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Abstract 

 

Objective function in term structure estimation with price errors is not only non-

linear but also non-convex in parameters. This makes the final results sensitive to 

both the choice of the optimization routine as well as to the starting guess. This 

study looks at the impact of the choice of the optimization routine to final 

parameter estimates for the Svensson model. While results are expected to 

differ numerically across routines, what is of interest is the economic impact. 

Using eleven different routines over a range of starting parameter values, it is 

found while there is significant variation in the final objective function value 

across routines, for the most part, implied short-rates and long-rates have low 

standard deviation. Also, while grid-search seems unavoidable, popular quasi-

Newton methods allowing for linear constraints seem quite adequate for the 

task at hand. 
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On the Choice of Optimization Routine in Estimation of Parsimonious 

Term Structure Models: Results from the Svensson Model 
 

I. Introduction 

Non-convex optimization problems are notoriously hard to estimate. Finding global 

optimum, even if it is known to exist, is rare and final estimates are highly sensitive to the 

‘initial guess’ provided to the optimization routine. With multiple parameters, the 

problem is even harder because a priori one has very little idea of the shape of the 

objective function – which means there is little help in available in selecting the ‘right’ 

optimization routine for the problem.  

 

Term structure estimation using price errors with parsimonious models like Nelson-

Siegel (1987) and Svensson (1994) is an important example of non-convex optimization 

in finance. Despite their popularity (or perhaps because of it), however, very few studies 

have explicitly studied estimation issues involved (e.g. Gilli, Grobe and Schumann, 2010; 

GGS hereafter) and the impact of the choice of optimization routine. 

 

This study takes a look at the sensitivity of the final parameter estimates to the choice of 

the optimization routine for the Svensson model. In particular, it is studied how the 

objective function value (fval hereafter) and the final parameter vector (b%  hereafter) vary 

across different optimization routines as the initial parameter vector (0b  hereafter) is 

changed. While results are expected to differ quantitatively across optimization routines, 

what is of interest rate is whether the impact is economically significant.  

 

II. The Objective Function 

2.1 The Svensson spot rate 

 

Svensson is an extension of the Nelson-Siegel specification to allow for more flexibility 

in the shape of the term structure. The resulting specification for the spot rate is: 
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In the above equation 0β  and 0β  + 1β  are implied long-rate and short-rate respectively, 

2β  and 3β   describe the medium-term component, and along with 1τ and 2τ  (which 

determine the location of ‘humps’) define the shape of the curve.   

 

2.2 The Objective Function 

 

The optimization problem involved is minimizing the weighted sum of square of price 

errors, i.e. the objective function is: 
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           [2] 

subject to non-negativity constraints imposed on the short-rate, the long-rate )( ∞→m  

and on theτ s, and 0.2>− 21 ττ  (to enable unique identification of τ s); 
^

iii PP −=ε  is 

the difference between the model price and the traded price and the weights iω  are given 

as: 
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           [3] 

where id  is the Macaulay duration of the thi  bond. This weighing scheme corrects for 

heteroskedasticity as well as proxies for minimizing yield errors. 

 

Note that if spot rates can be bootstrapped or forward rates are known and one has some 

idea of location of the ‘humps’ in the yield curve (i.e. one can guesstimateτ s), estimation 

of the remaining parameters boils down to an exercise in simple least square regression. 

This means that even if one did not know the value of τ s, one could still potentially get 

away with a simpler exercise in least squares estimation over a set of τ s and then select 

the best among those. Unfortunately, illiquid debt markets like those in India neither 

allow for a sufficient number of bootstrapped spot/forward rates, nor can one take the 

liberty of assuming the location of the ‘humps’.  
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III. Methodology 

3.1 Estimation strategy and the choice of the optimization routine 

 

Normally the estimation strategy for such problems would be to select a starting vector of 

parameters for the given day’s data (this study uses the same dataset used in Virmani, 

2012), find errors based on the starting vector and then use a suitable optimization routine 

for finding the optimum. One can then either write a computer program for optimization 

or select from among many software available. Given that the focus of this study is 

comparison of different optimization routines, choice of software is important. 

 

This paper studies the optimization routines available in open source R software and 

contributed packages. The preference for R is driven by the availability of the source 

code (its open-source nature) and its popularity in the scientific community. The eleven 

routines used are given in Table 1 and cover the broad class of Newton-based, simplex-

based and heuristics-based methods.  

