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Abstract: Vehicle rental providers offer differentiated services to reserve and walk-in customers. In
this research, we study one such service differentiation strategy, a vehicle threshold policy, which is
to hold vehicles for reserve class customers in anticipation of their future arrivals. To consider the
impact that vehicle threshold policies have on reserve and walk-in customer waiting times, we model
a rental depot as a multi-class non-work-conserving semi-open queue with stochastic inputs. For
exponential and deterministic service time distributions, we identify the optimal threshold quantity
for stationary customer arrivals using closed-form expressions for the expected waiting times of both
customer classes. For non-stationary customer arrivals, we develop different threshold policies and
analyze their performance using a detailed simulation model. Through numerical testing, we provide
insights into recommended threshold policies that can be applied to improve the profitability of a
rental provider.

Keywords: Transportation; Vehicle rental system; Customer service differentiation; Semi-open
non-work conserving queue; Priority threshold queuing systems.

1. Introduction

Vehicle rental providers operate a fleet of vehicles that are rented to customers who are temporary

in need of a vehicle for a fee. Vehicle rental markets are growing worldwide, with the United States’

market witnessing an 8.8% increase in revenue growth in 2011 from $20.6B in 2010 [2]. Notable

large rental providers include Enterprise, Hertz, and Avis with a fleet size of 920,861, 320,000, and

285,000 vehicles, respectively.

Rental providers serve a wide range of customer needs and rental periods (generally ranging

from a few hours to a few weeks). Customers rent vehicles for business travel, for leisure travel,

for a replacement vehicle due to accidents or vehicle maintenance, and for use as a primary vehicle.

Customers, who plan their travel in advance, reserve vehicles whereas customers with last-minute
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travel requirements may walk-in at a depot to rent a vehicle without a reservation. Therefore,

customers can be broadly classified into two classes: reserve and walk-in.

Reserve customers place a vehicle reservation either directly with a rental provider or through a

third-party travel site. Reservations provide a benefit to customers by increasing the chance that a

vehicle will be available when the customer arrives and to vehicle providers through increased sales

and for planning purposes. However, reservations require holding idle vehicles, which can reduce

fleet utilizations especially when customers’ arrival times vary from the information provided in their

reservation (either by not arriving to pick up their vehicle or by arriving late).

Walk-in customers arrive to the rental depot without a prior reservation to request a rental

vehicle. Walk-in customers may not get a vehicle immediately on arrival and may wait longer

for a vehicle. Walk-in customers are common at local market depots where repair or insurance

replacements make up a significant portion of sales. Rental providers need to serve both types

of customers to sustain growth and improve fleet utilization [6]. Walk-in customers represent an

important revenue stream; consequently, the walk-in customer experience must also be managed

effectively.

Both types of customers are served by the same fixed fleet of vehicles. This fixed fleet is a

major expense for rental providers as the vehicles’ values quickly depreciate with time. Hence,

a key to profitability is to maintain high vehicle utilization, which can be achieved by sustained

sales. Sustainable sales are achieved by providing high quality customer service. In the rental

vehicle industry, overall customer satisfaction is determined by both responsiveness and customer

differentiation. Responsiveness is often measured by a customer’s length of stay at a depot [6, 23].

Customer length of stay is composed of waiting times due to vehicle unavailabilities, waiting time to

see a sales representative, and service times. We focus on waiting times due to vehicle unavailabilities.

A discount is typically offered to customers who have to wait for a vehicle to become available. We

account for this loss of revenue, as well as loss of customer goodwill in our problem with a penalty

for customer waiting times. Also, we focus on local market depots that are located away from

competitor locations (i.e., non-airport locations). The local market depots represent a significant

portion of rental provider revenues and there are numerous such depots in metropolitan areas. For

example, local markets represented approximately half of Enterprise Rent-a-Car’s 2010 revenues [5].

At these depots, switching among providers is not convenient and customers typically wait for a

rental vehicle instead of balking.
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This research also accounts for several operational uncertainties in the vehicle allocation process

such as demand uncertainties and vehicle availabilities. Demand forecasts form the basis for decision

making in the rental vehicle industry and errors in forecasts are derived from the high rate of no-

shows, last-minute bookings, high rate of walk-in customers, and the uncertainty of rental length

[7, 30]. For example, it was recently reported that 41% of rental vehicle bookings made through

priceline.com’s mobile apps were same-day and among these bookings 48% were made within two

hours of pickup [22]. Also, rental providers can experience non-stationary demand patterns. The

rental length varies among customers, with a high likelihood of customers renting a vehicle for a few

days and lower likelihood of customers renting a vehicle for longer time periods. A high degree of

uncertainty of when a vehicle is available also exists. Such uncertainty is caused by delayed check-

ins, variability and congestion in the inspection, refueling, and cleaning process, damaged returned

vehicles that require time for repair, and inaccurate inventory status in the company’s information

system [7]. We define the vehicle unavailability period as the time that lapses from when a customer

is assigned to the vehicle until the vehicle is available to be rented to a new customer. The vehicle

unavailability period includes the time the customer is rented the vehicle, the time for check-in,

inspection, and cleaning, and the time the vehicle is out due to maintenance of a damaged vehicle.

Because of these uncertainties, a common practice for rental vehicle companies is to flexibly handle

the allocation of vehicles to customers when the customer arrives [7].

Reserve customers receive priority over walk-in customers during the vehicle assignment process;

however, there is uncertainty associated with when the reserve customer will arrive and when a

vehicle will become available. Therefore, providers face the following allocation dilemma, “should an

available vehicle be allocated to a walk-in customer given customer reservations exist?” Customer

service representatives must answer this question each time a walk-in customer arrives, realizing

there is a trade-off between accepting the walk-in customer and obtaining the associated profit or

having the walk-in customer wait to keep available vehicles free for reserve customers. If the vehicle

is allocated to the walk-in customer, the waiting time of the walk-in customer decreases and the

utilization of the vehicle improves at the expense of possibly increasing the waiting time of the reserve

class customers. On the other hand, if the available vehicle is not allocated to the walk-in customer,

the vehicle is not utilized and the waiting time of the walk-in customer increases. Walk-in customers

are more endurable to waiting times than reserve class customers; therefore, holding vehicles for

reserve customers adds value particularly because the waiting costs for reserve class customers are

greater than for the waiting costs for walk-in customers.
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The two types of customers, as well as customer demand and vehicle supply uncertainties, make

determining how best to allocate capacity a difficult operational decision. Currently, rental providers

allocate capacity dynamically, providing a walk-in customer a vehicle depending on the number of

vehicles available. Hence identifying an optimal threshold quantity (denoted as K∗) for vehicle

allocation to the walk-in class is of significant interest to rental providers. Vehicles will be assigned

to the walk-in customers only if the number of vehicles on hand exceeds K∗. Such a policy provides

flexibility because the decision is contingent on the current state of the system and determining

whether to provide walk-in customers with a vehicle or to have them wait for an available vehicle is

not set a priori.

Our contribution lies in developing a stochastic model that can handle the uncertainty of de-

mand arrivals and vehicle unavailabilities based on the state of the system to determine under what

conditions to allocate vehicles to walk-in customers that considers the expected waiting time of both

reserve and walk-in customers. Previous works analyze the vehicle rental system using a customer

loss model (for example, see [8, 24]). Thus, this research is an initial attempt to develop a rental

depot profitability model by considering customer waiting times for multiple classes. Each depot is

modeled with a multi-class non-work-conserving semi-open queue with stochastic inputs, where the

vehicles are not allocated to walk-in customers beyond a threshold quantity. We provide an opti-

mization formulation to determine the optimal threshold quantity, K∗. We use analytical models to

solve the optimization formulation when arrival rates are stationary for both exponential and deter-

ministic vehicle unavailability distributions. We develop threshold policies for non-stationary arrival

patterns and test their performance with a discrete-event simulation model. Through analysis and

testing, we provide insights into the operating characteristics that impact the threshold quantities

and present counterintuitive results.

