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Abstract

In this paper, we take up the outstanding problem of axiomatically
characterizing what we have referred to in the paper as the
additive choice function on the classical domain for choice
problems. Apart from an impossibility result for the additive
choice function, there 1s an axiomatic characterization, which as
a by-product provides a counter example to a conjecture for the
egalitarian choice function. In an appendix, we provide a proof of
an axiomatic characterization of the egalitarian choice function
using a superadditivity axiom. Further we show several non-

rationalizability properties of utilitarian consistent solutions.

In this paper, we also provide proofs of axiomatic
characterizations of the family of non-symmetric Nash choice
functions and the family of weighted hierarchies of choice
functions. Our conclusion is that earlier axiomatizations are
essentially preserved on the classical domain for choice problems.
The proofs are significant in being non-trivial and very dissimilar

‘to existing proofs on other domains.
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A RECONSIDERATION OF SOME SOLUTIONS FOR
TWO DIMENSIONAL CHOICE PROBLEMS

1 Introduction

Choice theory which dawned with the seminal paper of Nash written
in 1950, has by now developed into a well defined body of
mathematics, concerned with choosing a point from a compact,
convex, comprehensive feasible subset of the non-negative orthant
of a finite dimensional Euclidean space, each such feasible set
admitting a strictly positive vector. Axiomatic choice theory is
concerned with the axiomatic characterization of rules which assign
an alternative to each such choice problem in a given family of

choice problems. We shall here be concerned with two dimensional
choice problems.

Following the choice function suggested by Nash, the other well
known choice functions are the relative egalitarian due to Kalai
and Smorodinsky [1975], egalitarian due to Kalai [1977],
lexicographic egalitarian due to Chun and Peters [1988], equal loss
due to Chun [1988], lexicographic equal loss due to Chun and Peters
(1991] and the equal area due to Anbarci and Bigelow [1994]. Some
of the other choice functions have been studied on more relevant
domains in Lahiri [1996]. However, the simplest of all solutions
i.e., the one which maximizes the sum of the coordinates from
amongst all feasible vectors has been a rather mute spectator of a
spectacular pageantry in which all these other choice functions
participate. Except for a significant axiomatic characterization
by Myerson [1981], very little attention has been devoted to this
choice function: the utilitarian choice function. The reason is
that this choice function (as a single valued mapping) is not well
defined for a very large class of meaningful and non pathological
choice problems. The purpose of this paper is to suggest a way out
of this difficulty, so that much of applied research which uses
maximization of the sum of the coordinates of vectors in a feasible
set of vectors will now have a theoretical underpinning. However,



it is observed in the paper, that one can easily prove several
results showing that wutilitarian consistent solutions are in
general not rationalizable by continuous social welfare orderings
or social welfare functions. We also suggest a variant of a choice
function due to Cao [1981], which is also well defined on the
larger domain and vyet satisfies scale translation covariance
property. Some remarks about related results due to Peters [1986a]
are given, to put earlier results 1n proper perspective. In an
appendix to this paper we prove a variant of a result in Peters
[1986a], which is valid on our domain.

The family of non-symmetric Nash choice functions, which was
proposed for the first time in the seminal work of Harsanyi and
Selten [1972), has been axiomatically characterized in almost the
same way that Nash himself characterized its symmetric ancestor in
his by now historic 1950 paper. A more recent and thorough
investigation of the family of choice functions characterized by a
weighted hierarchy (and containing the family of non-symmetric Nash
choice functions) 1is the work of Peters [1986Db]. There an
additional axiom called the consistenci axiom is wused, which
however is not required for two dimensional choice problems. All
the above mentioned characterizations of the non-symmetric family
under discussion, rely heavily on an assumption which has often
been questioned from various quarters: Nash's Independence of
Irrelevant Alternatives Assumption (NIIA).

There has been several attempts to free the characterization of the
Nash choice funcdtion from the grip of NIIA. Of interest in the
present paper is a characterization for two‘dimensional choice
problems presented in Thomson [1981], where instead of NIIA an
assumption called Independence of Irrelevant Expansions (IEE) has
been used. Interest in choice theory had since then shifted
largely to the multidimensional cases and even more to choice
problems with varying dimensions. A recent revival of interest in
the two dimensional case (and solely that) is seen in the paper by
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Bossert [1994]), where once again NIIA is used to characterize
rational choice functions. Our theorem 3 in the present paper 1is
an easy and valid extension of Thomson's original result to the
non-symmetric cases.

