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Abstract

The single row facility layout problem (SRFLP) is an important combinatorial optimization
problem where a given set of facilities have to be arranged in a single row so as to minimize the
weighted sum of the distances between all pairs of facilities. Sensitivity analysis for the SRFLP
has not been reported in the literature till date. In this paper we present closed form expressions
for tolerances of all SRFLP parameters. We also present heuristics to obtain upper bounds on
the values of these tolerances. Our computational experiments show that the heuristics obtain
exact values of tolerances for small sized instances. For larger sized instances, our heuristics
obtain good quality bounds on the values of tolerances for a large fraction of the problem
parameters. We also present a tightening procedure to improve on the upper bounds generated
by our heuristics.

Keywords: Single row facility layout problem; Sensitivity analysis; Tolerances; Upper bounds;
Heuristics;

1 Introduction

The Single Row Facility Layout Problem (SRFLP) is formally defined as follows.

Given: A set F = {1, 2, . . . , n} of n facilities, n > 2; length lj ≥ 0 of facility j ∀j ∈ F ; transmission
intensity cij ≥ 0 of facility pair (i, j), ∀(i, j) ∈ F × F .

Objective: To obtain a permutation S = (s1, s2, . . . , sn) of facilities in F that minimizes the cost

z(S) =

n−1∑
i=1

n∑
j=i+1

csisjdsi,sj ,

where dsisj = (lsi + lsj )/2 +
∑j−1

k=i+1 lsk .

We denote a SRFLP instance using the notation I = (F,L,C) where F is a given set of facilities,
L = (li) is a n-dimensional vector of lengths, and C = [cij ] is a n × n matrix of transmission
intensities. Individual values of facility lengths and transmission intensities are the parameters in a
SRFLP instance.

The SRFLP has numerous practical applications (see, e.g., Simmons 1969) and is known to be
NP-Hard (Beghin-Picavet and Hansen 1982). Methods of solving the problem to optimality (see,
e.g., Anjos and Yen 2009, Hungerländer and Rendl 2011, Amaral and Letchford 2012, for recent
studies), as well as methods to obtain good quality solutions for the problem within reasonable times
(see, e.g., Samarghandi and Eshghi 2010, Datta et al. 2011, for recent studies) have been studied
extensively in the literature.
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The study of postoptimality analysis (see, e.g., Nauss 1979, Gal and Greenberg 1997) is an
important aspect in optimization problems. It deals with the stability of a given optimal solution
to changes in instance data. Specifically, given a problem instance and an optimal solution to the
instance, postoptimality analysis obtains bounds within which one or more problem parameters can
vary without compromizing the optimality of the given optimal solution. Such an analysis is useful for
hard optimization problems, and has received much attention in the literature (see, e.g., Greenberg
1998, and references therein). In practice, hard combinatorial optimization problems are often used
to model problem situations in which problem parameters change frequently. Recomputing optimal
solutions every time a parameter changes is not advisable, given that the problem is hard. Hence the
results from postoptimality analysis helps a decision maker to ascertain whether or not a particular
set of changes in data requires reoptimization.

One approach of postoptimality analysis is sensitivity analysis. In sensitivity analysis, the value
of exactly one problem parameter is allowed to vary, and the analysis computes the bounds within
which the parameter value can vary so that an optimal solution to the instance remains optimal
after the change in the value of that problem parameter. To the best of our knowledge, sensitivity
analysis for the SRFLP has not been studied in the literature. In this paper we present sensitivity
analysis results for the SRFLP. We use the tolerance approach to perform sensitivity analysis. In
this approach a SRFLP instance and an optimal solution to the instance are given, and upper and
lower tolerances for each SRFLP parameter are defined as follows.

Definition 1 (Upper Tolerance) Given a SRFLP instance I = (F,L,C) and an optimal solution
S∗ to I, the upper tolerance βp of parameter p is the maximum amount by which the value vp of p
can be increased such that S∗ remains an optimal solution to the instance obtained by increasing vp
by that amount in I.

Definition 2 (Lower Tolerance) Given a SRFLP instance I = (F,L,C) and an optimal solution
S∗ to I, the lower tolerance αp of parameter p is the maximum amount by which the value vp of p
can be decreased while maintaining its non-negativity such that S∗ remains an optimal solution to
the instance obtained by decreasing vp by that amount in I.