 

Table 1 

Optimization Routines Used 

Sr. Routine R Package Developer 

1 

Augmented Lagrangian (AugLag; 

Sequential Quadratic Programming; 

constrained) 

Rsolnp 

Stefan Theussl, Institute  for 

Statistics and Mathematics, 

University of Vienna 

2 
Broyden-Fletcher-Goldfarb-Shanno 

(BFGS; quasi-Newton; unconstrained) 
optim Part of R base (R Development) 

3 
Box-constrained BFGS (L-BFGS-B; 

quasi-Newton; bound constraints) 
optim - do -  

4 
BFGS with Constraints (BFGSConst.; 

quasi-Newton; constrained) 
coptim - do -  

5 Conjugate Gradient (CG; unconstrained) optim - do -  

6 
Differential Evolution (DE; Heuristics-

based; bound constraints) 
RcppDE 

Katharine Mullen, National 

Institute of Standards and 

Technology, US Department of 

Commerce. 
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7 
Nelder Mead (NM; Simplex; 

unconstrained) 
optim Part of R base (R Development) 

8 
Nelder Mead with Constraints 

(NMConst; Simplex; constrained) 
coptim - do -  

9 
Non-linear Minimization (NLM; Newton; 

unconstrained) 
nlm Part of R stats (R Development) 

10 
Trust Region (TR; Line-search; 

constrained) 
minqa 

Katharine Mullen, National 

Institute of Standards and 

Technology, US Dept. of 

Commerce. 

11 

Unconstrained Non-linear Optimization 

(UCMINF; quasi-Newton; 

unconstrained) 

ucminf 

R port to FORTRAN routine 

MINF by Hans Brunn Nielsen, 

Technical University of Denmark  

 

 

While comparing the implementation details of the selected routines in R is beyond the 

scope of this short note (R package repository describes them in some detail), it may be 

mentioned that most of the routines selected in this study are ported versions of their C++ 

or FORTRAN counterparts which have been in use for decades. Also, only those 

routines/packages have been used which have been developed by the R development 

team or at a research institution. 

 

3.2 The Methodology: Sensitivity of  fval and b%  to 0b  for a given optimization routine 

 

Since for non-convex optimization problems final results are sensitive to the choice of 

starting guess, for each optimization routine the final results are evaluated over a set of 

initial guesses. Starting with a reasonable choice of the starting guess 0b  (such that the 

resulting short and long rates are meaningful) a grid search is done around it to see how 

fval varies with local changes in 0b .  

 

Figures 1 shows two contour plots (out of a total of 6C2 = 15) for the shape of the 

objective function. The two are indicative of the flat portions in the shape of the objective 
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function, multiple local minima and high sensitivity of fval to initial guess – typical of 

non-convex optimization.  

  

 

IV. Results and Discussion 

Given the variation of fval for changing first stage starting guess, the second stage initial 

parameter vector was taken to be:

{ }4.05.00.50.51.07.9b ===−=−=== 213210
*
0 ,,,,, ττββββ . The range of 

starting values for the first four parameters then was 10.9][2.9,β0 ∈ , 3.0]5.0,[β −∈1 , 

1.5]6.5,[β2 −∈  ,  2.5]5.5,[β3 −∈  with a step-size for each of 0.4,  and range for the 

next two was 17.0][1.0,τ1 ∈  with a step-size of 1.0  and 16.0],00[0τ2 +∈ .  with a 

step-size of 0.8.  

 

For DE the parameters to specify include the “initial population” (NP), “mutation” (F), 

“crossover probability” (CR) and “strategy”. NP is selected to be an array of size 60 

(recommended to be ten times the number of parameters) from the subset of the initial 

parameter vector space above. Recommended “strategy” for such problems, and default 

in package RcppDE, is local-to-best/1/bin (for more on choice of DE parameters see 

Storn and Price, 1997). 

 

Selecting F and CR is a matter of some trial and error, and they are varied with a step-

size of 0.1 between 0.1 and 1.9 for F, and 0.1 and 0.9 for CR. Other parameter settings 

across optimization routines are available from author on request. 
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Rather than estimating parameters for all possible starting vectors (which would mean 

21^6 > 80 million iterations), parameters are varied one at a time keeping others fixed at 

their value in *
0b . This results in 21 * 6 = 126 different starting guesses for each 

optimization routine other than DE and 19 * 9 = 171 for DE over the range of F and CR. 

