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The Defective Coin Problem: An Algorithmic Analysis

Suresh Ankolekar
Arindam Das Gupta

§. Srinivasan

Abstract

The defective coin prablem involves identification of
defective coin, if any, and ascertain theé nature of the
defect {heavier/lighter) from a set of coins containing

at the most one defective coin, using an equal~arm.paf-
balance. This paper gives algorithmic analysis of the
problem. The solution strategy to minimise number of
weighings required to detect the defective coin is based

on problem reduction approach involving successive .
decomposition of the problem into subproblems until it

is trivially solved. One of the two typss of subproblems
is visualised as combination of pair of antithetic problems,
leading to an optimal solution procedure which is simply

a term by term merger of corresponding antithetic prace-
dures., Also, the algorithm is capable of generating all
poss ihle optimal solutions, ‘



The Defective Coin Problem: An Algorithmic An#lysis

Suresh Ankolekar
Arindam Das Gupta

G. Srinivasan

ACnﬁsidar a get 5 of identical-looking coins gne of which
may be d;féctive, béing lighter/heavisr comparedto others. The
- prnblém is to identify the daefsctive coin, if any, and ascertain
the nature of the defect (lighter/heevier), using only an
equal-armnpan-balanca; such that number of weighings required

for the purpose are minimiged.

‘Algorithm Dévelopment

Intuitively, one of the solution straEegies would be to
sucéessively reduce the problem-size until thg reducesd problem
can be trivially solved. In other wﬁrds,.wa succesgively
partition the set of socins into smaller subsets, and pursus
the subset containing the éefectiva coin for further decompo-
sition until no more decomposition is required. Obviously,
the weighing process would have to indicate the subset to be\v
pursued for fucrther decomposition. Thereforz, the correct

interpretation of weighing outcomes would be crucial to optimum

decomposition.

/ There are three possible outcomes in the weighing process,
namely, both the pans balanced, lsft-pan up & right-pan down,
and left-pan down & right-pan up, respectively. Consequantly,

Bt any stage we can decompose & problem by partitioning the



. set of coins into at most three subscts, sbd that each of the
outcomes uniquely indicates one subsct to be pursued for

further decompesition.

Supposa we partitich the given set S into

S. : sget of coins kept asidz, not participating
directly in weighing

set of coins in left-pan

[¥y]

szt of coins in right-pan

n

W(X) : weight of pan containing sect X of coins

Note that with the limi£ed apparatus that. we have, we
would not be in a-position to know actual value of W{X). We
shall use the notion of wzight only in a cdomparative sense,
to express the outcomes of weighing—prncess,{e-g.

W(s,) = w(s,), W(S,) LW(S,) or W(S,)}>W(S,).

Let the number of coins in a set be denoted by the lower

case letter correspomnding to the zet notation in upper casc

letter, 2.g. number of coins in set X would be x.

We shall uxpress the interpretation and algorithm develop-

ment in terms of algorithmic language using standard program

- structures in atructured English such as

procadure cast if ..
. .e “then ..
endprocedure endcase else ..
endif



Interpretation of Weighing Outcomas

The weighing process and its interpretation can be
expressed as follows:

Partition 5 into 50, 51, 52 such that s, =8,
weigh S, and 52

cage

w(51} = W(SZ) t "the defective coin, if any, is in 5.7
"S1U 52 is a get of good or standard
coins"

if the defective coin is lighter

then _
it is in 51".

W(s,)  W(S,)

elsse
"M"it is heavier and in 52"

iy

endif
v
"SD is a set of good coing"
W(S1) > W(SZ) : if the defective coin is heavier

then
it is in 81"
else
"it is lighter and in 5,"

endif

"SU is a set of good coins”

gndcase

The first weighing changes the complexion of the prdblem
bath in terms of size and structure as follows:
.1) we are able to trap the defective coin, if any, in

gither SU or 51 U 52.



ii) if the pan-balance is balanced then the defective
coin, if any, has escaped in SD’ and we can safely

declare 51 U 82 as set of good coins.

