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Abstract

The corridor allocation problem is one of assigning a given set of facilities in two rows
along a straight corridor so as to minimize a weighted sum of the distances between every
pair of facilities. This problem has practical applications in arrangements of rooms in offices
and in hospitals. The problem is NP-hard. In this paper, we present two population based
metaheuristic implementations for the problem; a genetic algorithm with local search embedded
in it, and a scatter search algorithm with path relinking. We report the results of our experiments
with these algorithms on benchmark instances with up to 49 facilities.
Keywords: Facility planning and design, corridor allocation, double row layout, genetic algo-
rithm, scatter search, path relinking.

1 Introduction

Consider a set F = {f1, f2, . . . , fn} of n ≥ 2 facilities, where the length of facility fj is lj . Also
consider a non-negative weight cij for each pair {fi, fj} of facilities in F , which represents the
communication cost between the pair. The corridor allocation problem (CAP; see Amaral 2012) seeks
to arrange the facilities in F in two horizontal rows so as to minimize the total cost of communication
among the facilities. The arrangement must follow two rules; (i) there can be no gap between two
consecutive facilities in any row; and (ii) the left edges of the left most facilities in each of the two
rows has to be at a horizontal distance of 0 from the origin. Thus, in Figure 1, (A) represents a
solution to the CAP, while (B) and (C) do not, since (B) violates condition (i) and (C) violates
condition (ii). The cost of an arrangement of facilities is the weighted sum of the distances between
the centroids of every pair of facilities. Thus if in an arrangement S of facilities, the horizontal
coordinate of the centroid of facility fi is denoted as xS

i , then the cost z(S) of the arrangement S is

z(S) =
∑

fi,fj∈F

cij |xS
i − xS

j |. (1)

This NP-hard problem finds applications in areas such as room arrangements in office buildings and
in hospitals (Amaral 2012).

Formally an instance of CAP is represented using the ordered set (F,L,C) where F is the set of
facilities, L = (lj) is a vector of facility lengths, and C = [cij ] is a symmetric matrix of weights. In
this paper, we assume that each row in C matrix has at least one non-zero element. The assumption
is not restrictive; if the i-th row has no non-zero element, then an optimal solution to the CAP
(F,L,C) can be obtained by finding an optimal solution to the CAP obtained by removing facility
fi from F , and finally adding fi to the extreme right in any of the two rows.

The CAP is part of a group of associated facility layout problems. Other members of this group
are the single row facility layout problem (SRFLP) in which the objective is to arrange facilities in
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(A)

(B)

(C)

Figure 1: Feasible and infeasible solutions to the CAP

one row rather than two rows as in CAP, with a similar objective; and the double row facility layout
problem (DRFLP) which is very similar to the CAP except that conditions (i) and (ii) above are not
imposed on the layout. Thus all three layouts (A), (B), and (C) are feasible layouts in a DRFLP,
although not for the CAP.

The CAP has recently been introduced in the literature, and we are aware of only one paper
(Amaral 2012) dealing with the problem. The paper introduces the CAP, and provides a mixed
integer programming formulation for it. It also presents two neighborhood search based heuristics
Heuristic 1 and Heuristic 2 to arrive at solutions to CAP instances which are too large to be solved
by exact approaches. Amaral (2012) uses problem instances commonly used as benchmark instances
for the SRFLP to perform computational experiments. Using cplex 12.1.0 the integer programming
formulation solves all benchmark instances with up to 13 facilities to optimality. The paper also
reports heuristic solutions to benchmark instances with 30 facilities. The related SRFLP has been
widely studied in the literature (see Kothari and Ghosh 2012a, for a detailed review of the SRFLP
literature). At present, the studies of Amaral and Letchford (2012) and Hungerländer and Rendl
(2011) provide the best results among exact algorithms for the SRFLP, and the genetic algorithm of
Ozcelik (2011) and scatter search algorithms of Kothari and Ghosh (2012b) provide the best results
among heuristic approaches. The DRFLP was introduced in Chung and Tanchoco (2010). The
paper presents a mixed integer programming formulation for the problem, which was subsequently
corrected in Zhang and Murray (2012). Chung and Tanchoco (2010) solved their mixed integer
program using cplex 10.2, and also developed five heuristic approaches to solve the DRFLP. Amaral
(2011) proposed an alternate mixed integer program, and demonstrated that it was superior to the
formulation in Chung and Tanchoco (2010).