In Peters [1986b] can be found a characterization of a family of
choice functions determined by a weighted hierarchy for two
dimensional choice problems using a slightly weakened version of
Thomson's Independence of Irrelevant Expansions assumption.
However, the domain chosen for the result deviates considerably
from the conventional domain used by Thomson [1981] or Bossert
(1994), 1in that it assumes that every choice problem admits
infinite free disposability. Now, this is an assumption whose
worth or meaningfulness depends on the context. If we assume that
each choice problem represents a multisectoral investment planning
problem for instance (i.e., dividing a dollar between several
sectors, the retﬁrns being measured by concave, non-decreasing,
non-constant and continuous revenue functions), then the kind of
domain assumed in Peters [1986b] for the- present purpose is not
quite meaningful. That the set of investment planning problems is
isomorphic to the domain of choice problems assumed in this paper,
is however a result established in Lahiri (1994). So, the natural
question that crops up is whether the result established by Peters
is valid when the domain (as in the present paper) consists of non-
empty, compact, convex, comprehensive subsets of two dimensional
Euclidean spaces, each such set admitting a strictly positive
vector. A cursory look at the proof of the result in Peters
[1986a), shows that it is very dependent on his choice of domain.
In fact, a couple of lemmas simply do not have any meaning in our
framework. What 1is however noteworthy, is our Theorem 4: the
original result continues to hold. The choice functicns determined
by weighted hierarchies, are the only choice functions which
satisfy the assumptions suggested by Peters.



2 The Model
We consider two dimensional choice problems only. A (two

dimensional) choice problem is a non-empty subset S of R (: the

non-negative quadrant of two dimensional Euclidean space),
satisfying the following properties:

i) S is compact (: closed and bounded), convex

ii) S is comprehensive i.e. 0 <y s xeS-> yeS
iii) there exists x € S such that x>0 (i.e. if x =(xl,x2) then x.

> 0, X, > 0). Let I* be the class of all choice problems.
A choice function (or solution) is a function F : I* - KB such that
F(S) eSV Ser?.

Given SeZ?, let u(S) z{xes/xl +x 2y, vy, Vy=(v..v,) eS}. u(s)

is non-empty for all Sef*. Further u(S) is a compact convex subset

of A = {xeRf/x =(x,, %), x, +x, = c} Y Ser: for some c>0. However,

~

u(S) is in general not a singleton.

Example: Let S={xeRf/x=(x1,x2), X + X s 1}. Then u(S) = A .

Let a, (S) = max {xl/a x, =2 0 with (x,, x,) eu(S)},

b, (S)

n

min{xl/sz 20 with (x,,x,) € u(S)}.
Let a(S) =(a, (S), a,(9)),

b(S) = (b, (S), b, (8)) € U(S)



Clearly, a(S) and b(S) are well defined for all Se¢rI* and
u(S) ={ta(S + (1-t) b(S)/te[0,1]}).

We define the additive choice function A : T° » K as follows:

A(S) =%(a(S) +b(8))V Ser*.

We are basically interested in the axiomatic characterization of

this choice function, which is nothing but the expected value of

the random vector which has a uniform distribution on u(S).

3 Some Axioms

Let F: I* > R be a choice function.

1) Weak Pareto Optimality (WPO) :
V Ser?, F(S) € W(S), where W(S) ={xeS/y » x> y¢S}V SeZ’.
2) Pareto Optimality (PO): i

~

V Ser?, F(S) € P(S), where

P(S) ={xeS/y =2 x, yeS»y = x}V SeZL*.

3) Scale Translation Covariance (STC):

V Sef’, VceR_ if c=(cl,c2) then

F(cS) =(c,F, (S), c,F,(S)), given that

cS = {(clxi, c,,xz)/(xl,xz)es} .

4) Homogeneity (HOM) ;

V Ser’, ¥Yt>0, F(tS) = tF(S), where

tx = (tx,, tx,) Vx =(x,x,) €R’ and tS = {tx/x € S}.
S) Additivity (Addi):

V Ser?, Ter*, F(S+T) = F(S) + F(T) .



6) Super Additivity (S Addi) :
VY S, Tel’, F{§+T) =2 F(8) +~ F(T) .

7 Partial r Additivi PS Addi
VYV S, TeL*, F(5+T) = F(S5) .

8) Nash's Independen Irr vant Al nativ NIIA
VS8, Ter*, Sc T, F(T) €S> F(8) = F(T) .

9) Translation Covariance (TC):

V Ser*, ceRKE if S{(c) =
then F(S(c)) = F(S) + c.

{yeRz/ys x + C, xes},
10) Symmetry (SYM) :

V Ser* such that (x,,x)eSe(x,x)eS, F (S) =F, (S .

11) nvex Lineari Lin);

V S, Ter:, F(aS + (1-a)T) = aF(S) + (1-a) F(T) if ae [0,1].

12) i itivi
VS, Ter? with U(S) ={A(8)} and v(T) ={a(T)} if
V = comprehensive convex hull {S, T}, then

F(V) = %[F(S) + F(T)) if F,(S) + F,(8) = F,(T) *+ F,(T) .

Let us first mention that A does not satisfy STC and NIIA.

Example:
Let T ={xelﬁ/(x1,x,) =X, X +X s 1},
= 1 1 1
S Convex hull {(0,0), (0,1)1 (3:7); (‘—2‘10)}‘



T

Clearly Sc T and A (T) =(

ST
ol -

) €S . However A (S) =(%—,-%). Thus A

does not satisfy NIIA.