iii) if the pan-balanca is unbalanced then the defective
coin has besn trapped in 51'U 52, and we can safely

declare SU as set of good coins.

iv) if the defsctive coin i5 in 51 u 52, we can maka
statement about it being specifically in 51 or 52
conditional to nature of its defect. Fnr.example,
w(s£)<ﬂﬁsz) can be interpreted as consequence of
the lighter defective coin being ié Sy or heavier
defective coin being in 52, but not beth, since th;re
is only one defective coin. :

v) in addition to pan-balance, we now haéa a set of good

coins, which were not available before the first

weighing. That means, in future, while decaomposing

a problem of F coins by partitioning into thme

%
% -
.

subsets, namely, FD' F1 and F2, we need not force thé
condition f1 = f2 unlike in the first weighing.
Becauss, we can equalise the numbar of coins in gach
pan by appropriately adding good coins either to F1,
or to Fz,_dEpending upon which of them is a smalier
subset.. Henceforth, the cqualising of coins in two
pans is to bé taken for granted, and accordingly W(X)

is to be interpreted as



W(X) : woight of the pan containing (among other

good coinsa, if any), the set X of coins

rather than weight of the set X of coins, per sc.

. The above interpretation throws up two related problems
distinctly different from the original problem we started with.
Let us express &ll the problems precisely and represent them

. saymbelically.

Before weighing . we had,

P{S) : Given a set 5 of identical-looking coins con-
taining at most onc defective coin, identify
the defective coin and nature of its defact
(lighter/heavier), if any, using only a pan-
balance such that number of weighings required

for the purpose is minimised.
L 3

After first weighing wa have,

PA(SD) : Given a set S, of identical-looking coins

0
containing at most one defective coin, identify

the defective coin and nature of its defect,

if any, using a pan-balance and a set of gouad

coins such that number of weighings requireqd .

for the purpose is minimised.

FB(S1,52):Suppose there ares two sets 51 and 52 of identical-

looking coins, one of them containing exactly one

defective coin such that the defsctive coin if
lighter is contained in 51, and if heavier in 52.
The problem is to identify the defective coin

and nature of its defect. Usihng a pan-balance

and a get of good coing such that number of

weighings required for the purpose is minimised.
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We note that P(S) and PA(SD} ara structurally somewhat similar
except that PA(S)) bas a set of good coins available for use
"in weighing process. PB(S1,52) is a two parameter problem,
and may give a falss impression that nature of defect is

known. In PB(S1,5 ) problem, we are only making 2 statement

2

about defective coin belonging to S1 or 52 conditional to

nature of defect which is unknown, and finding it is part of

the problem,

Having recognised the problem P(S), PA(SU) and PB(S1,52),
we may tentatively express a possible solution procedure to
gsolve P{(S) as follows:

procedurs P(S)

0,51 and 52 such that 31 = 32

if W(s1) = w(sz) o

then
solve PA(SD)

partition 5 into subsets S5

else
JIERAM SARARBHAAI LIBRARYW

if W(51) < w(sz) emal TNSTITUTE ©F MANAGEMENY
then vATTRAPUR, AHMEDABAD-330 01§
solve PB(S1,52)

else .
solve PB(52,51)

endif
endif

endprocadure -~ P(S)

At this stage we shall not address directly to the issus

- of ‘optimising on number of weighings. Given the above structure
of procedure P(S), if the optimal number of weighings to sclve

- P{S) is m*, then we will have to partition the set 5 in such e

~manner as to ensure solution of PA(SU), PB(S1,52) and PB(SZ,S1)

?iin {(m*-1) weighings.



In thé solution procedure envisaged by us, the problems
) PA(SD), PB(S1,52) or PB(52?51) will be solved by further
 decomposition of them into relafed problems until they become
trivially simple capable of being solved without any more

waighings.