If the value vp of a problem parameter p lies in the interval (vp − αp, vp + βp) where αp and βp
are lower and upper tolerances respectively, then the given optimal solution to the instance remains
optimal for the instance.

The remainder of the paper is organized as follows. In Section 2 we present expressions for upper
and lower tolerances for each transmission intensity parameter and each facility length parameter. In
Section 3 we present four heuristics to compute upper bounds to the tolerance expressions presented
in Section 2. In Section 4 we present computational experiments that demonstrate the quality of
bounds output by the heuristic. In Section 5 we present an approach to tighten the bounds that
are obtained using the heuristics in Section 3. We summarize the paper in Section 6 and point out
directions for future research in this area.

2 Tolerances for SRFLP parameters

In this section we provide expressions for upper and lower tolerances for all parameters in a SRFLP
instance. Subsection 2.1 deals with the transmission intensity parameters and Subsection 2.2 deals
with the facility length parameters.
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2.1 Tolerances for transmission intensity parameters

Consider a SRFLP instance with n facilities, in which the length of facility i is li and the transmission
intensity between facilities i and j is cij . Let S be the set of all solutions to the instance and consider
a solution S ∈ S. Let z(S) be the cost of solution S. Then

z(S) =

n−1∑
i=1

n∑
j=i+1

cijdij , (1)

where dij is the distance between the centroids of facilities i and j. Now as Simmons (1969) points
out,

dij = (li + lj)/2 + bSij ,

where bSij is the sum of the lengths of the facilities between i and j in S. So,

z(S) =

n−1∑
i=1

n∑
j=i+1

cij(li + lj)/2 +

n−1∑
i=1

n∑
j=i+1

cijb
S
ij . (2)

Note that the first term in the right hand side of Equation (2) is identical for all solutions to the
instance. Thus minimizing

O(S) =

n−1∑
i=1

n∑
j=i+1

cijb
S
ij

to obtain an optimal solution to the SRFLP is an equivalent problem.

Now consider two facilities p and q in S with p located to the left of q. Then the objective
function z(S) can be written as

z(S) = cpq(lp + lq)/2 + cpqb
S
pq +

n−1∑
i=1

n∑
j=i+1

(i,j) 6=(p,q)

cij(li + lj)/2 +

n−1∑
i=1

n∑
j=i+1

(i,j)6=(p,q)

cijb
S
ij . (3)

If the value of cpq increases (decreases) the rate rSpq at which the cost of the solution S increases
(respectively, decreases) is

rSpq = (lp + lq)/2 + bSpq. (4)

Equation (4) leads us to the following lemma.

Lemma 3 If the transmission intensity cpqbetween two facilities p and q increases (decreases) in
a SRFLP instance, then the rate of increase (respectively, decrease) in the cost of a solution S in
which p and q are adjacent is the lowest among all solutions to the instance.

Proof: The rate of increase (decrease) in such cases is given by Equation (4). Since bSpq ≥ 0 for all

instances, and bSpq = 0 only when p and q are adjacent, the lemma holds. The next set of results
present the expressions for the upper and lower tolerances of transmission intensity parameters.

Theorem 4 Consider a SRFLP instance and an optimal solution S∗ to the instance. If facilities p
and q are not adjacent in S∗ then the upper tolerance βpq for cpq is

βpq = min
S∈S\{S∗}, bS∗pq >bSpq

{
z(S)− z(S∗)
bS∗pq − bSpq

}
.
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Proof: Since z(S) ≥ z(S∗) we restrict ourselves to solutions S ∈ S \ S∗ such that bS
∗

pq > bSpq.

Since S∗ is optimal, z(S) ≥ z(S∗). If cpq ↑ δ, δ > 0, small; then z(S) ↑ rSpqδ, and z(S∗) ↑ rS∗pq δ. If

δ > (z(S)− z(S∗))/(rS∗pq − rSpq) then after the change z(S) < z(S∗).

Thus solution S∗ ceases to be optimal after an increase in the value of cpq by δ. This happens for
the first time when the increase in the value of cpq is more than minS∈S\{S∗}{(z(S)− z(S∗))/(rS∗pq −
rSpq)}. Using equation (4) the theorem follows.

Remark 1 Theorem 4 has the following implications:

1. If facilities p and q are adjacent in an optimal solution then the upper tolerance for cpq is ∞.

2. If there are multiple optimal solutions, then the upper tolerance limit for cpq is 0 in all optimal
solutions but the ones in which bpq is the minimum.