We will however, modify A somewhat later to take care of STC.
Observe that:

i) PO - WPO

ii) STC -» HOM

iii) Addi -» S Addi -» PS Addi
iv) Addi + HOM -» C. LIN

4 A Result on the Additive Choice Function

Theorem  1:

The only choice function on I* to satisfy PO, SYM, C.LIN and B.
Addi is A.

Proof:
The proof that if F satisfies PO, :SYM and C.LIN, then

F(S) € argmax[x]+ x¥]9'SeE’ is the relevant portion of the proof
) X

of theorem 1 in Myerson [1981]. If in addition F satisfies B.Addi
the following argument holds:

Let VeI’ and let h (V) = max{x /xeV}, i =1,2. Suppose {z(v)} is

a strict subset of U(V). (If u(Vv) = LE(V)}, there is nothing more
to be proved) .

Case 1: a(V)eR \ R, b(V)eR \ B .

In this case V=A for some C > 0. By WPO and SYM, F(V) = A(V)



Case 2. a(v)eR _, b(V)eR

Let S

Convex comprehensive hull {(0, h (V)), {xeV/x, s a (V) }} .

T

Convex comprehensive hull {(h1 (v),0), {xeV/x, s b (V) }} :

Clearly V = Convex comprehensive hull {S,T)}

U

Further, u(S) ={A(S)} ={a(v)}, u(T) ={a(T)} = {b(V)).

Thus F(S) = a(V), F(T) b(V).

By B.Addi, F(V) = A(V).

Case 3; a(V) e R\R_, b(V) ¢ R,
In this case let T be as in Case 2 and let
S={xeV/x, s a, (V)}
Once again V = Comprehensive convex hull {S,T} and from here on the
argument is as in Case 2.

Case 4; a(V) e B, b(V) ¢ B \ E_

In this case let T be .as in Case 2 and let‘ S = {xe V/x, s (V)}

Again V = Comprehensive convex hull {S,T} and the resulting
argument is as in Case 2.

Thus F(V) = A(V) in all cases Q.E.D.

Remarks:
1) The theorem due to Myerson [1981] which we refer to in our
proof is wvalid only on a subdomain of £* for which

u.S) = {X(S)} . However, the same proof works for us.



2)  We have shown that A satisfies PO, SYM, HOM and Addi. Thus

A satisfies PO, SYM, HOM, and PS. Addi. Peters [1986])
contains a theorem to the effect that the egalitarian solution
due to Kalai [1977], is the only solution to satisfy WPO, SYM,
HOM and PS. Addi. However, his domain is a nonconventional
one and is different from ours. On our domain the egalitarian
solution satisfies WPO, SYM, HOM and PS. Addi. as well. Thus
a uniqueness result using WPO, SYM, HOM and PS. Addi on I’ is
clearly not available. It is interesting to note that our
domain I* is naturally implied by the interesting discussion
on Axiomatic Bargaining contained in Moulin [1983]. Moulin
[1983], considers a domain which is a strict subset of I*.
However, all choice problems in I can be obtained as the

limit in the Hansdorff topology of a sequence of increasing
choice problems considered by Moulin [1983].

3) Since A does not satisfy NIIA, the interesting axiomatic

characterization on the subdomain of I defined by

{SeE’/u(S) = {X(S)}} using PO, SYM, TC and NIIA which is there

in Exercise 3.9 of Moulin [1983] fails to generalize.

Proposition 1:

On I’ there exists no choice function which satisfies WPO, SYM, TC
and NIIA.

Let a = (%, _43.), b =(%, %) and S = comprehensive convex hull of



Suppose towards or contradiction that there exists a choice
function F which satisfies the above assumptions. Then by WPO, S

(11 R A
and SYM, F({A) »(—2-, -5) and by NIIA, F(S) l3' 2) b.

3

Now let C = (Z' ) and T = comprehensive convex hull of

AN

{a + c,. b+ c}.
Then T = S{(c) as defined in the Translation Covariance assume.

Now Tc A and F(4,) = (1,1) =a + ¢ by WPO and SYM. By NIIA, F(T)
= (1,1) = a + c.

By TC, F(T) = F(S) + ¢ = b+c=(1%, %)-e (1,1) .

This consideration establishes the desired nonexistence. Q.E.D.

We define the following choice function A" : I? - R? which

satisfies both NIIA and SYM:

Let IT={(x,x,)eR/x =x ).

Given SeX?, 1let A'(S) =TNu (s) ifTTNu (S) * ¢

b (S) if x>x, V (x;,x,) € u (S5)

a (S) 1f x,<x, V (x,,x,) e u (S)

10



It is easy to see that A* : I¢ - R: satisfies Pareto Optimality.

The subsequent results are related to the results reported in
Peters and Wakker (1991), Bossert (1994) and Bossert (199¢6).