- The PA(X) Problem

Suppose we partition X into three subsets XU,E1,X2 as in
P(S) problem. If we subject X1.and X2 to weighing process, tha

outcomes may be interpreted as follows:

i) if H(X1) = W(XZ) then the defectivs codn, if ah@ihas
escaped in XU, and we will havg to solve a PA(XD) problem
to purgue it further. This iz a f%cu;sive situation,
and we can go on and on until PA(X) i;'ttivially solved
requiring no more weighing, which is possible only when
we reach PA(?)in the process of successive decompositien.

Interpretation of reaching PA({) oroblem is that there is.

.

N ,.‘
no defective coin in the original set, since we pursuoe’ .

PA{X) problem only when w2 fail to trap the defective
coin in the subsets directly participating in the weighing

process.

i) if-W(X1) £ w(xz) then we have been successful in trapping

| the defective coin in the subsets directly participating
in the wsighing process, and so we have a case of
PB(X1,X2) or PB(XZ,X1) problem depending on whether

N(X1) 'd N(Xz) or w(x,) )-W(XZ) respectively.



Expressing the procedure formally, we have

prnceduréu?ﬂ(xl(;i
if'x=9'

then "assert that thebe is no defective coin in the
original set"

else

Xy X

partition X into X 10 %5

D’
if W(X1) = w(xz)
then solve PA(XD)

else
if W(x1)(w(x2)

then solve PB(K1,X2)

else soclve PB(XZ,X1)
endif
endif
gndif
gndprocadurs

As in P(S) problem, the optimality in PA!X) problem would
depend on the partitioning of Xinto XD’ X1, XZ. in the sensa
that if PA(X) optimally requirss K* weighings, then the parti-
tioning must ensure that PA(XD), FB(X1,X2) and PB(XZ,X1) do not__
require mors than K*-1 weighings. Both P(S5) and PA(X) proﬁiﬁﬁé
reguire solutich of PB{Y,Z) type of problem, and thereforz we.

will be able to analyse thse number of weighings required to

solve them, only after deing so for PB(Y,Z)} problem.

The P3{Y,Z) problem

In PB(Y,2Z) problem, there is uxactly ons dafsctive coin

gither in Y or in Z depending on whether the defactive coin is

lightar or heavier respectively, which itself is unknown.



~ The problem PB(Y,d) and PB(#,Z) appear to be somewhat
.-related to PB(Y,Z). By definition, in PB(Y,@) problem, there

is exactly one defective coin in Y, which ia.lighter, and

similarly in PB(#¥,Z) problem, therc is exactly one defective coin

in 2, which is hesvier. Therefore, PB(Y,[d} and PB(/,Z} are not
yalid decohpnsition of PB(Y,2), since together they imply two
defective toing, one in each category cf defact, whereas PB(Y,Z)
contains exactly one defective coin. Therefore, it is not
' possible to pursue one of PB(Y,d) and PB(¥,Z) unless we have
prior knowledge of nature of defect or we are prepared to sacrim
fice ons more weighing just to ascertain the natﬁre of defect
wahich would be sesmingly suboptimal., On the othexr hand, PB(Y,d)
‘and PB(@,2) are potentially sasier to saolve comparsd to PB(Y,Z)

since mature of defect is conceptually known in those probloems.

Then, the interesting question at this stage would bs, can

we pursue both PB(Y,l) and PB(®,2Z) simultanesgusly, avoiding the

A'aaparate weighing required only to ascertain nature of the defsct?

Another related guestion would be, can we derive the pro-
cedure to soclve PB(Y,Z) on the basis of procedures to soclve

PB(Y,#) and PB(#,2)7

The problems PB(Y,@) and PB(@,Z) are structurally anti-
¥ptic, and their procedure are likely to form mirror image
'~nithkrespect to each other. If ws “merge" these procedures
‘stﬁp-bystep, would the effect be as if we.pursue these prablems

v;ﬁimultaneously, and hence leading to the solution of PB(Y,Z)?



Let us parform the merger of the procedures for PB(Y,d) and

PB{#,Z) and analyse its validity vis-n-vis PB(Y,Z) problem. We

shnll pursue the same "dividewand-rule" policy of decomposition

to solve PB(Y,P) and PB(W@,Z) as in case of PA(X).