The remainder of this paper is organized as follows. In Section 2, we review relevant literature

on priority customer class-based queuing systems. In Section 3, we provide our queuing network

model, which includes a continuous-time Markov chain representation of the rental system network

and our optimization formulation. In Section 4 we analyze the behavior of the optimal threshold

quantity for stationary arrival rates. We then extend our work to include threshold policies for

non-stationary arrival rates in Section 5. Finally, in Section 6, we provide conclusions and future

research directions.
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2. Literature Review

Priority customer class-based queuing systems are commonly seen among a spectrum of service

industries where both responsiveness and customer differentiation determine the overall customer

satisfaction. Examples include communication networks [15, 16], manufacturing and inventory sys-

tems [12, 28], transportation networks [8, 20, 21, 24], and healthcare applications [13, 26, 27, 29].

Research has been conducted on “admission policies” for multiple classes of customers, which de-

termine whether a company should accept an arrival from a specific class of customers or not. In

this line of research, if the customer is not offered service, the customer typically balks and leaves

the system (i.e., the network is modeled as a loss system). In this section, we first review analytical

models for class-based loss system models, emphasizing the use in rental systems, and then review

literature on threshold policies for multi-class priority queuing systems.

Class-Based Loss System Models: Savin et al. [24] develop a multiple-server loss system of a

rental problem where capacity is rationed among two customer classes. In addition to determining

an admission policy, they consider how the use of tactical controls affects longer-term fleet-sizing

decisions and develop an aggregate threshold heuristic based on a fluid approximation of the original

stochastic model. Gans and Savin [8] develop a queuing loss model for rental businesses with two

customer classes: contract customers and walk-in customers. They derive an optimal admission

policy for contract customers and optimal prices for walk-in customers, deciding when to offer service

to contract customers and what fees to charge walk-in customers for service. Papier and Thonemann

[20] determine an admission policy for two customer classes in the rail cargo industry, premium and

classic service, where advance demand reservation information about the premium class is available.

Papier and Thonemann [21] develop an algorithm that simultaneously determines the fleet size and

the admission policy in the rail cargo industry with batch arrivals rates by developing a batch-arrival

queuing loss system. George and Xia [9] develop a closed queuing network for optimal fleet-sizing

decisions of a vehicle-sharing rental provider.

The above literature examines admission policies that determine when to deny service to lower

priority customers. In such a situation, queuing loss models are appropriate and the expected waiting

time of customers is not considered. Our work varies in that we are considering policies where walk-

in customers do not balk, and instead wait until the number of vehicles available is greater than

a threshold quantity. In such systems, the primary performance metric is to minimize the cost
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of waiting for both customer classes. Because reserve customers have a higher waiting penalty, a

priority threshold queuing system can be used.

Priority threshold queuing systems: Miller [17] develops a Continuous Time Markov Chain (CTMC)

for an n-server queuing system with m customer classes and proves the optimality of threshold

policies; however, does not determine optimal policy parameters. Altman et al. [1] apply a dynamic

programming methodology to determine optimal capacity allocation rules when multiple customer

classes use shared resources with no waiting space. Ormeci et al. [18] also uses dynamic programming

to study a similar situation with two customer classes and no waiting room.

Taylor and Templeton [29] study a multi-server cutoff-priority queue for determining the number

of ambulances required to transfer both emergency and lower priority patients. Using probability

generating functions, they obtain explicit expressions for: 1) the probability of n servers being busy,

2) the Laplace-Stieltjes transform of the low priority waiting time distribution, 3) the expected

low priority waiting time, and 4) the complete low priority waiting time distribution (the inversion

of the Laplace-Stieltjes transform). They determine a threshold quantity for the number of beds

reserved for future emergency customer arrivals. These results are applied to determine the number

of ambulances required in an urban fleet that serves both emergency calls and low priority patient

transfers. Their work is extended in [25] to consider more than two classes of customers.

The work in [29] most closely aligns with our work to develop threshold policies for a vehicle

rental system with two customer classes; however, our work can be differentiated in the following

ways:

• We propose a queuing network model based on non-work-conserving semi-open queues that

permits the analysis of the performance of any topology of vehicle rental networks. Further,

the solution approach permits determining the distribution of vehicles at all stations.

• We incorporate the queuing model in to an optimization framework and analyze the optimal

threshold quantity that minimizes weighted waiting costs. In doing so, we provide valuable,

counterintuitive results.

• We consider exponential and deterministic service times and analyze multiple threshold policies

with both stationary and non-stationary arrivals.

Next, we describe the basic model of a vehicle rental depot with two customer classes.
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3. Queuing Network Model

To model a vehicle rental depot, we initially assume that the arrival process for both types of

customers (reserve and walk-ins) is Poisson with stationary arrival rates and the vehicle unavail-

ability period follows the exponential distribution. We analyze systems with non-stationary arrivals

in Section 5 and deterministic vehicle unavailability periods in Section 4.1. Further, we assume

customers wait for a vehicle to be available and do not abandon the queue.

3.1 Performance Objective of the Rental Provider

We describe the performance objective of the rental provider using a nonlinear optimization

formulation. The formulation is developed to minimize a weighted combination of customer waiting

costs and the decision variable is the threshold quantity of vehicles that are held in anticipation for

the reserve customers.

We let the set of customer classes be indexed by i, where i ∈ {r (reserve), w (walk-in)}. We let ei

denote the waiting penalty of customer class i, k the threshold quantity, and E[Wi(k)] the expected

waiting time per customer of class i, which is a function of the threshold quantity k.

The objective function, denoted as Θk and expressed by Equation 1, is the expected waiting costs

of the two customer classes weighted by waiting penalties. This Weighted Waiting Cost objective

incorporates the trade-off between walk-in and reserve customer waiting costs and is a function of the

decision variable k. The objective function is nonlinear due to the E[Wi(k)] terms. As the threshold

quantity increases, the expected reserve customer waiting time decreases, while the expected walk-in

customer waiting time increases. The constraints include that the system is stable (i.e., the system

utilization ρ is less than one), and that the threshold quantity be a non-negative integer and less

than the number of vehicles, V . We denote the optimal threshold quantity that minimizes Equations

1 - 4 as K∗.

min
k

Θk =
∑

i={r,w}

eiE[Wi(k)] (1)

s.t. ρ < 1 (2)

0 ≤ k ≤ V (3)

k ∈ {Z+} (4)
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For simplicity, we refer to E[Wi(k)] as E[W k
i ] in the remainder of the paper. To solve the

optimization model, we use a queuing model to obtain the expected waiting time per customer of

both classes, which is the focus of the next section.

3.2 A Queuing Model with Two Customer Classes to Obtain the Expected Waiting

Times

As displayed in Figure 1a, we develop a queuing model with two customer classes. The interarrival

times of the walk-in and reserve customers to the depot are IID exponential random variables with

means (λw)−1 and (λr)
−1 respectively. Customers on arrival to the depot wait at buffer B1. The

depot has a fixed fleet size of V vehicles. Vehicles wait for allocation at buffer B2. When a reserve

class customer arrives, the customer is matched with a vehicle at the synchronization station J .

However, when a walk-in customer arrives, the customer is matched with a vehicle only if the

number of available vehicles is more than the threshold quantity k. A threshold policy facilitates

that reserve customers receive priority access to vehicles over the walk-in customers. Therefore,

vehicles and walk-in customers can wait simultaneously at their respective buffers, which results in

a non-work-conserving queue. Service is first-come-first-served within each class of customers. Once

a customer and vehicle are matched, the vehicle is unavailable to rent for an exponential amount of

time with mean µ−1. The vehicle unavailability period is modeled as an Infinite Server (IS) station.