Let R be a binary relation on R’ which is reflexive (i.e. x R x
Vx e R ), transitive
(i.e. XRy AN yRz - xRz V x,y,ze R?) and total

(i.e. x,yeR:, x+y-xRyVyRx). Such an R is called an

ordering.

An ordering R is said to be continuous, if-

-

VxeR, {yeR/yrRx} and {yeR?/xRy), are closed.

Let F:Z2-R} F is said to be rationalizable by a continuous

ordering R if

Vv seX?, { F(S) } - xeS/xRy ¥ yeS ).

A choice function F:I2 - R? is said to be utilitarian consistent,

if F(S) e u(s) VSe X2,

11



Theorem A:- Let F:Z® -~ R’ be any utilitarian consistent solution.

Then F is not rationalizable by any continuous ordering.

Proof:- Let F:Z%? - R’ be any utilitarian consistent solution.

Towards a contradiction assume that F 1is rationalizable by a
continuous ordering R.

Let P be the asymmetric part of R.
Let S = ¢cch { (4,0), (0,4) }, 4 > 0.

Suppose F(S) >> 0. Let Xx = F(S) withXx, >0, X, > 0.

~ x P (d,0) and x P (0,d) .

By continuity of R, y P (d, 0) and y P (0,d) V y in a sufficiently

~

small neighborhood N of Xx.
Choose €>0 so small that, if T = cch {(d-e¢, 0), (0, d4)}, then
TNN=+¢. Since F(T)eu(T),F(T)=(0,d4). But,

TNN+*¢-yeT such that y P (0, d) which is a ontradiction.

Hence, F(S) = (0, d4) or (4, 0).

Suppose without loss of generality F (S) = (4, 0).
Then (4, 0) P (0, 4).

By continuity of R, (d - €, 0) P (0, d) for € > 0 sufficiently
small.

12



Since, if T = cch { (d - €, 0), (0, d) }, F (T) € u (T)

implies F (T) = (0, d), we get that (d - ¢, 0) P F (T) which is a
contradiction.

Thus F is not rationalizable by any continuous ordering.

O.E.D,
Note:- In the above proof cch refers to comprehensive, convex hull.

Remark 4:- Thus A’ 1is not rationalizable by any continuous
ordering. Contrast this with the result in Peters and Wakker
(1991), which says that if a choice function satisfies PO, CONT and
NIIA, it is rationalizable by an upper semicontinuous ordering.

Remark 5:- The above theorem is easily seen to be wvalid for
utilitarian compatible choice functions defined on the space of n-
dimensional choice problems i.e. collection of nonempty, compact,

convex, comprehensive subsets of RI (: the non-negative orthant

of n-dimensional Euclidean space) each of which admits a strictly
positive vector.

Remark 6:- In view of our proof of the main theorem and Remark 1,
the following observation is easily seen to be wvalid: Let

h:R). xR, .-R7 Dbe a function which is homogeneous of degree one

n
and such that V(p,w) eR], xR,,, Ep, h, (p,w) < w. Further suppose
i1

that V (p,w) e R, xR,, and V xe R} with

VIKRAM SARABIA! LIBRARY
13 WIDIAN INSTITUTE OF MANAGEMEN
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n n P,
Lp.x,<w, Th(p,w>Xx;,. Then there does not exist any total,
i=1 i=1 1

i= i=

reflexive, transitive and continuous binary relation R on RY such

that V(p,weR.xR,,, (h(p,w} = { xeR?/ ﬁ p;X,sw and

1=1

n
xRy ¥ yeR? with Z p,y <w.
i1

Remark 7:- Let RI, ={xeR7/x,> 0V i=1,...,n. 1In view of Remark 1,

a slight modification of our proof of the main theorem yields the
result that if F is a choice function for n-dimensional choice
problems which is weighted utilitarian consistent, then there does
not exist any total, reflexive, transitive and continuous binary

~

relation R on R}, which rationalizes F. Here, F is weighted

utilitarian consistent with weights we R, if
n In

F(S)eu”(s) = xes/Ewx 28wy, Yy=(y,,....y,) € 8 for all n-
i=1 iel

dimensional choice problems.

Infact, we can prove a slightly stronger theorem than the one

proved above.
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Given a choice function F :E* - R:, say that it is

rationalized by a social welfare function V : R -~ R ifV Se EZ,

F(s)} =ixe s/V(x) 2 V(y) VyeS).

Note: No assumptions are being made with regard to the continuity

of V.

Theorem B:- If F : I? - R? is utilitarian consistent and symmetric

then it cannot be rationalized by any social welfare function

~

Vv: R ~-R. >

Proof:- Towards a contradiction assume that F: X2~ R is

utilitarian consistent and symmetric which is also rationalized by

a social welfare function V : R® - R. Let 0 < d < d.

15



Let T, =cchi{(0,d), (d,0)}; then F(T,) = (=

Q.
nvlq,

/
T, = cch {(0,d), (d',0)} implies F(T,) = (2, %),

Both the above follow from symmetry of F. Thus

d d
v( 3,_2_) > max { v(d,0), V(0,d).