Since the CAP is NP-hard, and since Amaral (2012) reports that cplex 12.1.0 could not obtain
an optimal solution for a CAP instance with 15 facilities even after 8.6 hrs of execution time,
it is useful to consider heuristics to solve medium to large size CAP instances. We propose two
metaheuristics to solve the CAP. The performance of various metaheuristics for the related SRFLP
shows that population based metaheuristics and hybrid metaheuristics perform better than other
metaheuristics (see, e.g. Ozcelik 2011, Kothari and Ghosh 2012b). So we develop a hybrid genetic
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algorithm and a scatter search algorithm with path-relinking for the CAP in this paper. In the
next section we describe these two algorithms for the CAP. In Section 3 we present results of our
computational experiments on benchmark instances. We then conclude the paper in Section 4 with
a summary of our work and future research directions.

2 Our algorithms for the CAP

In this section we describe two population based metaheuristics for the CAP. The first is a genetic
algorithm which uses basic operators of selection, crossover, and mutation, and has a local search
component built into it. The second algorithm that we describe here is a scatter search algorithm.
In each iteration of scatter search, the solutions in the reference set are subjected to a path-relinking
operation in order to improve their quality. Thus both the algorithms that we describe here are
hybrid algorithms. In the remainder of the section, we first describe our solution representation,
and then provide a detailed description of the algorithms.

Solution representation

Both algorithms require us to represent solutions of the CAP in a manner in which the algorithms
can manipulate. We describe each solution as a permutation of the n elements in F . A representation
S = (f1, f2, f3, . . . , fn−1, fn) represents a solution in which one of the rows has facilities f1, f2, . . . , fk
in that order from left to right, and the other row has facilities fn, f(n−1), . . . , f(k+1) in that order
from left to right. This solution is shown pictorially in Figure 2. One apparent shortcoming of this

Figure 2: The solution represented by (f1, f2, f3, . . . , fn−1, fn)

representation is that each permutation actually represents (n+ 1) solutions to the CAP, depending
on the value of k. However, all but one of the solutions can never be an optimal solution to the
CAP. Consider for example, all solutions in which one row contains facilities f1, f2, . . . , f(k−1), fk
in that order from left to right, and the other row contain facilities fn, f(n−1), . . . , f(k+1) in that

order from left to right. If
∑k−1

i=1 li >
∑n

i=k+1 li, this solution is inferior to the solution formed by
shifting the facility fk from its current position to the position to the right of facility f(k+1). Using a

similar argument, all solutions of the same form, in which
∑k

i=1 li <
∑n

i=k+2 li are sub-optimal. This
leaves exactly one solution from each permutation which is definitely a candidate optimal solution.
This solution is constructed from the permutation by the OBTAIN-CAP-SOLUTION algorithm as
follows. Initially, the first facility in the permutation is assigned to one row (called the top row) and
the the last facility is assigned to the other (called the bottom row). The solution is then constructed
in n − 2 steps. At the beginning of an iteration, if the sum of lengths of the facilities in the top
row is larger than the sum of the lengths of the facilities in the bottom row, the last unassigned
facility in the permutation is added at the end of the bottom row; otherwise the first unassigned
facility in the permutation is added to the end of the top row. We provide a pseudocode for the
OBTAIN-CAP-SOLUTION algorithm below. In the pseudocode, f[j] denotes the facility in the j-th
position in the permutation. T is an ordered list of facilities in the top row, B is an ordered list of
facilities in the bottom row, and LT and LB denote the sums of the lengths of the facilities in the
top row and bottom row respectively. The operation of adding a facility f to the end of row R is
denoted by R⊕ {f} in the pseudocode.
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ALGORITHM OBTAIN-CAP-SOLUTION

Input: A CAP instance (F,L,C); a permutation of the facilities in F .