We denote this network as a Non-work-conserving Infinite Server Semi-open Queuing Network (NIS-

SOQN). We can evaluate the network using a CTMC with a two-tuple state vector (y, i), where y is

the difference between the number of reserve class customers waiting in buffer B1 and the number

of vehicles available in buffer B2, y ∈ {−V, . . . ,∞}. The second component i denotes the number

of walk-in class customers waiting for a vehicle, i ∈ {0, . . . ,∞}. The transitions among states are

provided in Table 1.

Note that a CTMC provides a numerical solution-based approach that is adaptable to complex

network topologies. For instance, upon return, vehicles may require maintenance. This topology can

be modeled using a queuing network model as displayed in Figure 2, where we separate the vehicle

unavailability period into two components. The vehicle rental periods are modeled as IID exponential

random variable with mean µ−1r and the maintenance times are model as IID exponential random

variable with mean µ−1m . Note that while most of the customers are expected to rent a vehicle for

a few days (2 or 3 days), there are customers who rent vehicles for a longer period (for instance,
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k + 1

V
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µ

µ

Figure 1: (a) Semi-open queuing model of the rental system with two customer classes, (b) an
equivalent M/M/V queue with two customer class and cutoff priority queue

Table 1: Transitions in the CTMC for SOQN with multiple customer classes

Condition Rate Xj

y = −V λw + λr (y + 1, i)
−V < y < −T λw + λr (y + 1, i)

(V + y)µ (y − 1, i)
y = −T, i = 0 λr (y + 1, i)

λw (y, i+ 1)
(V + y)µ (y − 1, i)

y = −T, i > 0 λr (y + 1, i)
λw (y, i+ 1)

(V + y)µ (y, i− 1)
−T < y ≤ 0, i ≥ 0 λr (y + 1, i)

λw (y, i+ 1)
(V + y)µ (y − 1, i)

y > 0, i ≥ 0 λr (y + 1, i)
λw (y, i+ 1)

(V )µ (y − 1, i)

as a replacement vehicle). Hence, an exponential distribution would capture the large variation in

rental times. If the probability that a vehicle requires maintenance is pm, the vehicle is routed to

the maintenance station with probability pm and returned to the idle pool of vehicles in buffer B1

with probability 1 − pm. The definition of the state variable in the CTMC is expanded by adding

another component, j : j = 1, . . . , V , to account for the number of vehicles undergoing maintenance.

For numerical experimentation, we consider pm = 0.1, µ−1r = 2 days, µ−1m = 1 day, and V = 20.

Figure 3 presents the weighted objective function value for different threshold quantities and

different ratios of waiting time penalties (i.e., er
ew

). We can see that when the penalty ratio is less

than 10, K∗ = 1. However, when the ratio is 50, more vehicles are to be held in anticipation of

reserve customer arrivals and K∗ = 2.
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Figure 2: Queuing model of the rental system with maintenance function
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Figure 3: The behavior of the expected weighted waiting costs for different threshold quantities for
(a) λw = 2, λr = 5, er

ew
= 10 (b) λw = 3, λr = 5, er

ew
= 10 (c)λw = 4, λr = 4, er

ew
= 10 (d) λw = 4,

λr = 4, er
ew

= 50, V=20

The state-space of a CTMC grows exponentially with the number of components and the range

of each component associated with a state vector. Due to this state dimensionality issue, it is

computationally expensive to evaluate the system performance when the number of vehicles in the

system increases. Therefore, we develop an equivalent queuing model of the work-conserving SOQN

with two classes and one IS queue with exponential service times that is computationally efficient

to evaluate (see Figure 1b).
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3.2.1 Equivalent Model of the SOQN with Priority Customers and one IS Station.

In this section, we propose a multi-server cutoff priority queue, which is equivalent to the SOQN

with an IS station and priority class customers (NIS-SOQN). Taylor and Templeton [29] considered

a priority queue in steady state with V servers, two classes of customers, and a threshold allocation

policy. In their model, lower priority customer arrivals are refused immediate service and placed in

a queue whenever V − k or more servers are busy, in order to keep k servers free for high priority

arrivals. We now present the theorem, that formally states the model equivalency.

Theorem 1 For a NIS-SOQN with V vehicles, two customer classes, exponential inter-arrival

times, and one IS station with an exponential service time distribution, the multi-server cutoff pri-

ority queue (where each vehicle corresponds to a server in the multi-server queue) proposed in [29]

provides an exact estimate of the queue length distribution and the throughput at the external queue

for both customer classes.

proof: The equivalence can be shown by comparing the states of the CTMC for NIS-SOQN and

the multi-server cutoff priority queue (see Figure 1b). We can also evaluate the multi-server cut-

off priority queue using a CTMC with a two-tuple state vector (y, i), where y is the difference

between the number of reserve class customers waiting in buffer and the number of idle servers,

y ∈ {−V, . . . ,∞}. The second component i denotes the number of walk-in class customers waiting

for a vehicle, i ∈ {0, . . . ,∞}. The transitions among the states are also similar to the ones included

in Table 1; therefore, the models are equivalent.

We use the exact expression in [29] for the expected waiting time of walk-in (low priority)

customers when k vehicles are held for reserve (priority) customers. The expected waiting time for

walk-in customers with k vehicles reserved, E[W k
w], is displayed in (5), which has been adapted to

reflect the notation in this paper.

E[W k
w] = P0µ

−1

(
νw + νr
νr

)V−k

(V −k)2 [(V − k)− νwS(V − k, V )]−2

[
νVr V

2

V !(V − νr)3
+

V−1∑
i=V−k

νir
i!

(S(i, V ))2

i

]
(5)

where νw = λw
µ
; νr =

λr
µ
; P0 =

[(
(νr+νw)V −k

(V−k−1)!

)(
S(V−k,V )

V−k−νwS(V−k,V )

)
+
∑V−k−1
i=0

(νr+νw)i

i!

]−1

;

and S(j, V ) = ν−jr j!
[

νVr V

V !(V−νr) +
∑V−1
i=j

νir
i!

]
.
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As the threshold priority queue assumes exponential service times, the high priority waiting time

Wr is exactly as for the M/M/V queue except for the change in the probability that all vehicles

are busy, PV . From [29], P [Wr > t] = PV e
−(V µ−λr)t. Therefore, the expected waiting time for

the reserve customers with a threshold quantity k, E[W k
r ], can be derived from the probability

distribution function in Equation (6), and is displayed in Equation (7).

fWr
(t) = PV (V µ− λr)e−(V µ−λr)t; t ≥ 0 (6)

E[W k
r ] =

PV
(V µ− λr)

(7)

where PV = P0

(
ρV −kνk

r

V !

)(
V−k

V−k−νwS(V−k,V )

)(
V

V−νr

)
and ρ = λr+λw

µ .

Next, we explore how different threshold quantities impact our objective of minimizing weighted

waiting costs.

4. Optimal Threshold Quantities with Stationary Arrivals

In this section we analyze how the optimal threshold quantity changes for different reserve and

walk-in customer arrival rates. We apply the closed-form solutions for the expected waiting time

for walk-in and reserve customers as defined in Equations 5 and 7, respectively. To determine the

optimal threshold quantity (denoted as K∗), we enumerate the expected waiting times for all integer

values between 0 and V , and select the optimal threshold quantity as the k-value that minimizes

the nonlinear model in Equations 1 - 4.

In Figure 4, we illustrate the behavior of the objective function for different threshold quantities

and reserve customer arrival rates. The x-axis denotes the threshold quantity and the y-axis the

objective value of expected weighted waiting costs, where E[W k
i ] is in minutes. The number of

vehicles available is 25 and the mean vehicle unavailability is 2 days. Figure 4 illustrates the nonlinear

behavior of the objective function. The optimal threshold quantity is the value that minimizes the

weighted waiting costs and varies depending on the reserve customer arrival rate. In Figure 4,

K∗ ≤ 3 regardless of the value of λr.

