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Abstract

Objective function in term structure estimation with price errors is not only non-
linear but also non-convex in parameters. This makes the final results sensitive to
both the choice of the optimization routine as well as to the starting guess. This
study looks at the impact of the choice of the optimization routine to final
parameter estimates for the Svensson model. While results are expected to
differ numerically across routines, what is of interest is the economic impact.
Using eleven different routines over a range of starting parameter values, it is
found while there is significant variation in the final objective function value
across routines, for the most part, implied short-rates and long-rates have low
standard deviation. Also, while grid-search seems unavoidable, popular quasi-
Newton methods allowing for linear constraints seem quite adequate for the

task at hand.
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On the Choice of Optimization Routine in Estimation of Parsimonious
Term Structure Models: Results from the Svensson Model

[. Introduction

Non-convex optimization problems are notoriouslydi@a estimate. Finding global
optimum, even if it is known to exist, is rare dmdhl estimates are highly sensitive to the
‘initial guess’ provided to the optimization rowinWith multiple parameters, the
problem is even harder becawsgriori one has very little idea of the shape of the
objective function — which means there is littléphi@ available in selecting the ‘right’

optimization routine for the problem.

Term structure estimation using price errors walhspnonious models like Nelson-
Siegel (1987) and Svensson (1994) is an importearngle of non-convex optimization
in finance. Despite their popularity (or perhapsaese of it), however, very few studies
have explicitly studied estimation issues involyed. Gilli, Grobe and Schumann, 2010;

GGS hereafter) and the impact of the choice ofhaigttion routine.

This study takes a look at the sensitivity of timalf parameter estimates to the choice of
the optimization routine for the Svensson modepadrticular, it is studied how the

objective function valuef(al hereafter) and the final parameter vectorHereafter) vary

across different optimization routines as the ahparameter vectotb(, hereafter) is

changed. While results are expected to differ gtaiMely across optimization routines,
what is of interest rate is whether the impactisn®mically significant.

I1. The Objective Function
2.1 The Svensson spot rate

Svensson is an extension of the Nelson-Siegel fipen to allow for more flexibility

in the shape of the term structure. The resultpegsication for the spot rate is:
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In the above equatiog, and B, + S, are implied long-rate and short-rate respectively,

B, and B, describe the medium-term component, and along wyénd 7, (which

determine the location of ‘humps’) define the shapthe curve.
2.2 The Objective Function

The optimization problem involved is minimizing theeighted sum of square of price

errors, i.e. the objective function is:

N
minZ(wiei)z
i=1

[2]
subject to non-negativity constraints imposed endthort-rate, the long-raten - «)
and onthe s,and7, — 7, > 0.2 (to enable unique identification afs); & =P - P is
the difference between the model price and thesttgmlice and the weights, are given

as:

[3]
whered, is the Macaulay duration of th& bond. This weighing scheme corrects for

heteroskedasticity as well as proxies for miningzymeld errors.

Note that if spot rates can be bootstrapped ordotwates are known and one has some
idea of location of the *humps’ in the yield curfre. one can guesstimats), estimation
of the remaining parameters boils down to an egeriti simple least square regression.
This means that even if one did not know the values, one could still potentially get
away with a simpler exercise in least squares esitom over a set of s and then select
the best among those. Unfortunately, illiquid delarkets like those in India neither
allow for a sufficient number of bootstrapped sfooward rates, nor can one take the

liberty of assuming the location of the ‘humps’.

T
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3.1 Estimation strategy and the choice of the optimization routine

Normally the estimation strategy for such problemosild be to select a starting vector of

parameters for the given day’s data (this studg tise same dataset used in Virmani,

2012), find errors based on the starting vectorthed use a suitable optimization routine

for finding the optimum. One can then either wateomputer program for optimization

or select from among many software available. Gia the focus of this study is

comparison of different optimization routines, ateoof software is important.

This paper studies the optimization routines ablan open source R software and

contributed packages. The preference for R is drijethe availability of the source

code (its open-source nature) and its popularithénscientific community. The eleven

routines used are given in Table 1 and cover thadclass of Newton-based, simplex-

based and heuristics-based methods.