: /
Let T =cchy (0,qd), ﬂ—, 0]
2d-d’

F(T) = (0,d) implies

/ / / /
vo,d) > V[g, g—) since (-‘i, g ] eT
2 2 2 2

/
Let T = cchy (d,0), [o,-£¥1~ ] X
2d-d’

We get in a similar fashion.

16



-Zq ) > max { v(d,0), v{(0,d) }.

>min { v(d,0), v(o,d) !}.

|

vl

,—‘-"12—’ 1 >max { v(d/,0), v(o,d) ).

vl
vla,

Let r(d) be a rational number between V(_ ) and

~

~—

max {v(d,0), v(0,d)}, 4 > 0.

Thus r is a function from R,, to the rationals which is strictly

increasing and hence one-to-one. But this is impossible. Hence the

theorem.

17



The implications of this theorem, are rather powerful as we

shall soon observe.

Remark 8:- The solution A* is symmetric and utilitarian consistent.
Hence, by Theorem 2, it 1is not rationalizable, by any social

welfare function.
It is easy to see that A* does not satisfy CONT.

In Peters and Wakker (1991), we have a result of fundamental

importance: A sufficient condition for F:I2-R to be

rationalizable by a social welfare function is that F satisfies PO,
NIIA and CONT. Thus we may conclude that there exists no

utilitarian consistent solution which satisfies NIIA, SYM and CONT.

18



5 The Weighted Additive Choice Function

The conventional method of extending the additive choice function
is to consider maximizers of the weighted sum of the coordinates.
We however restrict ourselves to a particular kind of weighting

system, so that the resulting solution satisfies STC.

Given Ser?, let h(S) =(h, (S), h, (S)) where h (S) = max{x /xeS}, i =
1, 2. Clearly h(S) >0, i =1, 2, VSer*.

Let f, (S)

]
.
it
[

2. Thus h(f(S)S) = (1,1) V Sex*.

Let B : I* - R® be a choice function defined as follows:

_ (
551 (h (9 al(f(S)S);bl(f(S)S')]" h ()

a,(£(S) S) + b,(£(S) )
~ . 2

- —7

where a,, b;, i=1, 2 are functions from £ to R defined earlier.

Clearly B(S) corresponds to the expected value of the random vector

which has a uniform distribution on the set

* X Y. , Y _
{XGS/IUS) "R T RE RIS v (. v) yes}'
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The particular case when this set reduces to {B_(S)} is known as the

choice function due to Cao [1981]).

We now invoke the following axioms:

13) R ri nvex Lineari R LIN) .

VS, Te with h(S) = h(T), F(aS + (1-a)T)
=gF(S) + (1-a)F(T) Vael0,1]

14) R ric Bin Additivi RB. Addi);

VS, Ter® with h(S) = h(T) and F, (S) + F, (S8) =

F, (T) + F, (T), F(V) = %.[F(S) + F(T)] where

V = Comprehensive convex hull {S,T} provided

~

u(s) ={A(S)} and u(my ={Aa(T)}.

We thus have the following theorem:
Theorem 2:

The only choice function on I* to satisfy PO, STC, SYM, RC.LIN and

RB.A4di is B.

20



If F satisfies the assumptions then F = B is easily established

along the lines of the relevant part of the proof in Theorem 1, by
setting h(V) = (1,1) (permissible by STC) and by noting that Cases
3 and 4 can thus not arise. The other way is easy to check.

Q.E.D.
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6 The Non-Symmetric Nash Choice Functions

The following assumption will be used in this section:

15) n nden Irrelevan xpansion IEE

VY Ser?* there exists a vector peR with p, + p, = 1 such that (a) p.x

= p.F(S) is the equation of a supporting line of S at F(S), (b)

VTer? with Sc T and p.xs p.F(S) VxeT, we have F(T) = F(S).

We are interested in a family of choice functions defined thus:

Given W = (W,, W,)eR with W, + W, = 1,

Let F*(S) = argmax x* x;? if W> 0

(x3, X2) €8
=(h(8),9,(8)) if W, =1, W, =0
=(g.(8), B (S)) it W, =0, W, = 1
V Ser’. Here (h (S), g,(S)) and (g,(S), h, (S)) belong to the

Pareto optimal set of S whenever SeI’. The family {F"/W>0} is
called the family of nonsymmetric Nash choice functions. The

family {F"/W> 0} is called the family of choice functions

determined by a weightéd heirarchy.

Example: W = (1,0)

22



Thus F*(S) =(h (S),g,(S))V Ser’. But this F" does not satisfy

Independence of Irrelevant Expansions.
Take S ={x =(x,x)eR/x + X s 1}.

Clearly F* (S) = (1,0). At (1,0), the unique supporting hyperplane

in the definition of Assumption 3 is given by
p = (1,0). Now take T={(x1,1g)ellf/x1 =1,x s 1}.. Now T and S

satisfy the conditions in Assumption 3, with p = (1,0). But

FF(T) = (1,1) = F" (S} .