Theorem 5 Consider a SRFLP instance and an optimal solution S∗ to the instance. If facilities p
and q occupy the two extreme positions in S∗, then the lower tolerance for cpq is the value of cpq

Proof: Consider any solution S ∈ S\{S∗}. Since S∗ is optimal, z(S) ≥ z(S∗). Since bS
∗

pq =
∑n

i=1

i6=p,q
li

in S∗, bS
∗

pq ≥ bSpq for every S ∈ S, and so rS
∗

pq ≥ rSpq for every S ∈ S. If cpq ↓ δ, δ > 0, small; then

z(S∗) ↓ rS∗pq δ and z(S) ↓ rSpqδ. Clearly after such a change, z(S) cannot be less than z(S∗) as δ > 0

and rS
∗

pq ≥ rSpq. The theorem follows.

Theorem 6 Consider a SRFLP instance and an optimal solution S∗ to the instance. If facilities p
and q do not occupy the two extreme positions in S∗, then the lower tolerance αpq for cpq is

αpq = min

{
cpq, min

S∈S\{S∗}, bS∗pq <bSpq

{
z(S)− z(S∗)
bSpq − bS

∗
pq

}}
.

Proof: Since z(S) ≥ z(S∗) we restrict ourselves to solutions S ∈ S \ S∗ such that bS
∗

pq < bSpq. Since

S∗ is optimal, z(S) ≥ z(S∗). If cpq ↓ δ, δ > 0, small; then z(S) ↓ rSpqδ, and z(S∗) ↓ rS∗pq δ. If

δ > (z(S) − z(S∗))/(rSpq − rS
∗

pq ) then after the change z(S) < z(S∗). Thus solution S∗ ceases to be
optimal after an decrease in the value of cpq by δ. This happens for the first time when the decrease
in the value of cpq is more than minS∈S\{S∗}{(z(S)− z(S∗))/(rSpq− rS

∗

pq )}. The theorem then follows
using equation (4) and the fact that transmission intensities are non-negative.

Remark 2 Theorem 6 implies that if there are multiple optimal solutions, then the lower tolerance
for cpq is 0 in the ones in which bpq is the minimum among all optimal solutions.

2.2 Tolerances for facility length parameters

Consider a solution S to a SRFLP instance I = (F,L,C). Given a particular facility p, the set of
facilities can be partitioned into three sets; set L consisting of all facilities to the left of p, set {p},
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and set R consisting of all facilities to the right of p. The cost of S can be written as

z(S) =
∑
[i,j]

i,j∈L∪{p}∪R

cij

(
(li + lj)/2 + bij

)

=
∑
[i,j]

i,j∈L∪R

cij(li + lj)/2 +
∑
[i,j]

i,j∈L

cijbij +
∑
[i,j]

i,j∈R

cijbij +

∑
j∈L∪R

cpj(lp + lj)/2 +
∑

j∈L∪R
cpjbpj +

∑
i∈L

∑
j∈R

cijbij . (5)

Now suppose that the value of lp increases (decreases) by δ. This change causes no change in bij
values if i and j both belong to either L or R. If one of i or j is p, then the value of bij increases
(respectively, decreases) by δ/2. If one of i and j belongs to L and the other to R then the value
of bij increases (respectively, decreases) by δ. This means that a change in the value of lp does not
affect the first three terms of Equation (5) but affects its last three terms. Hence the rate of change
of the value of z(S) due to a change in the value of lp is given by

rSp =
∑

j∈L∪R
cpj/2 +

∑
i∈L

∑
j∈R

cij . (6)

If p is at an extreme end of a solution S, then rSp =
∑

j 6=p cpj/2 and there does not exist a solution

S′ such that rS
′

p < rSp .

In the next few theorems we present expressions for upper and lower tolerances for facility length
parameters.

Theorem 7 Consider a SRFLP instance and an optimal solution S∗ to the instance. If facility p
does not occupy an extreme position in S∗, then the upper tolerance βp of lp is

βp = min
S∈S\{S∗}, rS∗p >rSp

{
z(S)− z(S∗)
rS∗p − rSp

}
.

Proof: Since z(S) ≥ z(S∗) we restrict ourselves to solutions S ∈ S \ S∗ such that rS
∗

p > rSp .