 

Table 2 presents results on the variation in short-rate, long-rate, final objective function 

value and number of outliers (optimization routine failing to converge). Entries in the 

table represent the range with the associated standard deviation in parentheses below.  

 

Table 2 

Range of Short-rate, Long-rate and Objective Function Value across Optimization 

Routines 

Sr. Routine 
Range of Short-

Rate ( 1ββ0 + ) 

Range of Long-

Rate ( 0β ) 

Range of Objective 

Function Value (fval * 104) 

Number  

of Outliers 

1 AugLag 
4.84 – 4.98 

(0.02) 

6.61 – 9.19 

(0.45) 

2.63 – 3.09 

(0.09) 
0 

2 BFGS 
4.92 – 5.10 

(0.02) 

6.74 – 8.04 

(0.24) 

2.12 – 2.65 

(0.06) 
0 

3 L-BFGS-B 
4.89 – 5.10 

(0.02) 

6.63 – 11.51 

(0.48) 

1.93 – 2.69 

(0.08) 
1 

4 BFGSConst. 
4.69 – 5.09 

(0.03) 

3.89 – 8.26 

(0.82) 

2.14 – 2.85 

(0.08) 
0 

5 CG 
4.86 – 5.01 

(0.03) 

6.65 – 8.89 

(0.42) 

2.56 – 4.17 

(0.32) 
0 

6 DE 
4.80 – 6.20 

(0.28) 

0.05 – 15.00 

(2.78) 

1.83 – 106.30 

(17.25) 
NA 

7 NM 
4.90 – 5.13 

(0.05) 

3.16 – 12.90 

(1.05) 

2.19 – 2.67 

(0.10) 
9 

8 NMConst. 
4.91 – 5.09 

(0.03) 

4.57 – 8.90 

(0.04) 

2.12 – 2.79 

(0.09) 
0 

9 NLM 4.92 – 4.93 6.80 – 7.21 2.63 – 2.65 29 
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(0.001) (0.07) (0.002) 

10 TR 
4.85 – 5.97 

(0.11) 

4.72 – 8.65 

(0.66) 

2.09 – 4.47 

(0.21) 
0 

11 UCM 
4.92 – 4.94 

(0.002) 

6.74 – 7.84 

(0.19) 

2.62 – 2.65 

(0.01) 
2 

 

 

It is not unexpected that results would vary across different optimization routines. 

However, for the range of reasonable starting guess studied in this note, Table 2 suggests 

that other than DE, NLM and NM (all unconstrained procedures), there is clearly little to 

choose among the rest.  

 

The estimate of the short-rate (0β  + 1β ) and long-rate across the remaining eight routines 

(1008 different estimations) is between 4.69 – 5.97 % and 4.57 – 9.19% respectively 

(ignoring two extreme values of long-rate of 3.89% and 11.51%). While long-rate is more 

variable than the short-rate, range in both is not alarming. For a given a routine, over the 

set of reasonable starting guesses, results are even more encouraging in that the range of 

short-rate and long-rate is very reasonable. This suggests that while grid search over a 

range of initial guesses is unavoidable, both quasi-Newton and Trust-region based 

methods work well. 

 

It must be added, however, that for specific values F and CR, DE results in the lowest 

value of fval, which is what GGS base their recommendation of DE on. A priori, 

however, case for DE is slightly weak because while it may give the a better optimum 

(lower fval), it does not promise an economically meaningful result as it does not 

naturally allow for constraints.  

 

V. Conclusion 

Estimation of parameters based on non-convex optimization is susceptible to both the 

choice of the initial guess as well as to the choice of the optimization routine. This note 

has looked at the sensitivity of the final parameter to the choice of the optimization 

routine for the Svensson model. While final results were expected to vary numerically, 

economically results are not very variable across popular optimization routines. Given 
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that parsimonious term structure models of the Svensson-type are more popular with the 

central bankers for studying monetary policy, this is good news – as robustness is more 

appealing than goodness-of-fit for such purposes.  

 

As an aside, while an R-user is clearly spoilt for choice when it comes to implementing 

optimization in practice, better documentation and a suite of test dataset and programs for 

validation would definitely go a long way in helping select the ‘right’ routine. 
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