Figure 5 presents the optimal threshold quantity as a function of the reserve customer arrival

rate for different number of vehicles, walk-in rates and penalty ratios. Interestingly, the optimal

threshold quantity does not always increase as the reserve customer arrival rate increases. Instead,

K∗ is a concave function that increases (up to a point) with an increase in reserve customer arrivals
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Figure 4: The weighted waiting costs as a function of the threshold quantity for a system with
V = 25, µ = 0.5, λw = 4, er = 100, and ew = 1.

and then decreases. For instance, in Figure 5a with λw = 2, K∗ increases upto 4 when λr = 7. As

λr increases beyond 7 per day, K∗ decreases.

In addition, the optimal threshold value does not always increase as the walk-in arrival rate

increases. Instead, the threshold value increases as the walk-in arrival rate increases up to a point

and then decreases. For example, in Figure 5(c), K∗ with λw = 5 is less than or equal to K∗ with

λw = 15 if 0 ≤ λr ≤ 18. However, if λr ≥ 18, the reverse occurs and K∗ with λw = 5 is greater than

or equal to K∗ with λw = 15.

The reason for these two insights is that increasing the reserve customer arrival rate results in

higher utilization of the vehicles in the system. The results from classical queuing theory indicate

that the expected customer waiting time in a queue increases nonlinearly with an increase in server

utilization. Waiting times are very sensitive to utilization, especially at high utilization values.

This sensitivity of system performance to utilization results in setting a threshold quantity that

can actually decrease as reserve customer arrival rates increase. Also, the threshold quantity can

decrease as the walk-in arrival rate increases. As threshold policies are set to ensure that reserve

customer waiting times are reduced, these can be a counterintuitive results.

As displayed in Figure 5, the optimal threshold value varies depending on the penalty ratio

(i.e., er/ew). As the weight placed on reserve customers increases, the number of vehicles reserved

increases, which results in larger threshold quantities being optimal. When reserve and walk-in
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Figure 5: Optimal K∗ with µ = 0.5 and (a) V = 25, er
ew

= 100, (b) V = 25, er
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= 1000, (c) V = 75,
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= 100, (d) V = 75, er
ew

= 1000, (e) V = 100, er
ew

= 100, and (f) V = 100, er
ew

= 1000.

customer waiting times are given equal weights (i.e., er/ew = 1), the optimal threshold policy is

always to set K∗ = 0 (see Lemma 1). This results in the highest utilization of a fixed fleet of vehicles.

Lemma 1 If er
ew

= 1, i.e., reserve and walk-in customer waiting times are given equal weights

then K∗ = 0.

proof: Since er = ew = e, the objective value in Equation 1, Θk = e
∑
i={r,w} E[Wi(k)]. Let Uk0

and Uk>0 be the utilization of the system with K∗ = 0 and K∗ > 0, respectively. The utilizations

are related as follows: Uk>0
> Uk0 . Therefore, E[Wi(k > 0)] > E[Wi(k = 0)]. Hence, K∗ = 0 is

optimal.
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4.1 Threshold Policies with Deterministic Service Times

Exponential service times model systems with high variability in the vehicle unavailability period.

Some depots may experience low variability in the vehicle unavailability period; therefore, we analyze

the threshold policy of such systems by developing an approximate model for a deterministic service

time distribution.

To model the case with a constant, deterministic vehicle unavailability period, we develop an

approximation formula. We use the results of an M/D/V queue with two nonpreemptive priority

classes (see [3]). Note in [3], the authors do not consider threshold policies. To approximate the

expected waiting time for both classes with deterministic service times, the methodology in [3] is

to multiply the expected waiting time with exponential service times by correction factors. The

correction factor for the reserve class is
(

(1−fρ)V
V+1 + fρ

2

)
and the correction factor for the walk-in

class is
(

(1−(1−f)ρ)V
V+1 + (1−f)ρ

2

)
. The percentage of reserve customers is denoted by f = λr/(λr+λw).

To approximate the average waiting time with a deterministic vehicle unavailability period and

a threshold policy for two nonpreemptive priority classes, we adjust the expected waiting time with

exponential periods, E[W k
r ] and E[W k

w], with the factors from [3]. The approximations for the

expected waiting time with deterministic periods for reserve and walk-in customers, denoted as

E[WD
r ] and E[WD

w ], are presented in Equations 8 and 9, respectively,.

E[WD
r ] = E[W k

r ]

(
(1− fρ)V

V + 1
+
fρ

2

)
(8)

E[WD
w ] = E[W k

w]

(
(1− (1− f)ρ)V

V + 1
+

(1− f)ρ

2

)
(9)

We compare the approximate deterministic expressions against a discrete-event simulation model

and the exponential expressions, denoted as Det. (A), Det. (Sim), and Exp. (A), respectively. The

expected waiting times for Det. (A) are calculated using Equations 8 and 9; for Exp. (A) from

Equations 5 and 7. The expected waiting time for Det. (Sim) are determined from the results of 10

replications of 2,500 days with a 500 day warm-up period. Figure 6 displays the weighted objective

function for the case of µ = 0.5 for different reserve and walk-in arrival rates, number of vehicles,

and penalty weights. As compared to the simulation model, the analytical model for deterministic

service time distribution does a good job at approximating the objective function. For Figures
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6(a), 6(c), and 6(d), the threshold quantity that minimizes the objective function value is the same

for Det. (Sim) and Exp. (A). In the remaining cases, the weighted objective function cost is fairly

insensitive to the threshold quantity.
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Figure 6: Comparsion of the approximate deterministic expressions (Det. (A)) against a discrete-
event simulation model (Det. (Sim)), and the exponential expressions (Exp. (A)) for varying arrival
rates, number of vehicles, and penalty ratios.

In the next section we consider rental systems with time-varying arrival rates for customers.
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5. Threshold Policies for Non-Stationary Demand

Threshold policies are designed to provide a differentiated service to reserve customers and reserve

customer arrival rates can be non-stationary. Therefore, we analyze the impact that non-stationary

reserve arrival patterns have on threshold policies. To model such a system, we let λr(t) denote the

reserve customer arrival rate at time t. We assume arrival patterns repeat over a planning period

of length T and assume stationary arrival rates for walk-in customers. As a way to evaluate the

threshold policies, we use the objective function in Equation 1. We denote the average daily reserve

and walk-in customer arrival rate for the planning period as λr and λw, respectively. We define the

fleet utilization, ρ = (λr+λw)
V µ .

We analyze the following seven threshold policies for non-stationary demand.

1. Average Policy. In this policy, a constant threshold quantity is set by applying the optimal

threshold quantity for the average stationary arrival rate over the entire planning period (i.e.,

we use λr and λw to find K∗ as in Section 4).

2. Stationary Independent Period by Period (SIPP) Policy. In this policy, a dynamic

threshold quantity is set by using the optimal threshold quantity assuming the system can be

divided into independent stationary periods [11]. We let k∗(t) denote the threshold policy at

time t and is calculated using λr(t) and λw as in Section 4. This is a dynamic policy, because

as the arrival rate changes, the threshold quantity also changes.

3. Pointwise Stationary Approximation (PSA) Policy. In this policy, a constant threshold

quantity is set by computing the average time-weighted threshold quantity over the planning

period using the optimal stationary threshold that correspond to each point in time [10]. More

formally, K∗ = (
∑
t k
∗(t))/T , where k∗(t) is obtained from the SIPP Policy.

4. Average Stationary Approximation (ASA) Policy. In this policy, a constant threshold

policy is set by calculating the stationary threshold quantity for each arrival rate and then

computing the reserve demand-weighted threshold average over the planning period [19]. More

formally, K∗ = (
∑
t(λr(t)k

∗(t))/(
∑
t λr(t)), where k∗(t) is obtained from the SIPP Policy.