This example excludes the weighted hierarchy (1,0) as well as the
weighted hierarchy (0,1) from the list of the possible candidates

which could define a solution satisfying Assumption 3.

Hence the only possibilities are weighted hierarchies of the form

W >> 0 i.e., a non-symmetric Nash choice function.

For the purpose of this section the following convention is

adopted; Let F: £* > R be a choice function satisfying‘Assumption

15. Given S € I?, let p(F,S) = {peR\{0)/p satisfies the conditions

of Assumption 15 for S}.
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Theorem A: Let F be a choice function which satisfies PO, STC and
IIR. Then F is a non-symmetric Nash choice function. Conversely,

every non-symmetric Nash choice function satisfies PO, STC and IIE.

Proof: It is easy and somewhat routine to verify that every non-
symmetric Nash bargaining solution satisfies PO, STC and IIE.
Hence let us prove the converse. Hence assume that F is a choice

function satisfying the desired assumptions.

Step 1: Let A ={(x1,x2)ellf/:g + X, < 1}. Then F, (A) > 0 for i =

1, 2.

Proof of Step 1: Let S = {(xl, x)eR /X2 + X s 1}. The example above

show that (1,0) and (0,1) do not qualify as solutions for S which

would satisfy assumption 15. Hence by (Pareto optimality, there

exists (y,,y,) >0, with y? + y2 =1 such that F(S) =(y,,y,)-

Let p.x = p.F(S) be the unique supporting line to S at F(S).
Clearly p, > 0, p, > 0.

Let T = {(xl,Jg)eRf/p.XS p.F(S)}.

By IIE F(T) = F(S) =y = (y,, Y. ) » 0. By Scale Transformation

Covariance, F(A) =w> 0.
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Step 2: Let S € r*, such that (h (S),h (S))eS.

Then F(S) = F*(S) =(h (S),h(9)).
Proof: Obvious by Assumption 1.

Step 3; Let S € I’ and (h (S) , h (S))eS.

Then (1,0), (0,1) ¢ p(F,S).

Proof: Suppose towards a contradiction (1,0) € p (F,S) (the proof
for (0,1) is similar). Clearly F(S) = (hl (S),q, (S)) with g, (S) <
h, (S). Let T = {(xl,xz)enf/% s h (S)i-= 1,2}. S and T satisfy the

conditions of IIE with p = (1,0). But

F(T) =(h (S),h(S)) by PO; this contradicts IIE and proves Step

Step 4; Let S € . If S={(x1,x?)ellf/xx s h (S), 1= 1,2},

then Step 2 establishes that F(S) is a non-symmetric Nash Solution
for S.

Hence assume (h, (S), h, (S)) ¢ S. By Step 3 and PO, (1,0), (0,1)
£ p (F,S) irrespective of whether P, (S) =h, (S) or F, (S) = h, (S)

or otherwise.
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Let p € p (F,S) where by STC we may assume F,(S) =1, i =1, 2.

Let T={(x,x)e®/px = p,x].
Since F(A)) = w, by STC, F(T) = F* (T)
But this T and S satisfy the condition of IIE assumption. Hence

F(S) = F(T) = F* (T) = F* (S).

Thus F(S) = F"(S). Q.E.D.

Our next objective is to invoke the assumption of weak independence

of irrelevant expansions defined in Peters (1986b) and establish a

result similar to his.

6) Weak Independence of Irrelevant Bxpansions (WIEE):

V SeI’ there exists a vector peR with p, + p, = 1 such that:

a) p.x = p.F(S) is the equation of a supporting line of S at
F(S);

b) V Ter* with ScrT and p.xsp.F(S) VXxeT, we have

F(S) s F(T) .

Notice that Assumption 15 implies Assumption 16. Hence the non-

symmetric Nash choice functions satisfy Assumption 16 as well.
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7) Family of Choice Functions Determined by a Weighted Hierarchy:
For the purpose of this section, the following convention is

adopted: Let F: £ > R be a choice function satisfying Assumption

16. Given S € I, let p(F,S) ={peB\{0}/p satisfies the
conditions of Assumption 16 for S}. For Lemmas 1, 2 and 3 below we
assume that F satisfies PO, STC and WIIE.

Lemma 1: If (1,0)ep(F,S) for some SeI* with S*Comv{h(S)} then
F(T) = (g, (T), h(T))V Te 22\ {aA,/a»0}.

Proof:- Suppose there existsT e £2 \ { aA,/a»0 }such that
F(T)+ (g, (T), h,(T)).

Clearly (a) (1,0)ep (F,T)
(b) T # Comv {h(T)}.