Output: A solution to the CAP corresponding to the input permutation.

Steps:

1. begin
2. set T ← (f[1]); B ← (f[n]); LT ← l[1]; LB ← l[n]; uT ← 2; uB ← n− 1;
3. for (iter from 1 to n− 2) do begin
4. if (LT > LB) then
5. B ⊕ {f[uB ]}; LB ← LB + l[uB ]; uB ← uB − 1;
6. else
7. T ⊕ {f[uT ]}; LT ← LT + l[uT ]; uT ← uT + 1;
8. end;
9. end.

Given this solution representation, we are now in a position to describe the genetic algorithm
and the scatter search algorithm that we propose in this work.

CAP-GA: A genetic algorithm incorporating local search

A genetic algorithm (see, e.g., Goldberg (1989)) is an evolutionary search algorithm which simulates
natural evolution based on the principle of the survival of the fittest. Solutions to the problem are
coded as individuals, and a population of individuals is iteratively improved using genetic operators
such as selection, crossover, and mutation, to create individuals of high fitness. At the end of the
genetic algorithm run, the fittest individual observed during the run is output by the algorithm.

We present a genetic algorithm called CAP-GA to solve the CAP. In our algorithm, individuals
are permutations of the facilities in the CAP instance. The solution corresponding to each individual
is obtained using the OBTAIN-CAP-SOLUTION presented above. Since the CAP is a minimization
problem, lower cost solutions have higher fitness values. The fitness of an individual is taken as the
reciprocal of the cost of the solution corresponding to that individual.

CAP-GA is a generic genetic algorithm with the exception that periodically, all the individuals
in the generation are subjected to local search to improve their fitnesses. The pseudocode of the
algorithm is provided below, and details of several of the steps are explained thereafter.

ALGORITHM CAP-GA

Input: A CAP instance (F,L,C); population size N ; maximum number of generations maxgen;
period k.

Output: An approximation of an optimal solution to the CAP instance.

Steps:

1. begin

2. create the initial population init pop of N individuals by generating N permutations
of facilities in F ;

3. set the current population pop ← init pop;
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4. for (iter from 1 to maxgen) begin

5. create a mating pool of N individuals from pop;

6. perform crossover to generate a child pool of N individuals;

7. perform mutation on select individuals in the child pool;

8. merge the mating pool and child pool, and select N individuals with lowest cost
from the merged pool to replace all the individuals in pop;

9. if (iter is divisible by k) then improve all the individuals in pop using a local
improvement operation;

10. end;

11. output the solution corresponding to the fittest individual encountered in the process
and terminate.

12. end.

Step 1 of the algorithm CAP-GA creates an initial population of N randomly generated individ-
uals. This generation is assigned to the current population, which is improved by the code in Steps
5 through 9 until a stopping condition is reached.