5. Maximum Threshold Policy. In this policy, a constant threshold quantity is set by using

the maximum threshold quantity found via the SIPP policy. More formally, K∗ = maxt{k∗(t)},

where k∗(t) is obtained from the SIPP Policy.
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6. Minimum Threshold Policy. In this policy, a constant threshold quantity is set by using

the minimum threshold quantity found via the SIPP policy. More formally, K∗ = mint{k∗(t)},

where k∗(t) is obtained from the SIPP Policy.

7. Priority Without a Threshold Policy. In this policy, no vehicles are held for reserve

customers (i.e., K∗ = 0). However, reserve customers are still given non-preemptive priority

over walk-in customers.

For all policies, we require K∗ to be integer. If a policy results in a non-integer value, we round

the threshold quantity to the nearest integer value.

5.1 Numerical Experiments

Because we are aware of no tractable analytical model that can evaluate the multi-server multi-

class priority queue with a threshold policy for non-stationary demands, we develop a discrete-event

simulation model to evaluate the identified threshold policies. The discrete-event simulation model of

the vehicle rental process was constructed using Arena Simulation Software (www.arenasimulation.com).

As indicated in Figure 7, there are two modules in the model: the main rental depot model and a

threshold quantity control model.

Reserve

Walk in

Customer Input

(Poisson Distribution)

r (t)

w

M
a
tc
h

NQ(Veh.)

> k*

Vehicles

Customer Rental Period

(Exponential Service Times)

No

Yes

Adjust k* based

on Policy

Threshold Value Control Model

Customers

Figure 7: Discrete-Event Simulation Model of a Rental System with a Threshold Policy

The data for our numerical experiments are based on discussions with a large rental provider, a

case study [5], and academic and trade literature [4, 14, 6]. We assume reserve customers have a non-

stationary arrival pattern with exponential inter-arrival times, but walk-in arrivals have a stationary

pattern with exponential inter-arrival times. We define p(t) as the daily expected demand of day
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t as a percentage of the total number of reserve customers expected to arrive in one week. For

our analysis, we use a trianglular pattern and set p(1) = p(7) = 0.0625, p(2) = p(6) = 0.125,

p(3) = p(5) = 0.1875, and p(4) = 0.250. For example, on day 4, 25% of the weekly demand occurs.

If λr = 15, on day 4, 26.25 reserve customers are expected to arrive (i.e., (0.25)(15)(7) = 26.25).

We conduct a full factorial experimental design with the following factors, resulting in 36 sce-

narios:

• Number of vehicles, V = 25, 75, 100.

• Fleet utilization, ρ = 0.40, 0.60, 0.80.

• Relative number of reserve customers to walk-in customers, λr = λw and λr = 4λw.

• Penalty ratio, er/ew = 100, 1000.

By varying the fleet utilization and the relative percentage of reserve customer and walk-in

customers, we test different λr and λw values. The vehicle unavailability periods are assumed to

follow an exponential distribution with a mean of 2 days.

Table 2 provides values for the threshold policies for each scenario. In many scenarios, different

threshold policies result in the same K∗ values (e.g., Policies 1, 3, 4, and 6 all result in K∗ = 2

for scenario 1). Because we have a symmetric arrival pattern, we denote the SIPP policy with a

four-tuple vector, (k(1) = k(5), k(2) = k(6), k(3) = k(7), k(4)).

For each threshold policy and scenario, Tables 3 - 6 present system performance metrics. Sim-

ulation results are presented for the average of 10 replications of length 2500 days with a 500 day

warm-up period. The performance metrics include the expected waiting time (in minutes) for reserve

and walk-in customers, as well as the weighted waiting cost objective function, θk. For each sce-

nario, the policies are presented by decreasing objective function values and the minimum objective

function value is presented in bold font.

When the best threshold policy is applied, the average reserve and walk-in customer waiting time

over all scenarios are 10.11 and 295.96 minutes, respectively. Therefore, a threshold policy allows

for reserve customer waiting times to be manageable at the expense of higher walk-in customer

waiting times. As expected, the average waiting time varies based on fleet utilization (average

reserve customer waiting times are 0.01 minutes for ρ = 0.40, 1.07 minutes for ρ = 0.60, and 29.24

minutes for ρ = 0.80; average walk-in customer waiting times are 1.50 minutes for ρ = 0.40, 56.26

minutes for ρ = 0.60, and 830.11 minutes for ρ = 0.80). Because of the impact that pooling of
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Table 2: Input Parameters for Experimental Design Parameters and Threshold Policies for each
Scenario.

Scenarios Policies

V ρ λr λw er/ew 1. Ave. 2. SIPP 3. PSA 4. ASA 5. Max 6. Min 7. None
1 25 0.4 2.50 2.50 100 2 (2, 2, 3, 3) 2 2 3 2 0
2 25 0.6 3.75 3.75 100 3 (2, 3, 3, 3) 3 3 3 2 0
3 25 0.8 5.00 5.00 100 3 (2, 3, 1, 0) 2 1 3 0 0
4 75 0.4 7.50 7.50 100 2 (2, 2, 3, 3) 2 2 3 2 0
5 75 0.6 11.25 11.25 100 3 (2, 3, 4, 4) 3 3 4 2 0
6 75 0.8 15.00 15.00 100 4 (3, 4, 3, 0) 3 2 4 0 0
7 100 0.4 10.00 10.00 100 2 (2, 2, 3, 3) 2 2 3 2 0
8 100 0.6 15.00 15.00 100 3 (2, 3, 4, 2) 3 3 4 2 0
9 100 0.8 20.00 20.00 100 4 (3, 4, 4, 0) 3 3 4 0 0
10 25 0.4 4.00 1.00 100 2 (2, 2, 3, 3) 2 2 3 2 0
11 25 0.6 6.00 1.50 100 3 (2, 3, 4, 1) 3 2 4 1 0
12 25 0.8 8.00 2.00 100 3 (3, 4, 0, 0) 2 1 4 0 0
13 75 0.4 12.00 3.00 100 2 (2, 2, 3, 4) 3 3 4 2 0
14 75 0.6 18.00 4.50 100 4 (2, 3, 5, 2) 3 3 5 2 0
15 75 0.8 24.00 6.00 100 5 (3, 5, 0, 0) 2 1 5 0 0
16 100 0.4 16.00 4.00 100 2 (2, 2, 3, 4) 3 3 4 2 0
17 100 0.6 24.00 6.00 100 4 (2, 3, 5, 3) 3 3 5 2 0
18 100 0.8 32.00 8.00 100 6 (3, 5, 0, 0) 2 1 5 0 0
19 25 0.4 2.50 2.50 1000 4 (3, 3, 4, 5) 4 3 5 3 0
20 25 0.6 3.75 3.75 1000 5 (3, 4, 5, 4) 4 4 5 3 0
21 25 0.8 5.00 5.00 1000 4 (4, 4, 2, 0) 3 2 4 0 0
22 75 0.4 7.50 7.50 1000 4 (3, 4, 4, 6) 4 4 6 3 0
23 75 0.6 11.25 11.25 1000 5 (3, 5, 6, 8) 5 5 8 3 0
24 75 0.8 15.00 15.00 1000 6 (4, 6, 5, 0) 4 3 6 0 0
25 100 0.4 10.00 10.00 1000 4 (3, 4, 4, 6) 4 4 6 3 0
26 100 0.6 15.00 15.00 1000 5 (3, 5, 6, 8) 5 5 8 3 0
27 100 0.8 20.00 20.00 1000 6 (4, 6, 6, 0) 5 4 6 0 0
28 25 0.4 4.00 1.00 1000 4 (3, 4, 5, 7) 4 4 7 3 0
29 25 0.6 6.00 1.50 1000 6 (4, 6, 6, 2) 5 4 6 2 0
30 25 0.8 8.00 2.00 1000 6 (4, 6, 0, 0) 3 2 6 0 0
31 75 0.4 12.00 3.00 1000 4 (3, 4, 6, 8) 5 5 8 3 0
32 75 0.6 18.00 4.50 1000 7 (4, 6, 10, 5) 6 6 10 4 0
33 75 0.8 24.00 6.00 1000 10 (4, 9, 0, 0) 4 2 9 0 0
34 100 0.4 16.00 4.00 1000 4 (3, 4, 6, 8) 5 5 8 3 0
35 100 0.6 24.00 6.00 1000 7 (4, 6, 10, 6) 7 6 10 4 0
36 100 0.8 32.00 8.00 1000 10 (4, 9, 0, 0) 4 2 9 0 0
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Table 3: Performance Metrics from the Simulation Study Evaluating Threshold Policies for Non-
Stationary Demand (Scenarios 1 - 9). (Note, the values in bold denote the policy that achieves the
minimum weighted waiting cost for each scenario).