Examining the defimition P3(Y,Z) problem closely, we obscrve

that PB(Y,d : ye«!) stands trivially solved requiring nao further

weighing, since the definition asserts that Y is the defective

coin and is lighter, and similar is the case of PB(H,Z : #=1).

Procedures to

along the lines of procedure PA(X}.

solve PB(Y,d)} and PB(@,Z) can be developad

Situation is again recursive

with above trivial problems terminating the recursion.

h

We shall juxtapose the procedures for PB(¥,d) and PB(Z,Z)
. _

s0 that we can mergz them step-by-step.

procedure PB(Y,d)
if y =1

then "agsert Y is defective
and lightex"

else
partiticn Y into YD,Y1,Y2
if Wiy ) = w(y,)
then aolve PB(Y,d)
else
if W(Y1)<W(Y2)
then solve PB(Y,,#)
glge solve PB(YZ.G)
endif '
endif
endif

endprocedure - PB(Y ,H)

procedurs PB(#@,Z2)}
if z = 1

then "assert 2 is defective
and\tggyﬁar“

else
partition Z into 20,21,22
if N(Z1) = W(Zz)
then solve PB(H,ZU)
alse
if W(z,) Lw(z,)
then solve PB(G,Zz)
else solva PB(G.Z1)
gndif
endif
endif
endprocedurs - PB{#,Z)
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Let us blindly msrge these procedures step-by-step and
within a step, term-by-term replacing reference to individual
subsets by their union. We shall use

case

endcase

structure instead of complex nested ifi-then-else-endif to take

care of multiple choice situstion.

The perged procedures would look like,

procedure PB(Y,Z)
case
y=1 and z=0 : "assert Y is defective and lighter”

"agsert Z is dafectives and heavier"

(X3

y=@ and z=1

ctherwise: .

-

partition into YD,Y1,Y2 .
partition £ into ZD,Z1,Zé and :n;?ineYtzzm ts So;m
g o' ‘171t 2 2
if wWiY,u Z,) = Ww(Y,u 2,)
then solve PB(YD,ZD)
else
if Wiy ,u z) <Wly,U Z5)
then solve PB(Y, ,Z))
slse solve PB(Y,,2,)

endif
gndif
gndcase
sndprocedure - PB(Y,Z)
he in previous problems, the optimality in PB(Y,Z) problem

would be determined by the partitioning of Y and Z into YO,Y1,Y2'

and 20,21,22 respectively. In other words, if FB(Y,Z} is



optimally solvable within J* weighing, then the partitioning

must ensure that PB(YD,ZU), PB(Y,,Z2,) and PB(Y2,21) do not

require more than J*.1 weighings.

Having blindly merged the two procedures PB(Y,d) and

PB{#,Z) to derive the procedure PB(Y,Z}, let us analyse its

validity by interpreting each step as follows:

1)

2)

3)

The twa assertions, namely, "assert Y is defective and
lighter" for PB(Y,7: y=1}, and "assert Z is defective and
heavier" for PB(¥,Z : z=1) are by definition cbvious.

if W(Y1U 21) = W(YZU ZZ) then obviously we have failed to
U Z1U Y2U Z

trap the defective coin in Y and it has

1 _ 2’
escaped in YDU ZD' specifically in YD 4if lighter and in

Z0 if heavier, requiring us to pursus it through PB(YU,ZU).

The condition W(Y1U Z1L('W(Y2U 22)'tuu1d have developed
due to a lighter coin in Y1UVZ1 or a heavier coin in Y2U Z,.

Since Z1 cannot inherit & defgctive lighter coin from z,

aa.alsa YZ cannot inherit a defective heavier coin from Y,
the condition N(Y1U 21)<LW(Y2U 22) could have developed

only due to a lighter coin in Y, or a heavier coin in Zyy

snd we must pursue the defective coin through PB(Y1,22).

Similar asrgument will require us to pursus PB(Y2,21)\fﬁ/ -

case the condition W(YTU 21)>¢NY2U 22) holds.

