

Working Paper

A COMMENT ON NASH'S INDEPENDENCE OF IRRELEVANT ALTERNATIVES ASSUMPTION FOR CHOICE PROBLEMS

BY

Somdeb Lahiri

W P No. 1271 July 1995

WP1271 | **1444 | 1444 |**

The main objective of the working paper series of the lima is to help faculty members to test out their research findings at the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT AHMEDABAD - 380 015 INDIA

JEL Classification: DOD, D70

ABSTRACT

In a recent paper, Campbel (1994) shows that if a choice correspondence satisfies Arrow's choice axiom then it has a complete, reflexive and transitive rationalization, even if the domain doesnot include any set with fewer then m members, where m is a given positive integer. The purpose of thispaper isto provide a simpler proof (than the one provided by Campbell) of the same result when the choice correspondences are single - valued i.e, the case of choice functions. In such a situation Arrow's choice axiom is formally equivalent to Nash's Independence of Irrelevant Alternatives assumption.

1. Introduction: In a recent paper, Campbell (1994) shows that if a choice correspondence satisfies Arrow's choice axiom then it has a complete, reflexive and transitive rationalization, even if the domain does not include any set with fewer than m members, where m is a given positive integer. The purpose of this paper is to provide a simpler proof (than the one provided by Campbell) of the same result when the choice correspondences are single - valued i,e, the case of choice functions. In such a situation Arrow's choice axiom is formally equivalent to Nash's Independence of Irrelevant Alternatives assumption.

2. The Framework: Let X denote the universal set of alternatives. ζ represents the family of candidate feasible sets ie, a non-empty collection of non-empty subsets of $X_{\bullet}(X, \zeta)$ is called a choice space. A choice function on (X, ζ) is a function $C: \zeta \to X$ such that for all $S \in \zeta$, $C(S) \in S$. We set $X_C = \{C(S): S \in \zeta\}$, the range of C. Let ζ_m be the collection of all m element subsets of χ and all subsets with exactly (m+1) members.

A (binary) relation on X is any non-empty subset R of X x X. A choice function C on (X, ζ) is said to be rationalizable by a relation R if for all $S \in \zeta$, $\{C(S)\} = \{x \in S \mid (x, y) \in R \}$ for all $y \in S$. A relation R is said to be reflexive if $\{x, x\} \in R$ for all $x \in X$. A relation R is said to be complete if for all $x, y \in X$, $x \neq y$, either $\{x, y\} \in R$ or $\{y, x\} \in R$. A relation R is said to be transitive if for all $x, y, z \in X$, $\{x, y\} \in R$, $\{y, z\} \in R$ implies $\{x, z\} \in R$. A choice function C on $\{x, \zeta\}$ is said to be fully rational if there exists a binary relation R on X which is reflexive, complete and transitive such that C is rationalizable by R.

Theorem 1: Let C be a choice function on a choice space (X, ζ) such that ζ contains ζ_2 . C is fully rationalizable if and only if C satisfies Nash's Independence of Irrelevant Alternatives Assumption (NIIA), where NIIA is defined as follows: $S, T \in \zeta$, $S \subset T$, $C(T) \in S \to C(S) = C(T)$.

Proof: Arrow (1959).

3. The Main Result:

Lemma 1: Let (X, ζ) be a choice space such that $\zeta_m \subset \zeta$ and suppose C is a choice function on (X, ζ) which satisfies NIIA. If $\oint \neq T \subset X$ and $T \subset S_1$, $T \subset S_2$ where S_1 , $S_2 \in \zeta_m$ and $T \cap X_c \neq \oint$, then $C(S_1) = C(S_2)$, provided $C(S_1)$, $C(S_2) \in T$, $f(S_1) = f(S_2) = f(S_2)$, where $f(S_1) = f(S_2) = f(S_2)$, where $f(S_1) = f(S_2) = f(S_2)$, where $f(S_1) = f(S_2) = f(S_2)$ is a choice function on $f(S_1) = f(S_2) = f(S_2)$.

Proof: Let T be as in the hypothesis of the lemma. Clearly there exists at least one m element set S such that $T \subset S$. Let S_1 and S_2 be two such sets and let $S = S_1 \cup S_2$. Thus $S \in \zeta_m$. Clearly $C(S) \in S_1$ or S_2 , so that either $C(S) = C(S_1)$ or $C(S_2) = C(S)$ by NIIA. Suppose $C(S) = C(S_1) \neq C(S_2)$. Thus $C(S) \in S_1 - S_2$. But then $C(S_1) \notin T$. This contradicts the hypothesis. Thus $C(S_1) = C(S_2)$.

Theorem 2 (Campbell (1994)): Let $m \ge 2$ be a given integer, and suppose that (X, ζ) is a choice space such that ζ contains ζ_m but not any subsets of X with fewer than m members. A choice function C on (X, ζ) satisfies NIIA if and only if it is fully rationalizable.

Proof: If C is fully rationalizable then it satisfies NIIA without any restrictions. Hence let us prove the converse which we will do by induction. By theorem 1, the result is true if m = 2. Hence assume that the result is true for $m \le n$ (>2) and suppose m = n + 1. Thus ζ_{n+1} contains all n+1 and n+2 member subsets of X but not any set with fewer than n+1 members. Let ζ be the smallest superset of ζ consisting of all subsets of X with n members. We will extend C to (X, ζ) as follows: Let T be a n element subset of X. If $T \cap X_c \neq \frac{1}{2}$, then let $\overline{C}(T) = C(S)$ if S is any n+1 element set containing T such that $C(S) \in T$. Clearly $\overline{C}(T)$ is uniquely defined by Lemma 1.

Let P be any reflexive, complete, transitive binary relation on X such that the strict part of P is P itself. If T as above is such that $C(TU\{x\}) = x \ \forall \ x \in X$ then define $\{\overline{C}(T)\} = \{x \in T/(x,y) \in P \text{ for all } y \in T\}$. This set will be a singleton since the strict part is identical to the relation itself.

If $T \in \zeta$, then define C(T) = C(T). This extends C on (X, ζ) to C on $(X, \overline{\zeta})$. It is easy to observe that \overline{C} satisfies NIIA and by the induction hypothesis there exists a complete, reflexive, transitive relation R on X which rationalizes \overline{C} . Since \overline{C} extends C, R rationalizes C. This prove the theorem.

Q.E.D.

Remark: The framework of the above paper, particularly the concepts of a choice space and full rationality can be found in Suzumura (1983). The essential difference between the present paper and that of Campbell (1994), is in our use of choice functions. A detailed development

of rational choice theory for choice functions and a lucid discussion of the same can be found in Richter (1971).

References:

- 1 Arrow, K J (1959), "Rational Choice Functions and Orderings", Economica 26, 121-127.
- 2 Campbell, D.E (1994), "Arrow's Choice Axiom", Economics Letters 44, 381-384.
- M.K. Richter (1971): "Rational Choice" in "Preferences, Utility, and Demand" (J.S. Chipman, L. Hurwicz, M.K. Richter, and H.F Sonnenschein, Eds), Chap.2, Harcourt Brace Jovanovich, New York, 1971.
- 4. K. Suzumura (1983): "Rational Choice, Collective Decisions, and Social Welfare (Cambridge University Press, Cambridge).