V ρ λr λw er/ew Policy k E[W k
r ] E[W k

w] θk
1 25 0.4 2.50 2.50 100 1, 3, 4, 6 2 0.00 0.23 0.35
1 25 0.4 2.50 2.50 100 2 (2, 2, 3, 3) 0.00 0.48 0.48
1 25 0.4 2.50 2.50 100 5 3 0.00 0.52 0.52
1 25 0.4 2.50 2.50 100 7 0 0.02 0.03 1.58
2 25 0.6 3.75 3.75 100 1, 3, 4, 5 3 0.86 52.79 138.80
2 25 0.6 3.75 3.75 100 2 (2, 3, 3, 3) 1.20 44.64 165.12
2 25 0.6 3.75 3.75 100 6 2 1.82 33.45 215.65
2 25 0.6 3.75 3.75 100 7 0 4.34 8.59 442.52
3 25 0.8 5.00 5.00 100 1, 5 3 19.03 858.40 2761.10
3 25 0.8 5.00 5.00 100 3 2 28.77 552.45 3429.52
3 25 0.8 5.00 5.00 100 4 1 43.45 386.16 4730.71
3 25 0.8 5.00 5.00 100 2 (2, 3, 1, 0) 47.98 524.90 5323.05
3 25 0.8 5.00 5.00 100 6, 7 0 62.98 260.96 6558.75
4 75 0.4 7.50 7.50 100 1, 3, 4, 6 2 0.00 0.00 0.00
4 75 0.4 7.50 7.50 100 2 (2, 2, 3, 3) 0.00 0.00 0.00
4 75 0.4 7.50 7.50 100 5 3 0.00 0.00 0.00
4 75 0.4 7.50 7.50 100 7 0 0.00 0.00 0.00
5 75 0.6 11.25 11.25 100 2 (2, 3, 4, 4) 0.00 0.31 0.38
5 75 0.6 11.25 11.25 100 1, 3, 4 3 0.00 0.19 0.50
5 75 0.6 11.25 11.25 100 6 2 0.00 0.12 0.58
5 75 0.6 11.25 11.25 100 5 4 0.01 0.45 1.21
5 75 0.6 11.25 11.25 100 7 0 0.03 0.05 2.64
6 75 0.8 15.00 15.00 100 1, 5 4 1.96 115.70 312.03
6 75 0.8 15.00 15.00 100 3 3 2.81 91.10 372.46
6 75 0.8 15.00 15.00 100 4 2 3.95 71.39 466.18
6 75 0.8 15.00 15.00 100 2 (3, 4, 3, 0) 5.30 77.74 607.45
6 75 0.8 15.00 15.00 100 6, 7 0 9.03 42.18 945.27
7 100 0.4 10.00 10.00 100 1, 3, 4, 6 2 0.00 0.00 0.00
7 100 0.4 10.00 10.00 100 2 (2, 2, 3, 3) 0.00 0.00 0.00
7 100 0.4 10.00 10.00 100 5 3 0.00 0.00 0.00
7 100 0.4 10.00 10.00 100 7 0 0.00 0.00 0.00
8 100 0.6 15.00 15.00 100 7 0 0.00 0.00 0.00
8 100 0.6 15.00 15.00 100 2 (2, 3, 4, 2) 0.00 0.01 0.01
8 100 0.6 15.00 15.00 100 1, 3, 4 3 0.00 0.01 0.01
8 100 0.6 15.00 15.00 100 5 4 0.00 0.01 0.01
8 100 0.6 15.00 15.00 100 6 2 0.00 0.00 0.01
9 100 0.8 20.00 20.00 100 1, 5 4 1.02 58.61 160.40
9 100 0.8 20.00 20.00 100 3, 4 3 1.39 45.91 185.40
9 100 0.8 20.00 20.00 100 2 (3, 4, 4, 0) 2.90 49.65 339.67
9 100 0.8 20.00 20.00 100 6, 7 0 5.11 25.82 536.82
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Table 4: Performance Metrics from the Simulation Study Evaluating Threshold Policies for Non-
Stationary Demand (Scenarios 10-18). (Note, the values in bold denote the policy that achieves the
minimum weighted waiting cost for each scenario).

V ρ λr λw er/ew Policy k E[W k
r ] E[W k

w] θk
10 25 0.4 4.00 1.00 100 1, 3, 4, 6 2 0.07 0.70 7.99
10 25 0.4 4.00 1.00 100 7 0 0.10 0.19 9.99
10 25 0.4 4.00 1.00 100 2 (2, 2, 3, 3) 0.09 1.37 10.11
10 25 0.4 4.00 1.00 100 5 3 0.09 1.52 10.23
11 25 0.6 6.00 1.50 100 5 4 6.34 137.06 771.26
11 25 0.6 6.00 1.50 100 4 2 8.39 58.24 897.11
11 25 0.6 6.00 1.50 100 1, 3 3 8.49 89.51 938.49
11 25 0.6 6.00 1.50 100 6 1 9.05 33.68 938.50
11 25 0.6 6.00 1.50 100 2 (2, 3, 4, 1) 8.72 77.63 949.15
11 25 0.6 6.00 1.50 100 7 0 10.94 23.00 1116.62
12 25 0.8 8.00 2.00 100 1 3 119.01 1220.38 13121.63
12 25 0.8 8.00 2.00 100 3 2 124.73 865.99 13339.17
12 25 0.8 8.00 2.00 100 5 4 119.26 1719.06 13645.31
12 25 0.8 8.00 2.00 100 4 1 143.21 768.02 15089.13
12 25 0.8 8.00 2.00 100 2 (3, 4, 0, 0) 142.96 842.52 15138.80
12 25 0.8 8.00 2.00 100 6, 7 0 151.83 547.39 15730.41
13 75 0.4 12.00 3.00 100 1, 6 2 0.00 0.00 0.00
13 75 0.4 12.00 3.00 100 2 (2, 2, 3, 4) 0.00 0.00 0.00
13 75 0.4 12.00 3.00 100 3, 4 3 0.00 0.00 0.00
13 75 0.4 12.00 3.00 100 5 4 0.00 0.00 0.00
13 75 0.4 12.00 3.00 100 7 0 0.00 0.00 0.00
14 75 0.6 18.00 4.50 100 3, 4 3 0.12 1.73 13.40
14 75 0.6 18.00 4.50 100 5 5 0.10 3.22 13.62
14 75 0.6 18.00 4.50 100 1 4 0.13 2.35 15.36
14 75 0.6 18.00 4.50 100 2 (2, 3, 5, 2) 0.14 2.33 16.42
14 75 0.6 18.00 4.50 100 6 2 0.17 1.15 18.35
14 75 0.6 18.00 4.50 100 7 0 0.23 0.71 23.45
15 75 0.8 24.00 6.00 100 1, 5 5 30.80 356.92 3436.50
15 75 0.8 24.00 6.00 100 3 2 36.39 237.64 3876.80
15 75 0.8 24.00 6.00 100 4 1 38.56 215.62 4071.35
15 75 0.8 24.00 6.00 100 2 (3, 5, 0, 0) 41.41 226.07 4366.96
15 75 0.8 24.00 6.00 100 6, 7 0 43.22 183.22 4505.13
16 100 0.4 16.00 4.00 100 1, 6 2 0.00 0.00 0.00
16 100 0.4 16.00 4.00 100 2 (2, 2, 3, 4) 0.00 0.00 0.00
16 100 0.4 16.00 4.00 100 3, 4 3 0.00 0.00 0.00
16 100 0.4 16.00 4.00 100 5 4 0.00 0.00 0.00
16 100 0.4 16.00 4.00 100 7 0 0.00 0.00 0.00
17 100 0.6 24.00 6.00 100 3, 4 3 0.01 0.21 1.19
17 100 0.6 24.00 6.00 100 1 4 0.01 0.25 1.21
17 100 0.6 24.00 6.00 100 6 2 0.01 0.08 1.24
17 100 0.6 24.00 6.00 100 2 (2, 3, 5, 3) 0.01 0.41 1.50
17 100 0.6 24.00 6.00 100 7 0 0.02 0.03 1.75
17 100 0.6 24.00 6.00 100 5 5 0.01 0.54 1.95
18 100 0.8 32.00 8.00 100 1 6 20.19 282.95 2301.81
18 100 0.8 32.00 8.00 100 5 5 21.13 260.21 2373.33
18 100 0.8 32.00 8.00 100 3 2 25.87 182.58 2769.40
18 100 0.8 32.00 8.00 100 4 1 28.10 159.89 2969.84
18 100 0.8 32.00 8.00 100 2 (3, 5, 0, 0) 29.75 167.23 3142.18
18 100 0.8 32.00 8.00 100 6, 7 0 30.29 139.58 3168.45
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Table 5: Performance Metrics from the Simulation Study Evaluating Threshold Policies for Non-
Stationary Demand (Scenarios 19-27). (Note, the values in bold denote the policy that achieves the
minimum weighted waiting cost for each scenario).