Given a generation of solutions, the first step in creating the next generation is to create a mating
pool for reproduction in a genetic algorithm. This is done in Step 5 of the algorithm. In CAP-GA,
the mating pool is created using a binary tournament selection (see, e.g. Deb 2001) in which the
fitter of the two randomly selected individuals from the population enters the mating pool. This may
allow multiple copies of the same solution in the mating pool. The solutions in the mating pool thus
generated are subsequently subjected to crossover and mutation operations in Steps 6 and 7 to create
candidate solutions for the next generation. We use the partially matched crossover (PMX) operator
(Larrañaga et al. 1999) in Step 6 to cross individuals with a user-defined crossover probability pc to
create a child pool. After generating the child pool, each child is subjected to a mutation operator
in Step 7 of CAP-GA. With a user-defined mutation probability pm, a subset of facilities in the
solution are selected and they are then randomly rearranged at those selected locations to yield
a new solution. This mutation is known in the literature as scramble mutation (Larrañaga et al.
1999). Step 8 of CAP-GA is an elite preservation operation, which ensures that individuals with
high fitness in the previous generation are carried over to the next generation, and individuals
with low fitness obtained after crossover and mutation are eliminated. This ensures that the average
fitness of individuals in populations does not degrade over generations. Step 9 is a local improvement
operation that is carried out on every individual of every k-th generation. This is done to improve the
fitnesses of individuals in every population. We use an insertion neighborhood for local improvement
in this step since experience in the literature suggests that the insertion neighborhood is the best
neighborhood structure for the related SRFLP (Kothari and Ghosh 2012c). The stopping condition
that we use in CAP-GA is a maximum number of iterations, so that the algorithm terminates after
generating maxgen generations.

CAP-SS: A scatter search algorithm with path relinking

Scatter search is an evolutionary technique which orients its exploration relative to a set of per-
mutations, called the reference set. The reference set typically consists of good solutions obtained
by other methods. The criterion of “good” may refer not only to the cost of the permutation, but
also to certain other properties that the solution or a set of solutions may possess. Most scatter
search algorithms for combinatorial optimization problems use the scatter search template by Glover
(1998) as a reference for building the algorithm. Our CAP-SS algorithm uses the same template. It
also applies path relinking (Glover 1977) to each reference set generated by the algorithm to explore
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those regions of the search space which have not been explored by scatter search. We provide a
pseudocode of CAP-SS below, and explain the important components of the algorithm thereafter.

ALGORITHM CAP-SS

Input: A CAP instance (F,L,C); initial population size P Size; reference set size B Size.

Output: The best permutation which has the lowest cost among all the permutations encountered
in the algorithm.

Steps:

1. begin

2. generate an initial population with P Size permutations using a diversification
generation method;

3. improve each permutation using the local improvement operation;

4. construct the reference set RefSet of size B Size from the initial population;

5. set flag ←TRUE;

6. while (flag = TRUE) do

7. create all subsets of size 2 using the permutations in the RefSet ;

8. for (i from 1 to
(
B Size

2

)
) do begin

9. flag ←TRUE;

10. use the PMX crossover method as a subset combination method to generate a
permutation from the permutations in the i-th subset;

11. use the improvement method to obtain a local optimum Π from the
permutation generated in the previous step;

12. add Π to the reference set;

13. remove the highest cost solution Πr from the reference set;

14. if (cost(Π) < cost(Πr) then set flag ←FALSE;

15. end;

16. improve the quality of solutions in RefSet through path relinking;

17. end while;

18. output the solution corresponding to the lowest cost permutation in RefSet ;

19. end.

Step 2 of CAP-SS generates an initial population of permutations using a diversification gener-
ation method. This determines the quality of permutations in the reference set RefSet and ensures
diversification in the search process. We use the concept of deviation distances (see Sörensen (2007))
to measure the diversification in a set of permutations. We define the distance between two permu-
tations Π1 and Π2 as the minimum of the deviation distance between Π1 and Π2 and the deviation
distance between Π1 and the permutation obtained by reversing Π2. Using this distance measure
and two user-specified numbers U Size and E Size, we generate a diversified set of good permu-
tations which serves as the initial population for our scatter search algorithm. Starting from the
permutation Π = {f1, f2, . . . , fn}, we generate U Size permutations by randomly interchanging fa-
cilities in Π. We then choose E Size lowest cost permutations among them to form a set of elite
permutations. We finally generate the initial population of size P Size by choosing permutations
from the elite set in a way such that the minimum distance between any two permutations in the
population is as high as possible.
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In Step 3, and later in Step 11, CAP-SS improves solutions using local improvement. As in
the case of CAP-GA, the local improvement method is simply a local search using the insertion
neighborhood structure.