The Optimality/Feasibility Considerations

The decamposition during the solution of P(S), PA{X} and

FBLY,2) has to be guided by the following considerations:

Numbsr of subproblems into which a given problem may be
decomposed,

Number of coins associatéd. with each subproblem,
Composition of coins corresponding to two categories

in PB(Y,Z) problem, and
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.4) number of good coins available for gqualising the
coins in two pans at any stage.
The decomposition of a problem is clearly limited to threc
subproblems, since it is guided by the fact that the subproblem
to be pursued next is to be unigquely indicated by the weighing

outcomes are possible with a pan-balancs.

The decomposition of a problem results into subproblems
that are reduced in size, and may ba of different type, e.g. P{8)
is docomposed into PA(SR); ?B(S1,52) and PB(52351) where 50,51,52a
partitions of SJhe decompositiaon must.ensure that if the present
prablem is solvable within P weighing stepsys than each of the
subproblems must be solvable within P-1 steps. The number of
coins associated with a problem would clearly be a major factorx
determining number of weighing steps requiﬁed-to solve it,
Bspeéially in the ctase of single parameter problems such as
P(S) and PA(X). 1In the cass of PB{Y,Z), being two parameter
problem, the number of weighing steps may seem to be influanceg
ﬁy not only the size of the prﬁblem (y+z), but also by tha. "

composition, (Y,Z). We shall show that the number of steps

are independent of the composition in a PB(Y,Z) problem.

We shall investigate the optimality aspects of problems
4w.the order of PB(Y,Z), PA(X) and P(S) for obvious reasons
" that analysis of former problems is required in the analysis

of the latter problems.
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Let

b : the maximum size of the PB(Y,Z) problem that
can be solved in k steps

a : tha maximum size of the PA(X) problem that can
be solved in k steps

c : the maximum size of thes P(S} problem that can
be solved in k steps.

PB*k(Y,Z): the saturasted PB problem, being the largest
sized problem that can be solved in k steps,
e.g. PB{Y,Z: y+z = b )

PA":(X): the saturatad PA problem, a.g. PA(X: x = ak)

P;(S) :+ +the saturated P problem, e.g. P(S: s = ck)

Tha PB;(Y,Z) problem

By definition of PB(Y,Z) it is obvious that b0= 1, since

PB(Y,Z: y+z = 1) is trivially solved without requiring any
) A ]

waighings.

A PB(Y,Z) problem can be solved within one weighing if
Bnd only if all the three resulting subproblems can be trivially

solved. In other words, PB?(Y,Z) can be seen as the aggregation

x -
A -

of thrae PBE problems, namely,
PBE(YU’Z )

PB(YD,ZU: Yot Zg = 1)

58 Yyt Z; = 1)
1)

PBR(L,02,) = PBUY,0Z.: vyt 2,

0

PB(Y1,Z

]

Thus,

Uy

PB?(Y,Z) PB(YGU Y, 20 ZDU Z,u 22: Yty tY, +.zo+z1+22=3)

= PB(Y,Z t y+ZI = 3)

giving us
b

i
w

1
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We observe that the saturation af a FB(Y,Z) problem
requiring one weighing is independent of its composition, and
is determined only by the total number af coins associated with

the problem. Thus,

pE?(Y,Z} = PB{Y,Z: y=3 & z=0 OR y=2 & z={ OR y=1 & z=2 DR y=0&z=3)

since decompasition of any of the combination would result in three

trivial (saturated) subproblems, each of which is either

PB{Y,Z: y=1 & z=0) ot PB{Y,Z: y=0 &z=1}.

