point of
consumer choice theory. As in axiomatic choice theory, we may now
characterize choice functions for consumer choice theory, by
imposing a set of minimal conditions that it should satisfy. The
conditions should be decided on the basis of their +dntuitive and
welfare theoretic appeal.

In the intertemporal setting we have invoked in the paper, it

-

is commonplace to assume that consumption is appropriately

discounted i.e. instead of c. we consider &t c¢,, 8 e (0,1]. A

moment's reflection suggests that this presents no new analytical
problems.

On the other hand, if we view each co-ordinate as representing
the consumption of an infinitely divisible good in a region (or
sector) of an economy and p, (c.) as the cost function for producing
Cc, units of the consumption good in region (or sector) t, then the
above theory becomes applicable as a theory for games of fair

division. In either case, its use cannot be overemphasized.
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W i m . W . . . N

In this appendix, let B denote the class of all (two-dimensional)

choice problems.

A domain is any non-empty subset D of B.

Given pe R:,, let S(p) = { xeR%/p.x<1}.

Let C={S(p)/peR}.

(is called the class of all (two-dimensional) linear (competitive)

choice problems.

Given ¢ # Dc B, a choice function on D is a function

F:D-R such that F(S) e SV Se D.

Given a choice function F : D~ R?, and x,yeR? x*y write XRpy



if and only if 3 Se D such that x = F (S) and y € S.

A choice function F: D - R?), is said to satisfy the

(a) Weak Axiom of Revealed Preference (WARP) if R, is assymetric;

(b) Strong Axiom of Revealed Preference (SARP) f R, is acyclic.

A choice function F: D-R), is said to satisfy Nash's

Independence of Irrelevant Alternatives Assumption (NIIA) if

VS, TeD, ScT, F(T)eS=F(8) =F(T) .

'Given SeDc B, D+ ¢, let

P (5) ={xesS/y>x=ye¢st. P (S) is called the Pareto Optimal Set of

Theorem 3 : (Rose [1958]): Let F : c=- R be a choice function



such that F (S) e P (S) VSe C. Then F satisfies WARP if and only

if F satisfies SARP.

Theorem 4 (Very Easily Proved): A choice function F : B = R?

satisfies WARP if and only if it satisfies NIIA.

A choice function F : D= R?} is said to satisfy Pareto Optimality

(PO) if V SeD, F (S5) € P (3).

For the subsequent property we refer to Thoi_nson [1981]:

Given, Dc B, D* ¢ and F: D~ R?,

let p(F,S) =1{peA/p.x<p.F(S)VxeSt, where

A = {(Plopz) € Rf/Pl*'Pz = 1}'

A choice function F: D= B is said to satisfy Independence of



Irrelevant Expansions (JIIE) if V Se D, there exists pep(F,S)

such that whenever Sc7TeD,F(S)eT and p.xsp.F(S),F(T)=F(S).

This property and a weaker version of the same has been studied in

Lahiri [1997]. It is easy to see that whenever S satifies P O and

IIE, and S ¢ D, then pep(F,S) = p>>0.

We do not need I I E in its full generality, but something much

weaker that P O and IIE implies:

A choice function F: D=B with CcD 1is said to satisfy

-

Partial Independence of Irrelevant Expansions (PIIE) if VSeD,

there exists S (p) € C such that Sc<S(p), and F(S(p)) = F(S).

If F satisfies P O and PIIE, then F (S) € P (S (p) ) for such an S
(p) € C.

Theorem 5:- Let F : B = R? be a choice function which satisfies P

O, NIIA and PIIE. Then F satisfies SARP.



Proof:- Suppose not. Then there exists x° x!,...,x7 with

xI R, xIVjell,...,n) and x" R, x°. By NIIA and Theorem 4,n>1.

Infact it is possible to prove that NIIA implies n>2. However,

suppose, n>2. Then there exists s% ...,8"e B,

that x7 = F(s9) V j=0,...,n,x3 + x7*1 ¢ §7V j=0,..,n-1

and x°e S*h.

By PIIE. there exist S(p7) € C such that S7 c s(p?)

F(S(p?)) =xIVj=0,...,n.

By PO, x7 e P(S(p?)) Vi=0,...,n.

Now x’**esiVj=0,..,n-1 implies

x3*1 e 8(pi) V j=0,...,n-1 x° e S* implies x° e S(p").

such

and



But by Theorem 3, this is not possible.

Hence F satisfies SARP.

This result becomes important in view of the interpretation of
every choice problem as the budget set corresponding to an economic
environment in consumer choice theory and Theorem 3, quoted in this

appendix. It is easy to see that NIIA does not imply PIIE (and

hence does not imply IIE).

P

£

Infact we can now make a much stronger statement. A choice function F : B -R?

is said to be representable, if there exists a'real valued function

V on R? such that

Y SeB, (F(S)) =1{xes/Vix) > V(y) V yes}.

Given a choice function F: B-R?, define f: C=R: by

f(S(p) = F(S(p)) whenever p e R%,.



Suppose F satisfies P O. Let S =1{yeR’/y <x}, for x >> 0. Then

F (S) = x. Thus R:,c range (F).

If F satisfies NIIA, then F satisfies WARP. Thus so does f. Hence

by Theorem 3, f satisfies SARP.

Now by the theorem in Hurwicz and Richter (1971), there exists a

function Vv : R2 = R which is uppersemicontinuous on R3, strictly

-

monotonically increasing and strictly quasi-concave on R? such

+42

that VSe C, {F(S)) ={x e $§/V(x) » V(y)}. Thus we have the following

theorem:

Theorem 6:- Let F : B=R? be a choice function which satisfies
PO, NIIA and PIIE. Then F 1is representable by a function
Vv: R =R which is uppersemicontinuous on R?, strictly

monotonically increasing, and strictly quasi-concave on RZ,.



If a choice function F : B= R: satisfies SARP, then we can say

that there exists a complete and transitive binary relation R such

that VSeB, {F(S)})={xeS/xRyVyeS}. This is what Theorem 5

implies. Theorem 6 goes a step further. It says that there exists

a function V:R: =R such that the binary relation R on R?

defined by x Ry = V(x)2 V(y) [: which is of necessity complete and

transitivel helps us to define F i.e.

{F(5) }={xeS/xRyVyeS) These results should be contrasted

with those in Peters and Wakker [1986].

A final point we would like to make in this appendix 1is that
nowwhere in the proofs of Theorems 5 and 6 are we using everything
that NIIA (or WARP for that matter) implies. Infact both our
theorems remain intact if instead of NIIA we use a property called
Restricted Weak Axiom of Revealed Preference (RWARP):

A choice function F on B is said to satisfy RWARP if whenever

x° = F(S(p°)), xt = F(S(p')), S(p")eC, S(p')eC and x" R, x* then it

is not the case that x* R, x".



Infact, for a choice function F on B, P O, PIIE and RWARP trivially
implies NIIA. Thus, really the only requirement beyond those in

Rose [1958], to extend SARP from C to B is the PIIE property.
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