In Step 4, CAP-SS creates a reference set RefSet from the population generated in Step 2.
RefSet contains B Size permutations including the best and the most diverse among the solutions
in the initial population. To do this it accepts two user specified parameters B1 and B2 such that
B1+B2 = B Size. The improved permutations in the initial population are sorted in non-decreasing
order of their costs and the first B1 and last B2 permutations in the sorted list are selected to be
the members of RefSet.

In Step 7, the subset generation method generates subsets of RefSet of cardinality 2. Given a
subset of the RefSet, a new solution is constructed in Step 10 using the PMX crossover operation
as the solution combination method. The permutation thus obtained is improved using local search
in Step 11. In Steps 12 and 13, CAP-SS updates RefSet. To do this it adds the new permutation
in RefSet and removes a worst permutation from RefSet. It then checks in Step 14 whether the
updating of RefSet improves the average cost of permutations in RefSet. Once CAP-SS processes all
the

(
B Size

2

)
subsets of RefSet in this manner, it subjects the permutations in RefSet to path relinking

in Step 16. It also checks whether there was any improvement in the average cost of permutations
in RefSet due to the processing. If so, then the RefSet is updated and path relinking operation is
repeated. Otherwise, CAP-SS outputs the solution corresponding to the best permutation in the
latest RefSet.

Path relinking is a path construction technique which aims to generate additional solutions
which may not have been considered by the algorithm that generated the initial pool of solutions.
It typically chooses two solutions, marks one as the initiating solution and the other as the guiding
solution, and generates a path from the initiating solution to the guiding solution through a set of
moves. A move in the path starts with a solution and generates another solution in which some
attribute of the initiating solution is replaced with some attribute of the guiding solution. The idea
is to introduce attributes of the guiding solution in each move to finally reach the guiding solution
from the initiating solution or to extend beyond it. For path relinking in CAP-SS, the initial pool
of solutions is RefSet. The permutations in RefSet are sorted in non-decreasing order of their costs.
Every solution in the first half of the sorted list is used once as an initiating solution. For every
initiating solution, the guiding solution is that solution in the second half of the list which has the
maximum deviation distance (see Sörensen (2007)) from the initiating solution. A path between the
initiating solution and the guiding solution is obtained by executing moves that are necessary to
transform the initiating solution into guiding solution. For example, if in an intermediate solution
in the path, a facility fi is in the i-th position in the permutation, and in the guiding solution fi is
in the j-th position in the permutation, then a move will interchange fi with the facility in the j-th
position in the initiating permutation to obtain an intermediate solution.

In the next section, we report the results of our computational experiments with CAP-GA and
CAP-SS on benchmark instances.

3 Computational experience

Several parameter values need to be specified in the pseudocodes presented in the previous section
to yield implementations. In our CAP-GA implementation, we set the population size N to 60. The
crossover probability pc was chosen at random from the set {0.65, 0.75, 0.85, 0.95} and the probability
of mutation pm was chosen randomly from the interval (0.00, 0.05]. The parameter k was set to 5 and
the maximum number of generations maxgen to 500. We report the best results obtained after 200
runs of CAP-GA on each problem instance. For CAP-SS the size of the initial population, P Size,
was set to 100 and the size of RefSet B Size to 50. In order to generate the initial population, the
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values of the parameters U Size and E Size were taken as 1000 and 500 respectively. In order to
generate the RefSet, the values of parameters B1 and B2 were taken as 25 each.

We coded CAP-GA and CAP-SS in C, and compiled them using the gcc 4.5.1 compiler. We then
ran these codes on a machine with an Intel Core i5 2400 processor at 3.1 GHz running Window 7.
The performances of CAP-GA and CAP-SS are measured on two factors, the cost of the solution
they output, and the execution times they require.