Now, (1,0) € p (F,S), implies by PO that

F(S) = (g, (S), h, (S))

Let V = Comv {u,v}, where

w, = h, (S), v, = h, (8), u, > g, (S), v, > h, (S),
u, > Vv,, 4 < v,, u>> 0, v >> 0. -
Such a V exists since S#Comv{h(S) }

By PO and WIIE, F(V) = u = (g, (V), h, (V)

By STC, F(V) =u = (g, (V), h, (V)) VV e £* with
V = Comv {u,v}, u>>0, vos>0, u>v,,uc<wv,.

Now, T e L2\ {aA,/a»0), (1,0) ¢ p(F,T) implies that there exists V

as above (i.e. V = Comv {u,v} such that
F(T) = v if (0,1) € p (F,T)

*» u, v if (0,1) ¢ p (F,T)

with F(T) € p (V),

TcV.

By WIIE, F(V) = F(T) # u

This contradiction establishes the lemma.
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Lemma 2:- If (i,O) € p (F,S) for some S ¢ £* with S # Comv {h(S))}
then F(T) = (g, (T), h, (T)) VT € .

Proof:- Given Lemma 1 above and by appealing to STC, it is enough
to show that F (A;) = (0,1)

Let T = { xeA,/x, = % }
T e £z \ { aA,/a>>0 }.
By Lemma 1, F(T) = (0,1).
By WIIE (since TcA,, with the conditions of WIIE being trivially
satisfied for T and A, at (0,1)), F(A;) = (0,1).
Q.E.D.

Lemma 3: If (0,1) € p (F,S) for some S ¢ I* with S #* Comv {h(S)}
then F(T) = (h, (T), g, (T)) VT € I*.

Proof:- Similar to above (i.e. Lemmas 1 and 2).

Lemma 4: Suppose (1,0), (0,1) ¢ p(F,V) whenever Ver? V # Comv {h
(v)}. If F satisfies PO, STC and WIIE, then F is a non-symmetric

>

Nash bargaining choice function.

Proof: Let F(',’ w 0 since (1,0), (0,1) p(F, ,)

Thus F(aA) = F*(aA) V aeR,

Now let Ser* S#Comv{h(S)}. Then Vp ep (F,S), p» 0

Let T={(x1 +x)eR/px +px spFI(S) +p,F,(S)}.

Clearly F(T) = F* (T) and F(T) = F(S) the latter by PO and WIIE.
Thus F(S) = P (T). Since F'(T) = F' (S), we have the desired
result. Q.E.D.

Note: By Assumption 2, if F(A) = F*(A)) for some W > 0, then

FlaA) = (aA) V a€R’, and for the same W. Since F(A) is always
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equal to some F*(A) with W > 0, F(aA) is always equal to

F(aA) ¥V aeR?, for some fixed W > 0, W, + W, = 1.

As a consequence of the above lemmas we have the following theorem.

Theorem 4: Let F be a choice function on I? which satisfies

Assumptions 2, 3 and 16. Then F = F' for some W = (W,, W,) > 0 with
W, + W, = 1.

Cohversely, any choice function F* with W > 0, W, + W, = 1 satisfies
PO, STC and WIIE.
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Appendix A
In this appendix and in view of Remark (2) (after Theorem 1), we
prove an axiomatic characterization of the egalitarian choice
function using the superadditivity axiom. We invoke the following
two assumptions as well.

Strong Individual Rationality (SIR):
F(S) >0V Se??

Continuity (CONT) :

If {S’"} be a sequence in I’ converging to SeIZ’ in the Hausdorff

topology, then lim F(S*) = F(S).

) S

We now prove the following theorem:

Theorem:

The only choice function on I* to satisfy SIR, WPO, SYM, NIIA,
S.Addi and CONT is the egalitarian choice function E defined as
follows: )

~

V Ser?, E(S) = (t,t), where t =max{t/(t,t) €S}.
To prove this theorem we use the following lemma:

Lemma :
Udr te hpdtesis of the theoem, F(T) 2 E(T) V TeXZ® of e fomT = {xe B /x < a}

for some a > 0.

If a-=(a, a:,) with a, = a,, then F(T) = E(T) by WPO and SYM.

Hence suppose W.l.o.g. a, > a,.
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Thus E(T) =(a,, a,)
Let b(e) = (1 - €) a, for 0 < € < 1.
T(e) = {xeR/xs(ble), b (€))}

Ule) ={x - (ble), ble))/x=(ble), ble)) xeT}.
Then T =T(e) +U(e) VO<cec<l.
2 F(T) = F(T(€)) =(b(e), b(e))VO<e<1.
Taking limits as € » 0, we get F(T) =2 E(T) . Q.E.D.

r Th

That E satisfies the above properties is clear. Thus let us assume
F satisfies the above properties and towards a contradiction assume
that there exists Sef’ such that F(S) # E(S). To begin with assume
E(S) € P(S). The proof is completed by appealing to CONT.