Since S∗ is optimal, z(S) ≥ z(S∗). If lp ↑ δ, δ > 0, small; then z(S) ↑ rSp δ, and z(S∗) ↑ rS∗p δ. If

δ > (z(S) − z(S∗))/(rS∗p − rSp ) then after the change z(S) < z(S∗). Thus solution S∗ ceases to be
optimal after an increase in the value of lp by δ. This happens when the increase in the value of lp
exceeds minS∈S\{S∗}{(z(S)− z(S∗))/(rS∗p − rSp )}. The theorem follows.

Remark 3 Since the rate of change in costs of solutions with respect to a change in the length of a
particular facility is independent of the length of the facility, the result in Theorem 7 is unaffected
by the existence of multiple optimal solutions.

Theorem 8 Consider a SRFLP instance and an optimal solution S∗ to the instance. If facility p
occupies an extreme position in S∗, then the upper tolerance βp of lp is ∞.

Proof: Assume to the contrary, that the upper tolerance of lp is u <∞. Let S be a solution whose
cost is lower than that of S∗ when lp ↑ (u+ ε), ε > 0, small. Without loss of generality, assume that
facility p occurs at the right-most position in S∗.

Since S∗ is optimal, z(S) ≥ z(S∗). As a consequence of Equation (6) the costs of all solutions
with p at an extreme end increases at the same rate when the value of lp increases. So, facility p
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cannot be present at an extreme end of S. Now if we partition the facilities into three sets, set L of
facilities to the left of p in S, set {p}, and set R of facilities to the right of p in S. Then

rSp − rS
∗

p =
( ∑

j∈L∪R
cpj/2 +

∑
i∈L

∑
j∈R

cij

)
−
(∑

j 6=p

cpj/2
)

=
∑
i∈L

∑
j∈R

cij ≥ 0.

So the cost of the postulated solution S is not lower than the cost of S∗, and when the value of lp
increases, the rate of increase in the cost of S is at least the same as that of of S∗. Hence the cost of
S∗ cannot be higher than the cost of S after any finite increase in the value of lp. This contradicts
our assumption and the theorem follows.

Theorem 9 Consider a SRFLP instance and an optimal solution S∗ to the instance. The lower
tolerance αp for lp is

αp = min

{
lp, min

S∈S\{S∗}, rS∗p <rSp

{
z(S)− z(S∗)
rSp − rS

∗
p

}}
.

Proof: Since z(S) ≥ z(S∗) we restrict ourselves to solutions S ∈ S \ S∗ such that rS
∗

p < rSp .

Since S∗ is optimal, z(S) ≥ z(S∗). If lp ↓ δ, δ > 0, small; then z(S) ↓ rSp δ, and z(S∗) ↓ rS∗p δ. If

δ > (z(S) − z(S∗))/(rSp − rS
∗

p ) then after the change z(S) < z(S∗). Thus solution S∗ ceases to be
optimal after a decrease in the value of lp by δ. This happens when the decrease in the value of lp
is at least minS∈S\{S∗}{(z(S) − z(S∗))/(rSp − rS

∗

p )}. The theorem now follows using the fact that
facility lengths are non-negative.

3 Heuristics for computing bounds on tolerances

The literature on sensitivity analysis for combinatorial optimization problems point to the result
that the computational complexity of sensitivity analysis for a combinatorial optimization problem
is exactly as hard as the problem itself (see, e.g., Wagelmans 1990, Ramaswamy 1994). This leads
us to believe that the computational complexity of sensitivity analysis of the SRFLP is NP-Hard.
Given this, it is unlikely that we will have algorithms that can obtain tolerances for all transmission
intensity and facility length parameters in time polynomial in the size of the SRFLP instance. Hence,
in this section we propose heuristics that provide upper bounds on the tolerances for these problem
parameters.

We present four heuristics to compute upper and lower tolerances for parameters, and all of
them are along similar lines. Hence we only provide details about the heuristic to compute upper
tolerances for transmission intensity parameters. The reader will observe that heuristics to compute
lower tolerances for transmission intensity parameters and upper and lower tolerances for facility
length parameters are obtained by making minor modifications in the heuristic described below.

Recall from Theorem 4 that the upper tolerance for transmission intensity cpq is given by the
expression

βpq = min
S∈S\{S∗}, bS∗pq >bSpq

{
z(S)− z(S∗)
bS∗pq − bSpq

}
.