In gensral PB;(Y,Z) can be seen as aggregation of, following

saturatédnasuvhproblemsg,

PB;-1(YD’ZD} PB(YG,ZU: y0+ Z_ = b )

1] k-1

PB{Y1,22: y1+ :2 =,bk-1}

and FB;_1(Y2,Z1) = PB(YZ,Zig Yo * 2y = bk-1)

]

F
Pkt Yqr2))

leading to

PBt(Y'Z’ =PB(Y,Z : y+2=3b

k=1
giving
bk = 3 bk-T
which together with bo = 1
gives
k
-hk = 3

It is fairly simple to prove that{fﬂ(Y,%} Bp'1< y+z & BPi}
can be optimally selved in p weighing steps. In other words,
optimal valua of maximum number of steps réquirea to solve a
PB(Y,Z) problem is given by

P = rlug3 (y+z)] where r;T is smallest integer greater
than or squal to x



The PAt(X) problem

By definition of PA(X), it is obvious that aD =@, since

PA(X: x=ff) is trivially solvabls without requiring any weighing.
A PA(X) praslem can be solved within one weighing if and
only if all the three resulting subproblems can be trivial ly
solved, and PA?(X) tan be seen as aggregation of following
ptoblems, namely,
" - . =
PAU(XD) = PA(XU. Xg = #)

and one of the following:

PBE(X1,X2)-

FB(X1 .Xz:

X+ X
2

#*
PBA(X,,X,) = PB(X,,X

1
leading to
PA:(X) = PA(X: x=1)

and a = 1
1

In general, for PAZ(X),

* - . =
PAk_1(XD) = PA(Xn. xG ak‘1)

and one ef the fol lowing:
* = . =
PBk-1(X1’x2) = PB(xj,Xz. Xy + % b )

X +X, = b )

PB‘l:_1(x2,x1) = Pa(xz,x1: S+, K

leading to
» - . —
PAk(X) = PA(X; x = a4t bk-1)
and ak = ak_1+ bk-!
solution‘of which results in
kwt
ak=a0 + E bi
ke . 1=D1 ’ |
= 3 =-—2-—(3 -1)
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As in case of PB* preblem, it is simple to prove that
-1 "- >
fProo 1 P £ g (3P0}
' 2 2
can be optimelly solved in'p weighing steps. 1In nther words,
optimal value of maximum:number aof steps required to selve a
PA(X) problem is given by 'p = Tlng3f(2x + 1) 7

The P;(S).prpblem

As in case of PB* and PA%* problems, the Pz(S) can be

visualised as aggregation of,

* = ‘ H =
PAk-1(SU) PA(SD. 8, ak_1)

and one of the following:
* = . =
PBY 1(54,5,) = PB(S,,5,: s+ s, =b, )
PB(52,51: 8,* 8y = bk-i) -
k-1

However, since s+ 8, = bk y = 3T being odd numbef, it is not

possible to ensure s, = g_. as required in the first weighing.
_ 1 2 g g

PBE_1(52.51)

Therefore, the largest PB problem that can be feasibly handled
during first weighing will have to have at lsast ons coin less
than the corresponding saturated PE* problem. Thys, P;(S) would *-
be the aggregation of
PA* = A H =
k-1(50) P (SU 5 ak-1)

and one of the following:

PB(51,52) = PB(51,52: s+ 8, = bk_1 -1)

[}

PB(S,,5,) PB(52,51: 8, *8, = b, -1)
leading to

* = . - -
Pk(S) = P(S: s = a + bk-1 1)



solution of which results in

Ck.: =

1]

As in case of previous problems, it is a simple matter t{e
prove that

{P(s)- = (371 3 s 4-— (3F -3)}
can be optimally solved in p weighing sfeps. Hence optimal
value of maximum number of steps required to solve a P{s)

pProblem is given by p = r-log3 (28 + 3) 7

The observation that the saturation of PB(Y,Z) problem is
indepsndent of the composition, gives us frgedom to choose the
composition without affecting the optimality. ;Th;s has impli-
cations to the feasibility considerations, where any insqualit&
between y and z must be equalised using good coins. It can be
easily shown that there can never be shortage of good coins after.
the first weighing to solve the P(5) problem optlmally, since éﬂj
the worst case s/3 good coinds are generated during the first
weighing, and further decompositions can be optimally carrisd
out even with one good coin. Though out of large number of
possible optimum sulutions, some may turnout to ba infeasible
dus to paucity of goad coins'at the initial stages, the number

of optimum feasible solutions will still be combinatorially

very large.
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We now express the complete algorithm to optimally solve
the P(S) problem. In the algorithm we shall kmep track of the
good coins so that the algorithm is capable of generating all
possible optimal solutions.