V ρ λr λw er/ew Policy k E[W k
r ] E[W k

w] θk
19 25 0.4 2.50 2.50 1000 4, 6 3 0.00 0.52 0.52
19 25 0.4 2.50 2.50 1000 1, 3 4 0.00 1.24 1.24
19 25 0.4 2.50 2.50 1000 2 (3, 3, 4, 5) 0.00 1.28 1.99
19 25 0.4 2.50 2.50 1000 5 5 0.00 2.86 2.86
19 25 0.4 2.50 2.50 1000 7 0 0.02 0.03 15.54
20 25 0.6 3.75 3.75 1000 1, 5 5 0.34 145.19 486.32
20 25 0.6 3.75 3.75 1000 2 (3, 4, 5, 4) 0.68 94.93 774.32
20 25 0.6 3.75 3.75 1000 3, 4 4 0.70 80.77 776.55
20 25 0.6 3.75 3.75 1000 6 3 0.86 52.79 912.83
20 25 0.6 3.75 3.75 1000 7 0 4.34 8.59 4347.91
21 25 0.8 5.00 5.00 1000 1, 5 4 13.64 1652.54 15296.28
21 25 0.8 5.00 5.00 1000 3 3 19.03 858.40 19885.43
21 25 0.8 5.00 5.00 1000 4 2 28.77 552.45 29323.14
21 25 0.8 5.00 5.00 1000 2 (4, 4, 2, 0) 49.16 1041.35 50198.87
21 25 0.8 5.00 5.00 1000 6, 7 0 62.98 260.96 63238.86
22 75 0.4 7.50 7.50 1000 1, 3, 4 4 0.00 0.00 0.00
22 75 0.4 7.50 7.50 1000 2 (3, 4, 4, 6) 0.00 0.00 0.00
22 75 0.4 7.50 7.50 1000 5 6 0.00 0.00 0.00
22 75 0.4 7.50 7.50 1000 6 3 0.00 0.00 0.00
22 75 0.4 7.50 7.50 1000 7 0 0.00 0.00 0.00
23 75 0.6 11.25 11.25 1000 1, 3, 4 5 0.00 0.43 0.75
23 75 0.6 11.25 11.25 1000 5 8 0.00 1.61 1.61
23 75 0.6 11.25 11.25 1000 2 (3, 5, 6, 8) 0.00 1.03 1.64
23 75 0.6 11.25 11.25 1000 6 3 0.00 0.19 3.28
23 75 0.6 11.25 11.25 1000 7 0 0.03 0.05 25.90
24 75 0.8 15.00 15.00 1000 1, 5 6 0.98 183.48 1158.64
24 75 0.8 15.00 15.00 1000 3 4 1.96 115.70 2079.09
24 75 0.8 15.00 15.00 1000 4 3 2.81 91.10 2904.67
24 75 0.8 15.00 15.00 1000 2 (4, 6, 5, 0) 5.11 114.27 5225.39
24 75 0.8 15.00 15.00 1000 6, 7 0 9.03 42.18 9073.01
25 100 0.4 10.00 10.00 1000 1, 3, 4 4 0.00 0.00 0.00
25 100 0.4 10.00 10.00 1000 2 (3, 4, 4, 6) 0.00 0.00 0.00
25 100 0.4 10.00 10.00 1000 5 6 0.00 0.00 0.00
25 100 0.4 10.00 10.00 1000 6 3 0.00 0.00 0.00
25 100 0.4 10.00 10.00 1000 7 0 0.00 0.00 0.00
26 100 0.6 15.00 15.00 1000 7 0 0.00 0.00 0.01
26 100 0.6 15.00 15.00 1000 6 3 0.00 0.01 0.01
26 100 0.6 15.00 15.00 1000 1, 3, 4 5 0.00 0.02 0.02
26 100 0.6 15.00 15.00 1000 2 (3, 5, 6, 8) 0.00 0.07 0.07
26 100 0.6 15.00 15.00 1000 5 8 0.00 0.22 0.22
27 100 0.8 20.00 20.00 1000 1, 5 6 0.48 83.29 567.56
27 100 0.8 20.00 20.00 1000 3 5 0.75 74.28 821.07
27 100 0.8 20.00 20.00 1000 4 4 1.02 58.61 1076.54
27 100 0.8 20.00 20.00 1000 2 (4, 6, 6, 0) 2.68 60.84 2736.44
27 100 0.8 20.00 20.00 1000 6, 7 0 5.11 25.82 5135.83
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Table 6: Performance Metrics from the Simulation Study Evaluating Threshold Policies for Non-
Stationary Demand (Scenarios 28-36). (Note, the values in bold denote the policy that achieves the
minimum weighted waiting cost for each scenario).