Table 1

Optimization Routines Used

Sr. | Routine R Package| Developer
Augmented Lagrangian (AuglLag; Stefan Theussl, Institute for
1 Sequential Quadratic Programming; Rsolnp | Statistics and Mathematics,
constrained) University of Vienna
Broyden-Fletcher-Goldfarb-Shanno _
2 . . optim Part of R base (R Development)
(BFGS; quasi-Newton; unconstrained)
Box-constrained BFGS (L-BFGS-B,; _
3 ) _ optim - do-
quasi-Newton; bound constraints)
BFGS with Constraints (BFGSConst.; .
4 _ . coptim - do-
quasi-Newton; constrained)
5 Conjugate Gradient (CG; unconstrained) optim do -
Katharine Mullen, National
Differential Evolution (DE; Heuristics- Institute of Standards and
6 RcppDE

based; bound constraints)

Technology, US Department of

Commerce.

L T——
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Nelder Mead (NM; Simplex;

7 _ optim Part of R base (R Development)
unconstrained)
Nelder Mead with Constraints .
8 _ . coptim - do-
(NMConst; Simplex; constrained)
Non-linear Minimization (NLM; Newton
9 _ nim Part of R stats (R Development)
unconstrained)
Katharine Mullen, National
Trust Region (TR; Line-search; _ Institute of Standards and
10 ) minga
constrained) Technology, US Dept. of
Commerce.
Unconstrained Non-linear Optimization R port to FORTRAN routine
11 | (UCMINF; quasi-Newton; ucminf MINF by Hans Brunn Nielsen,

unconstrained)

Technical University of Denmark

While comparing the implementation details of tekested routines in R is beyond the

scope of this short note (R package repositoryrdescthem in some detail), it may be

mentioned that most of the routines selected mghidy are ported versions of their C++

or FORTRAN counterparts which have been in uselémades. Also, only those

routines/packages have been used which have beeloded by the R development

team or at a research institution.

3.2 The Methodology: Sensitivity of fval and b to b, for a given optimization routine

Since for non-convex optimization problems finauks are sensitive to the choice of

starting guess, for each optimization routine thalfresults are evaluated over a set of

initial guesses. Starting with a reasonable chofdbe starting guesls, (such that the

resulting short and long rates are meaningful)id ggarch is done around it to see how

fval varies with local changes in, .

Figures 1 shows two contour plots (out of a total’6% = 15) for the shape of the

objective function. The two are indicative of tlat fportions in the shape of the objective

W.P. No. 2013-01-02
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function, multiple local minima and high sensityaf fval to initial guess — typical of

non-convex optimization.
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V. Results and Discussion
Given the variation dfival for changing first stage starting guess, the sestegk initial

parameter vector was taken to be:

by ={8, =79, 8 =-10,8,=-05,4, =051, =5.0, 7, = 4.0}. The range of
starting values for the first four parameters thexsg, [1[2.9,10.9], g, O[ —=5.0,3.0],
p,0[ -65,15] , p,0[ -55,2.5] with a step-size for each 64, and range for the

next two wasr, J[1.0,17.0] with a step-size af.0 andz, J[0.00+,16.0] with a

step-size 00.8.

For DE the parameters to specify include the ‘@hipiopulation” NP), “mutation” (F),
“crossover probability’ CR) and “strategy”. NP is selected to be an arrasizé 60
(recommended to be ten times the number of paras)étem the subset of the initial
parameter vector space above. Recommended “sttdtagguch problems, and default
in packageRcppDE, is local-to-best/1/bin (for more on choice of p&ameters see
Storn and Price, 1997).

Selecting- and CR is a matter of some trial and error, ang #ne varied with a step-
size 0f0.1 between 0.1 and 1.9 fér, and 0.1 and 0.9 f&€R. Other parameter settings

across optimization routines are available fronhaubn request.