Let

65 : set of good coins
Qf ! number of steps rezquired to solve the problem.
Initialize G&=—g
procedure P(5)
find p such that ';' (3p-1 -3)<¢ s$; (3P =3)
partition S into 50,51,52 such that

1 qp=1
sp g 2pl? 1)

p=-1
s1+ szs 3

8y = 5

BT

if w(51) w(sz)

then
G é-'51 u 52
solva PA(SD)

else
G €~ 5,
if w(s1)<W(s;)

then
solve PB(51,52ﬁ

else
solve PB(52551)

endif
endif

endprocedure - P(S)
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procadure PA(X)

if x = o

then .
"assert that there is no defective coin"

else

find p such that 1 (3P

-1)<:><<u- -1)
partition X into 3XD,X1,K2 such that
(371 1

p-1

D\ 2

X * X, ,$ 3

]x1 - le &9

1?49;1(+ 1
if W(X =
if w( 1) W(XZ)
then
GG U X1 ¥ XZ
solve PA(XD)
else
Ge—G U X
3]
if W(X1) £ W(XZ)

then
saolve PB(X1,X2)

clse
solve PB(XZ’xi)

endif
endif
endif
endprocedure = PA(X)

proceddre PB(Y,Z)
case

y =1 and 2=0 : "assert that Y is de fective and lighter"

y <0 and z =1 : "assert that Z is defective and heaviep"
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otherwise;

. -1
find ch that 3P P
p su at <y + 25; 3
"partition'Y and Z into YD'Y11 2 and 20,21,22 such that
b p—1 L)
¥, + ZD‘$3

p-‘
y1+22$3

-1
Yy * z1€$3p

Vit E -y, -2, 49
T e—T+1
if W(Y1U 21) = w(qu 22)

then
G €—G U Y1 u Z1 u Y2 u 2

solve PB(YD,ZD)

2

else

GG U Y, U ZD

0

if Wy,U 21) <W(Y2 yz))

2

then
solve PB(Y1,22)

else
solve PB(Y2,21)

endif
endif
endcase.

endprocedure - PB(Y,Z)
input "the set of coéns", S
solve P(5)

print "number of steps", ¥

end,
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Some Ralated Problems

W2 have tackled P(S) and other related problems with the
objective of minimising the maximum number of weighing steps
required to detect the defective coin, if any, in a set of coins.
Clearly, for saturated problems this will also be equal to the
minimum number of weighing steps, since each of the subproblems
also is saturated, if we are not prepared to deteriorate maximum
number of steps. However, for unsaturated prablems, at lsast one
ef the subproblemswwili be eithr unsaturated or saturasted at a
lower level requiring lsss than {p=-1) weigﬁings for a parent
problem requiring p weighings. In such cases, the algorithm
may terminate at less number of weighing steps than that is
indicated by the upp-er bound of a coxresponding sat;;at?d problem
depending upon whether we have been able to trap the Hef;ctiVe
cnin in the smaller subproblem. Theréfore, in general, associated
with any solution strategy, the number of weighing steps would
follow a probability distribution, laadiﬁg to interesting issuss
like,

i) behaviour of expected number of waighing steps with
( respect to number of coins, in our solution strategy,
and ii) a solution strategy seeking to minimise the expected
number of weighing steps.

Another interesting situation would be, to have more than
rne defective coins in the given set of coins. The general
situation is likely to be combinatorially uninteresting or

degensrating into gsneral sorting kind of gituation. However,

the problems like, at the most two defective coins with
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identical and known nature of defect may still be amenable

to interesting algorithmic analysis.

Finally, there may bes some interesting ramifications af
our observation that merging of two antithetic procedures

PB(Y,@) and PB(@,2) leads to a valid procedure for PB(Y,Z),

giving the effect of simultansous tackling af PB(Y ,d) and

PB(@,2) for selving PB(Y,Z).
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