V ρ λr λw er/ew Policy k E[W k
r ] E[W k

w] θk
28 25 0.4 4.00 1.00 1000 5 7 0.02 16.58 35.00
28 25 0.4 4.00 1.00 1000 1, 3, 4 4 0.04 2.40 38.20
28 25 0.4 4.00 1.00 1000 2 (3, 4, 5, 7) 0.06 7.41 70.81
28 25 0.4 4.00 1.00 1000 6 3 0.09 1.52 88.62
28 25 0.4 4.00 1.00 1000 7 0 0.10 0.19 98.13
29 25 0.6 6.00 1.50 1000 1, 5 6 5.09 320.55 5410.27
29 25 0.6 6.00 1.50 1000 4 4 6.34 137.06 6479.08
29 25 0.6 6.00 1.50 1000 3 5 7.21 209.68 7423.47
29 25 0.6 6.00 1.50 1000 6 2 8.39 58.24 8447.01
29 25 0.6 6.00 1.50 1000 2 (4, 6, 6, 2) 8.85 196.40 9049.32
29 25 0.6 6.00 1.50 1000 7 0 10.94 23.00 10959.16
30 25 0.8 8.00 2.00 1000 1, 5 6 102.31 4093.18 106403.38
30 25 0.8 8.00 2.00 1000 3 3 119.01 1220.38 120232.89
30 25 0.8 8.00 2.00 1000 4 2 124.73 865.99 125597.76
30 25 0.8 8.00 2.00 1000 6, 7 0 151.83 547.39 152377.63
30 25 0.8 8.00 2.00 1000 2 (4, 6, 0, 0) 153.51 1109.95 154619.47
31 75 0.4 12.00 3.00 1000 1 4 0.00 0.00 0.00
31 75 0.4 12.00 3.00 1000 2 (3, 4, 6, 8) 0.00 0.00 0.00
31 75 0.4 12.00 3.00 1000 3, 4 5 0.00 0.00 0.00
31 75 0.4 12.00 3.00 1000 5 8 0.00 0.00 0.00
31 75 0.4 12.00 3.00 1000 6 3 0.00 0.00 0.00
31 75 0.4 12.00 3.00 1000 7 0 0.00 0.00 0.00
32 75 0.6 18.00 4.50 1000 5 10 0.06 15.83 74.41
32 75 0.6 18.00 4.50 1000 3, 4 6 0.08 5.06 82.25
32 75 0.6 18.00 4.50 1000 2 (4, 6, 10, 5) 0.09 8.94 94.42
32 75 0.6 18.00 4.50 1000 1 7 0.12 7.32 131.58
32 75 0.6 18.00 4.50 1000 6 4 0.13 2.35 132.48
32 75 0.6 18.00 4.50 1000 7 0 0.23 0.71 228.16
33 75 0.8 24.00 6.00 1000 5 9 24.74 608.27 25350.98
33 75 0.8 24.00 6.00 1000 1 10 25.02 737.99 25759.68
33 75 0.8 24.00 6.00 1000 3 4 32.89 322.93 33208.57
33 75 0.8 24.00 6.00 1000 4 2 36.39 237.64 36629.23
33 75 0.8 24.00 6.00 1000 2 (4, 9, 0, 0) 42.11 264.77 42377.40
33 75 0.8 24.00 6.00 1000 6, 7 0 43.22 183.22 43402.40
34 100 0.4 16.00 4.00 1000 1 4 0.00 0.00 0.00
34 100 0.4 16.00 4.00 1000 2 (3, 4, 6, 8) 0.00 0.00 0.00
34 100 0.4 16.00 4.00 1000 3, 4 5 0.00 0.00 0.00
34 100 0.4 16.00 4.00 1000 5 8 0.00 0.00 0.00
34 100 0.4 16.00 4.00 1000 6 3 0.00 0.00 0.00
34 100 0.4 16.00 4.00 1000 7 0 0.00 0.00 0.00
35 100 0.6 24.00 6.00 1000 1, 3 7 0.00 1.01 5.99
35 100 0.6 24.00 6.00 1000 6 4 0.01 0.25 9.84
35 100 0.6 24.00 6.00 1000 7 0 0.02 0.03 17.29
35 100 0.6 24.00 6.00 1000 4 6 0.02 0.96 19.34
35 100 0.6 24.00 6.00 1000 5 10 0.02 2.54 19.36
35 100 0.6 24.00 6.00 1000 2 (4, 6, 10, 6) 0.02 2.20 21.81
36 100 0.8 32.00 8.00 1000 1 10 16.77 447.59 17219.31
36 100 0.8 32.00 8.00 1000 5 9 17.84 413.06 18251.78
36 100 0.8 32.00 8.00 1000 3 4 22.38 229.84 22607.44
36 100 0.8 32.00 8.00 1000 4 2 25.87 182.58 26050.75
36 100 0.8 32.00 8.00 1000 6, 7 0 30.29 139.58 30428.25
36 100 0.8 32.00 8.00 1000 2 (4, 9, 0, 0) 30.83 191.99 31024.85
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vehicles has on reducing the impact of variability, the average waiting time also varies with number

of vehicles available (average reserve customer waiting times are 22.23, 4.89, and 2.96 minutes for

V = 25, 75, and 100, respectively; average walk-in customer waiting times are 708.18, 106.89, and

67.20 minutes for V = 25, 75, and 100, respectively). Scenarios with large walk-in customer waiting

times can occur for two primary reasons. First, the use of a threshold policy means that both walk-in

customers and vehicles can wait simultaneously. Second, the non-stationary arrival patterns create

peak periods when arrival rates are high and waiting times are large, and non-peak periods when

vehicles are waiting idle due to low customer arrival rates.

Our numerical testing provides insights into recommending threshold policies in a dynamic non-

stationary environment. A threshold policy outperforms the no threshold policy in all but two

cases (i.e., Scenarios 8 and 26 have policy 7 performing best; however, both scenarios represent

systems that have close to zero expected waiting times for both customer classes). Therefore,

implementing a threshold policy can improve profitability of rental providers. We also find that

simple, static threshold policies tend to outperform more complicated, dynamic threshold policies,

even when reserve customer arrival demand is non-stationary. Out of all of the policies tested, the

SIPP approach (Policy 2) is the only dynamic threshold policy in that K∗ is adjusted depending

on the customer arrival rate at a particular time. From our analysis, we find that a simple static

policy outperforms a more complicated, dynamic policy (i.e., Policy 2 is the recommended policy

only for scenario 5). The SIPP approach does not perform well when the system utilization is

high, which can be attributed to violating many of the assumptions that are made with applying

independent queuing models to set threshold quantities. These violated assumptions include that a

system achieves steady state and that waiting times in adjacent periods are statistically independent

[11].

A policy that uses the average arrival rate (Policy 1) tends to perform well (i.e., Policy 1 per-

formed best in 26/36 scenarios). However, not one single policy dominates in all scenarios. Therefore,

consideration should be given to the number of vehicles, fleet utilization, arrival rates, and penalty

values. When reserve customer waiting time has a much greater penalty than walk-in customer wait-

ing times (i.e., when er/ew = 1000), a policy that uses the maximum threshold or average arrival

rate policy (Policy 1 or 5) is recommended.
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6. Conclusions

Because both responsiveness and customer differentiation impact profitability, we developed

stochastic models to analyze rental provider policies that have two classes of customers. We analyzed

a condition-based threshold policy that provides vehicles to walk-in customers only if the number of

vehicles available exceeds a threshold quantity that considered the waiting times of both customer

classes. We modeled such a rental depot as a multi-class non-work-conserving semi-open queuing

with stochastic inputs. We developed an optimization model to determine the optimal threshold

quantities that considers customer waiting times and relative importance for both customer classes.

When arrival rates are stationary, we analyzed threshold policies using closed-form expressions for

both exponential and deterministic vehicle unavailability periods. For non-stationary demand rates,

we developed seven policies and analyzed them using a discrete-event simulation model. To provide

insights into threshold policies, we conducted numerical testing that varied the number of vehicles,

fleet utilization, arrival rates, and penalty weights.

Through the development of our analytical models and our numerical results we were able to

provide the following non-intuitive managerial insights about rental provider threshold policies.

• Although a threshold policy is implemented to reduce the probability that a reserve customer

may have to wait because all the vehicles are rented, the optimal threshold quantity does not

always increase as the reserve customer arrival rate increases. Instead, because of the nonlinear

relationship between utilization and customer waiting time, the optimal threshold quantity is

a concave function in reserve customer arrival rates. Similarly, the optimal threshold quantity

does not always increase as the walk-in arrival rate increases.

• We identify that the threshold quantities are fairly insensitive to the distribution of vehicle

unavailability times.

• Through numerical testing we find that simple, static threshold policies tend to outperform

more complicated, dynamic threshold policies, even when reserve customer arrival demand is

non-stationary.

Our models can be adapted in other situations where customer classes with different priorities

compete for resource capacity, such as berth assignment at a container terminal or shelf-space

assignment at a third-party logistics provider. Future research could also examine non-stationary

demand threshold policies where multiple classes of vehicles exist. Such an analysis could include
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the trade-off between the cost of upgrading a customer to a higher vehicle class and the decrease in

waiting time costs.
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