So in order to compute βpq a solution method needs to search for a solution Su among all those
solutions S in which bSpq < bS

∗

pq and the ratio (z(S)−z(S∗))/(bS∗pq −bSpq) is the minimum. The number
of such solutions is potentially exponential in the size of the problem. For example, if facilities p
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and q are at the two extreme positions in S∗, then the search for Su is over the space of all solutions
to the instance which is exponential in the size of the problem. In order to reduce computational
expenses, our heuristic generates a list L of k candidate solutions, where k is specified by the user,
and then chooses the solution Sa in the list with the lowest (z(Sa)− z(S∗))/(bS∗pq − bS

a

pq ) value as an
approximation for Su.

Our heuristic generates candidate solutions in L by repeating the following process until k so-
lutions are generated in L. It randomly generates a permutation of the facilities in F and subjects
it to local optimization using an insertion neighborhood. (See Kothari and Ghosh 2012, for a de-
scription of the insertion neighborhood for the SRFLP.) It examines the solutions that it obtains
at each iteration of the local optimization procedure and creates a short list consisting of solutions
S in which bSpq < bS

∗

pq . It finally choses a solution S′ from this short list for which the value of

(z(S′)− z(S∗))/(bS∗pq − bS
′

pq) is the least and adds it to L. In case the short list is empty, the process
does not add any solution to L. Once L is populated the heuristic chooses a solution Sa ∈ L with
the lowest (z(S)−z(S∗))/(bS∗pq −bSpq) ratio and computes an upper bound Bpq on the upper tolerance
βpq as

Bpq =

{
z(Sa)− z(S∗)
bS∗pq − bS

a

pq

}
.

A pseudocode for this algorithm is given below.

ALGORITHM COMPUTE-Bpq

Input: A SRFLP instance (n,L,C); an optimal solution S∗; facilities p and q; k.
Output: An upper bound Bpq to βpq.

Code

1. begin
2. set L ← ∅, i← 0;
3. while i < k do begin
4. set S ← random permutation of the n facilities in the given instance;
5. set tmp ← {S};
6. perform local search on S using the insertion neighborhood structure,

and add the best neighbor obtained at the end of each iteration of
the local search to tmp;

7. remove all solutions S from tmp in which bSpq ≥ bS
∗

pq ;
8. if tmp 6= ∅ then begin
9. set S′ ← arg min{(z(S)− z(S∗))/(bS∗pq − bSpq)|S ∈ tmp};

10. set L ← L ∪ {S′}, i← i+ 1;
11. end;
12. end;
13. set Sa ← arg min{(z(S)− z(S∗))/(bS∗pq − bSpq)|S ∈ L};
14. set Bpq = (z(Sa)− z(S∗))/(bS∗pq − bS

a

pq );
15. end.

The above pseudocode can be easily modified to compute the lower tolerances for the trasmission
intensity parameters and upper and lower tolerances for the facility length parameters. We call
these heuristics COMPUTE-Apq, COMPUTE-Bp, and COMPUTE-Ap respectively. We present the
pseudocodes for these heuristics below without further explanation.

ALGORITHM COMPUTE-Apq

Input: A SRFLP instance (n,L,C); an optimal solution S∗; facilities p and q; k.
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Output: An upper bound Apq to αpq.

Code

1. begin
2. set L ← ∅, i← 0;
3. while i < k do begin
4. set S ← random permutation of the n facilities in the given instance;
5. set tmp ← {S};
6. perform local search on S using the insertion neighborhood structure,

and add the best neighbor obtained at the end of each iteration of
the local search to tmp;

7. remove all solutions S from tmp in which bSpq ≤ bS
∗

pq ;
8. if tmp 6= ∅ then begin
9. set S′ ← arg min{(z(S)− z(S∗))/(bSpq − bS

∗

pq )|S ∈ tmp};
10. set L ← L ∪ {S′}, i← i+ 1;
11. end;
12. end;
13. set Sa ← arg min{(z(S)− z(S∗))/(bSpq − bS

∗

pq )|S ∈ L};
14. set Apq = min

{
cpq, ((z(S)− z(S∗))/(bSpq − bS

∗

pq )
}

;
15. end.

ALGORITHM COMPUTE-Bp

Input: A SRFLP instance (n,L,C); an optimal solution S∗; facilities p and q; k.
Output: An upper bound Bp to βp.