L e—
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Rather than estimating parameters for all possitalging vectors (which would mean

2176 > 80 million iterations), parameters are whoee at a time keeping others fixed at

their value inb; . This results in 21 * 6 = 126 different startingegses for each

optimization routine other than DE and 19 * 9 = 1@1DE over the range & andCR.

Table 2 presents results on the variation in staig; long-rate, final objective function

value and number of outliers (optimization routiaging to converge). Entries in the

table represent the range with the associated atamiviation in parentheses below.

Table 2
Range of Short-rate, Long-rate and Objective Fonctlalue across Optimization
Routines
_ Range of Short-| Range of Long- Range of Objective | Number
Sr.| Routine _ 4 )
Rate (6, + 5,) Rate (6,) Function Valuefial * 107) | of Outliers
4.84 —4.98 6.61-9.19 2.63 —3.09
1 | AuglLag 0
(0.02) (0.45) (0.09)
492 -5.10 6.74 —8.04 2.12 -2.65
2 | BFGS 0
(0.02) (0.24) (0.06)
4.89 -5.10 6.63-11.51 1.93-2.69
3 | L-BFGS-B 1
(0.02) (0.48) (0.08)
4.69 —5.09 3.89-8.26 2.14 -2.85
4 | BFGSConst 0
(0.03) (0.82) (0.08)
4.86 - 5.01 6.65 — 8.89 2.56 - 4.17
5 | CG 0
(0.03) (0.42) (0.32)
4.80 -6.20 0.05 - 15.00 1.83-106.30
6 | DE NA
(0.28) (2.78) (17.25)
4.90-5.13 3.16 —12.90 2.19 - 2.67
7 | NM 9
(0.05) (1.05) (0.10)
491 -5.09 4.57 - 8.90 2.12-2.79
8 | NMConst. 0
(0.03) (0.04) (0.09)
9 | NLM 4.92 -4.93 6.80 —7.21 2.63 - 2.65 29
|
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(0.001) (0.07) (0.002)
4.85-5.97 4,72 — 8.65 2.09 —4.47
10 | TR 0
(0.11) (0.66) (0.21)
492 -494 6.74 —7.84 2.62 - 2.65
11 | UCM 2
(0.002) (0.19) (0.01)

It is not unexpected that results would vary achferent optimization routines.
However, for the range of reasonable starting gaeglied in this note, Table 2 suggests
that other than DE, NLM and NM (all unconstrainedqedures), there is clearly little to

choose among the rest.

The estimate of the short-ratg,(+ ;) and long-rate across the remaining eight routines

(1008 different estimations) is between 4.69 — 50@&nd 4.57 — 9.19% respectively
(ignoring two extreme values of long-rate of 3.88f6 11.51%). While long-rate is more
variable than the short-rate, range in both isatetming. For a given a routine, over the
set of reasonable starting guesses, results anenewee encouraging in that the range of
short-rate and long-rate is very reasonable. Tuggeasts that while grid search over a
range of initial guesses is unavoidable, both gi&svton and Trust-region based

methods work well.

It must be added, however, that for specific val@ndCR, DE results in the lowest
value offval, which is what GGS base their recommendation obDE priori,
however, case for DE is slightly weak because whiteay give the a better optimum
(lowerfval), it does not promise an economically meaningéslit as it does not

naturally allow for constraints.

V. Conclusion

Estimation of parameters based on non-convex opditioin is susceptible to both the
choice of the initial guess as well as to the ahatthe optimization routine. This note
has looked at the sensitivity of the final paramatehe choice of the optimization
routine for the Svensson model. While final resulése expected to vary numerically,
economically results are not very variable acragsufar optimization routines. Given

- TT———
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that parsimonious term structure models of the Ss@m-type are more popular with the
central bankers for studying monetary policy, thigood news — as robustness is more

appealing than goodness-of-fit for such purposes.

As an aside, while an R-user is clearly spoiltdboice when it comes to implementing
optimization in practice, better documentation araliite of test dataset and programs for

validation would definitely go a long way in helgiselect the ‘right’ routine.
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