Let T = Comprehensive convex hull {(F(S))}

By NIIA, F(T) = F(S)

By Lemma above F(T) = E(T) .
Clearly F(T) * E(T) for then F(S) = B(S)
Without loss of generality assume F,(T) > E,(T)

Since E(T) € W(T), F,(T) = E, (T)

Let T = Comprehensive convex hull {E(T))
F(r') = 5r') = E(T)

Let U={x-E(T) ¢ B/xeS)
UeZ’, since E(S) € P(S)
T +UcS and F(S) =F(T) e U+ T

By NIIA, F(T' + U) = F(8) = F(T)

But F(7 + U) = F(T') + F(U) by S. Addi.
i.e. F(T) = E(T) + F(U)
By SIR, F(U) >0

» F(T) > E(T)
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Contradicting F,(T) = E,(T). Q.E.D.

In the above proof we invoke the Nash's Independence of irrelevant
Alternatives Assumption, which sets the egalitarian choice function
apart both from the choice function of Perles and Maschler (1981}
and the choice function that we define in this paper.

Further since, SIR + HOM + NIIA - WPO, the following collary is
immediate:

Corollary:
The only choice function on I? to satisfy SIR, HOM, NIIA, S. Addi,
SYM and CONT is the egalitarian choice function.
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Appendix B

The purpose of this appendix is to establish a feplication
invariance property for the additive choice function. Replication
invariance for the egalitarian choice function has been established
in Lahiri [1996] and for the relative egalitarian and Nash choice
functions in references contained in the same paper. In order to

establish the replication invariance property we need the following
framework.

Let neN and R denote the non-negative orthant of n dimensional
Euclidean space. A choice problem in R (often called an n -

dimensional choice problem) is a non-empty set S in R satisfying

the following properties:

i) 0 €S

ii) S is compact, convex and comprehensive (i.e.
0sxsyeS—»>x€e8 )

iii) 3 xeS with x> 0.

Let " denote the class of all n dimensional choice problems. We
shall be interested in a subclass of I* in what follows.

Given S € r°,

i=)]

let u(S) ={xes/f: x =Y v Vyes, Y=(x-):.1}
i=1

We shall be interested in the following subclass of I* denoted
B : SeB® if and only if the compact convex set u(S) has a finite

number of extreme points. Let e(S) denote the set of extreme
points of u(S), whenever SeB" and 1let |e(S)| denote its
cardinality. The additive choice function A: B> » R is defined as
follows:
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. 1

A(S) = x, whenever Se¢B".

[e(S) X.Z:s)
Let Ser* be given, as well as natural numbers m,l. Let
I =41, 2, ..., mj and J ={m+1, ..., m+ 1}. For a pair

(1,7) € I, xJ, let

3 2

S, ={xeR'j‘1/3(xi, x,)eS with x =x/,x, = x,,x =0 if k*i:j}-

The Thomson (m, 1) replication of S is defined as
S =cConv (s, / (i, j)eI, xJ|. Clearly S"' ¢ B™'. Indeed, if x
denotes an element of S, then the extreme point of u(S) are
{ar?(S), b2 (5), (i,7) eI xJ} W h e r e
a’(8) =a (8),a’(8) =a,(8), ’(8) =0 if k+1,7;
b’ (8) =b (8),b?(8) =b, (S}, bi?(8) =0 if k+ 1,j. Thus

1 . :
Algs) = L a (s) =+ b (8 ].

2ml [ﬂlvj\flmei ~ \l.jygrle }
Theorem:

In the above frame work, m.l—g(Sm,l) = 2\,: (S) VieI and

12 (s72) = A4, (8) V jeg,

Proof:
Let (c,d) = A(S).

Thus (c, d) m_a(s) + 1
m+1 m+

lb(S)

2
o}
£
>

9
I

1 k.3 K3 .
-m[z gi(s) + ¥ p (S)] if kel

jedy JeJ3
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- 1 1k + b A g
_ijlz a*(s) + Y K (5)] if ke,

i¢lpn 1€l py

~ A (572) = [1a,(8) + 1b,(S)] if keI,

.1 :
= o7 [ma, (8) +mb,(S)] if ke,

—
—
N
n

—2—lr—n[al(5') +b (8)] if kel

(2, (8) + b, (8)] if keJ,

—
-

~—
I

Thus, mA_k" =A (5) VkeI

[,
ol
9

w

A (S) Y ked, . Q.E.D.

Let us show that, ,2.1;(5’“) > 2
kelgmUdy keipUo;

V xe = (}g‘)xumwz e S”

Let (c, d)

%[a(S) +b(S)leu(s) .

Thus ¢ + d = x| + x, V(x,x,)eS. Thus if x*’ denotes a vector in §°7,

then ¢+ d=x’ + x'.

Now, let yeS™'. Then, there exists p . =2 0, (1,j) € I, x J such that

yeés Yy u,, x*3 for some x*’, (i,j) € I, xJ,, and Y p, =1.

(2,37 €Ipx J) 13)) elgx 33

SYes Y, By X if Kel,

\CEE .

s B X" 1f ked,
%os X M X :
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X A(s).

This establishes the bonafides of the extension of A from I* to B
as introduced in this appendix.
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