We use data from SRFLP benchmark instances to test the performance of CAP-GA and CAP-
SS. This is because, the CAP and the SRFLP require the same data, and hence benchmark SRFLP
instances can be used as benchmarks to test performance of algorithms for the CAP. Amaral (2012)
for example, uses data from SRFLP benchmark instances to test the performance of algorithms in
his paper. There are many sets of benchmark instances for the SRFLP, and in this paper, we test
our algorithms on SRFLP benchmark instances with less than 50 facilities. In the remainder of this
section, we report our computational experience on different sets of benchmark instances.

3.1 Instances solved in Amaral (2012)

Amaral (2012) uses four instances described in Simmons (1969) and generates four other instances
of sizes 12 and 13 to test the performance of the mixed integer formulation proposed therein. The
mixed integer programming approach obtained optimal solutions for all these instances. Our CAP-
GA and CAP-SS implementations also produced optimal solutions to these instances, though being
heuristics, they required much less time than those reported in Amaral (2012). The mixed integer
programming approach in Amaral (2012) failed to obtain an optimal solution to an instance of size
15. Using heuristic approaches, the paper reported an upper bound to the cost of an optimal solution
which was better than that output by cplex 12.1.0 after 8.6 hrs of execution. Amaral (2012) also
experiments with five instances of size 30 reported in Anjos and Vannelli (2008). In Table 1, we
present the costs of the best solutions reported in Amaral (2012), and those obtained CAP-GA and
CAP-SS. We also report the execution times in cpu seconds required for all these instances.

Table 1: Results for instances experiemented with in Amaral (2012)

Amaral (2012) CAP-GA CAP-SS

Instance Source Size cost time cost time cost time

S9 Simmons (1969) 9 1181.5* 18.42 1181.5 17.61 1181.5 0.19

S9H Simmons (1969) 9 2294.5* 1145.94 2294.5 17.54 2294.5 0.24

S10 Simmons (1969) 10 1374.5* 62.75 1374.5 21.96 1374.5 0.27

S11 Simmons (1969) 11 3439.5* 496.22 3439.5 29.21 3439.5 0.53

Am12a Amaral (2012) 12 1529.0* 1869.31 1529.0 40.20 1529.0 0.90

Am12b Amaral (2012) 12 1609.5* 1412.06 1609.5 38.30 1609.5 0.80

Am13a Amaral (2012) 13 2467.5* 10298.01 2467.5 50.30 2467.5 1.50

Am13b Amaral (2012) 13 2870.0* 5144.13 2870.0 53.76 2870.0 1.35

P15 Amaral (2008) 15 3195.0† 2.41 3195.0 77.99 3195.0 2.18

N-30-01 Anjos and Vannelli (2008) 30 4115.0‡ 6070.50 4115.0 1506.69 4115.0 118.68

N-30-02 Anjos and Vannelli (2008) 30 10779.5‡ 7412.60 10779.5 1565.07 10779.5 150.06

N-30-03 Anjos and Vannelli (2008) 30 22702.0‡ 7902.40 22702.0 1611.19 22702.0 163.10

N-30-04 Anjos and Vannelli (2008) 30 28401.5‡ 8270.70 28401.5 1628.00 28401.5 189.20

N-30-05 Anjos and Vannelli (2008) 30 57400.0‡ 8562.30 57400.0 1672.68 57400.0 188.97

* indicates the cost of an optimal solution.
† indicates the cost of the solution obtained using Heuristic 1 with 2-opt.
‡ indicates the cost of the solution obtained using Heuristic 2 with 2-opt.

W.P. No. 2012-09-02 Page No. 9



IIMA • INDIA
Research and Publications

We see from Table 1 that both CAP-GA and CAP-SS match the costs of the best solutions
reported in Amaral (2012) for all the instances. For the Simmons instances and the four Amaral
instances, the time required by the two heuristics is understandably lower than the times required
to solve the mixed integer programming formulations. For these instances, the times required by
CAP-SS is much lower than those required by CAP-GA. They are also lower than the times reported
for Heuristic 2 although not for Heuristic 1. For the problem instance with size n = 15, CAP-SS
required less time than both Heuristic 1 and Heuristic 2, although CAP-GA required more time.
For the instances of size n = 30, the execution times required by both CAP-GA and CAP-SS are
much lower than those reported in Amaral (2012) both for Heuristic 1 and for Heuristic 2. For these
problems, CAP-SS required significantly lower execution times than CAP-GA. Hence for problems
discussed in Amaral (2012), CAP-SS is clearly the superior implementation.

3.2 Other benchmark instances with sizes 25 ≤ n < 50

There are several sets of medium size SRFLP benchmark instances apart from the instances of size
30 experimented with in Amaral (2012). In this section, we report the performance of CAP-GA and
CAP-SS on these instances. The instances that we consider are (a) a set of five instances each of
size 25 reported in Anjos and Vannelli (2008); (b) two sets of three instances each of sizes 33 and
35 reported in Amaral (2008); (c) a set of five ste instances each of size 36 reported in Anjos and
Yen (2009); (d) a set of five instances each of size 40 reported in Hungerländer and Rendl (2011);
and (e) two sets of five sko instances each of sizes 42 and 49 reported in Anjos and Yen (2009). We
report our computational experience with CAP-GA and CAP-SS with these instances in Table 2.

The results in Table 2 bring out interesting properties of the CAP-GA and CAP-SS implemen-
tations. The costs output by both the implementations are identical for the instances with size 25.
Thereafter, CAP-SS outputs better solutions for most of the instances. Of the 26 instances with
sizes n > 25, CAP-SS produces better solutions than CAP-GA in 19 instances and matches the cost
of CAP-GA output in another four instances. It produces worse solutions in the remaining three
instances. The execution times required by CAP-SS is lower than those required by CAP-GA. This
shows that CAP-SS is superior to CAP-GA for medium size CAP instances.

A closer look at the algorithms gives a different insight. The output of CAP-GA is obtained by
running the genetic algorithm 200 times. So the average cost of a genetic algorithm run incorporating
local search for the CAP is 1/200-th the time reported in the tables. The output of CAP-SS is from a
single scatter search run incorporating path relinking. So the CAP-GA algorithm requires less time
per run than the CAP-SS algorithm. We feel that the difference is the execution times for CAP-GA
and CAP-SS applied to the same instance is mainly due to the number of local search operations
carried out by both the implementations. Local search for the CAP is computationally expensive,
with an order of complexity of O(n4) where n denotes the size of the instance. The average number
of local search operations per generation for CAP-GA is O(N) while that for CAP-SS is O(B Size2),
which is much higher. If we compare the ratios of times taken for a single run by the two algorithms,
we see that, on average, the ratio of the time required for one run of CAP-SS to that required by
one run of CAP-GA is 15.7 for instances of size 25 and 40.2 for instances of size 49. The costs of the
solutions output by CAP-SS for these instances are better than those output by CAP-GA, but the
difference in the costs is on average less than 0.2% of the costs of the solutions output, and do not
increase appreciably with an increase in the size of the instance. Thus, we conjecture that CAP-GA
will be preferred over CAP-SS for large instances.

4 Summary

In this paper, we have studied metaheuristics for the corridor allocation problem. The problem is
to arrange a set of facilities in two rows along a straight corridor such that a weighted sum of the
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Table 2: Results for benchmark instances with sizes n ≤ 25 < 50

CAP-GA CAP-SS

Instance Source Size cost time cost time

N-25-01 Anjos and Vannelli (2008) 25 2302.0 618.58 2302.0 41.50
N-25-02 Anjos and Vannelli (2008) 25 18595.5 736.25 18595.5 59.91
N-25-03 Anjos and Vannelli (2008) 25 12114.0 677.39 12114.0 63.42
N-25-04 Anjos and Vannelli (2008) 25 24192.5 742.12 24192.5 56.20
N-25-05 Anjos and Vannelli (2008) 25 7819.0 719.97 7819.0 53.14

P1 Amaral (2008) 33 30282.5 2287.84 30282.5 285.32
P2 Amaral (2008) 33 33974.0 2349.55 33978.0 221.66
P3 Amaral (2008) 33 35065.5 2330.13 35060.5 322.39

P4 Amaral (2008) 35 34671.5 2967.47 34673.5 478.29
P5 Amaral (2008) 35 30803.0 2801.70 30781.0 390.76
P6 Amaral (2008) 35 34425.5 3010.98 34424.5 446.38

ste-36-01 Anjos and Yen (2009) 36 4966.0 3475.61 4966.0 423.74
ste-36-02 Anjos and Yen (2009) 36 88262.0 3237.71 87489.0 721.35
ste-36-03 Anjos and Yen (2009) 36 50696.5 3279.40 50127.5 674.71
ste-36-04 Anjos and Yen (2009) 36 46890.5 3446.11 46824.5 504.18
ste-36-05 Anjos and Yen (2009) 36 44783.5 3407.52 44488.5 593.57

N-40-01 Hungerländer and Rendl (2011) 40 53763.5 5597.52 53722.5 782.26
N-40-02 Hungerländer and Rendl (2011) 40 48916.0 5448.85 48908.0 773.86
N-40-03 Hungerländer and Rendl (2011) 40 39259.5 5330.11 39255.5 760.12
N-40-04 Hungerländer and Rendl (2011) 40 38355.0 5459.45 38354.0 741.42
N-40-05 Hungerländer and Rendl (2011) 40 51523.0 5585.37 51507.0 836.69

sko-42-01 Anjos and Yen (2009) 42 12731.0 7174.64 12731.0 1249.04
sko-42-02 Anjos and Yen (2009) 42 108049.5 6815.77 108020.5 1533.29
sko-42-03 Anjos and Yen (2009) 42 86667.5 6854.25 86667.5 956.28
sko-42-04 Anjos and Yen (2009) 42 68769.0 6509.35 68733.0 1141.34
sko-42-05 Anjos and Yen (2009) 42 124099.5 7052.59 124058.5 1236.47

sko-49-01 Anjos and Yen (2009) 49 20472.0 14934.38 20479.0 2683.93
sko-49-02 Anjos and Yen (2009) 49 208270.0 14338.86 208081.0 2733.87
sko-49-03 Anjos and Yen (2009) 49 162267.0 14351.91 162196.0 2877.19
sko-49-04 Anjos and Yen (2009) 49 118311.5 14290.03 118264.5 3716.16
sko-49-05 Anjos and Yen (2009) 49 332990.0 14913.18 332855.0 2596.39

distance between each pair of facilities is minimized. We have presented two hybrid metaheuristics,
a genetic algorithm with local search, and a scatter search algorithm with path relinking to solve
the problem.

We have performed computational experiments with both algorithms on several sets of benchmark
instances, including all the instances that were used in Amaral (2012). Our experience suggests that
for small and medium size instances (with less than 50 facilities), scatter search with path relinking
is the heuristic of choice. We conjecture that for larger instances genetic algorithms with local search
may prove to be more computationally tractable.

There are several directions in which the literature on corridor allocation problems can be ex-
tended. First, the conjecture that we have made in the previous paragraph can be tested. Second,
metaheuristics based on variable neighborhood search can be looked into. Recently, a book-keeping
technique described in Kothari and Ghosh (2012c) for the related single row facility layout problem
has helped to reduce the order of complexity of performing neighborhood search from O(n4) to
O(n3) for 2-opt and insertion neighborhoods. Such a technique would prove useful in implementing
neighborhood search for the corridor allocation problem.
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