Code

1. begin
2. set L ← ∅, i← 0;
3. while i < k do begin
4. set S ← random permutation of the n facilities in the given instance;
5. set tmp ← {S};
6. perform local search on S using the insertion neighborhood structure,

and add the best neighbor obtained at the end of each iteration of
the local search to tmp;

7. remove all solutions S from tmp in which rSp ≥ rS
∗

p ;
/* rp defined in Equation (6) */

8. if tmp 6= ∅ then begin
9. set S′ ← arg min{(z(S)− z(S∗))/(rS∗p − rSp )|S ∈ tmp};

10. set L ← L ∪ {S′}, i← i+ 1;
11. end;
12. end;
13. set Sa ← arg min{(z(S)− z(S∗))/(rS∗p − rSp )|S ∈ L};
14. set Bp = (z(Sa)− z(S∗))/(rS∗p − rS

a

p );
15. end.

ALGORITHM COMPUTE-Ap

Input: A SRFLP instance (n,L,C); an optimal solution S∗; facilities p and q; k.
Output: An upper bound Ap to αp.

Code

1. begin
2. set L ← ∅, i← 0;
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3. while i < k do begin
4. set S ← random permutation of the n facilities in the given instance;
5. set tmp ← {S};
6. perform local search on S using the insertion neighborhood structure,

and add the best neighbor obtained at the end of each iteration of
the local search to tmp;

7. remove all solutions S from tmp in which rSp ≤ rS
∗

p ;
/* rp defined in Equation (6) */

8. if tmp 6= ∅ then begin
9. set S′ ← arg min{(z(S)− z(S∗))/(rSp − rS

∗

p )|S ∈ tmp};
10. set L ← L ∪ {S′}, i← i+ 1;
11. end;
12. end;
13. set Sa ← arg min{(z(S)− z(S∗))/(rSp − rS

∗

p )|S ∈ L};
14. set Ap = min

{
lp, (z(S

a)− z(S∗))/(rSa

p − bS
∗

p )
}

;
15. end.

Note that in the search for Sa in all the algorithms above, we use a random search procedure
instead of more conventional population based search procedures like genetic algorithms, scatter
search, or particle swarm optimization. This is because in most population based search procedures,
the aim of the algorithm is to make the population converge to a small number of solutions with
“good” objective values. In our algorithms, this is precisely opposite of what we want to achieve,
since if the population converges, the number of unique solutions in L becomes too low for us to
obtain good quality upper bounds on the tolerances.

4 Computational experiments

We now describe our experiments to test the quality of bounds obtained by the four heuristics
described above. Our heuristics described in Section 3 require a SRFLP instance and an optimal
solution to the instance as an input. The method that we use for computing the quality of bounds
differ based on the size of the instance being considered. We set the size k of the list L of candidate
solutions at 1000.

4.1 Quality of bounds obtained for small sized instances

Consider a parameter p having a value of vp in a given problem instance with a given optimal
solution S∗. Also suppose that we obtain an upper bound on the upper (or lower) tolerance of p
as Bp (respectively, Ap). We first change the problem data, so that the value of the parameter is
vp +Bp − ε (respectively, vp −Ap + ε) with ε > 0 and small, say 0.001; and re-solve the problem to
optimality using exhaustive enumeration. If the cost of an optimal solution to the changed instance
matches the cost of S∗ computed using the data from the changed instance, then the bound obtained
is indeed the true value of the appropriate tolerance. If this is not so, then we conclude that the
bound obtained is a strict overestimate of the true value of the appropriate tolerance.

Our computations show that all the bounds that we obtained using the four heuristics described
in Section 3 are indeed the true values of the optimal tolerances. We report the bounds obtained
for these instances below.

Instance P4 of size 4 (Simmons 1969) The optimal solution that we consider for this instance
is (2,1,4,3) with cost 638.0. The upper and lower tolerances for the transmission intensity parameters
are given below.
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Bpq 1 2 3

2 ∞
3 0.61 0.39
4 ∞ 4 ∞

Apq 1 2 3

2 1.27
3 2.00 3.00
4 2.54 1.27 0.82

The upper and lower tolerances for the facility length parameters are given below.

1 2 3 4

Bp 10.40 ∞ ∞ 2.80
Ap 3.50 2.00 2.00 23.00

Instance LW5 of size 5 (Love and Wong 1976) The optimal solution that we consider for this
instance is (2,1,5,3,4) with cost 151.0. The upper and lower tolerances for the transmission intensity
parameters are given below.

Bpq 1 2 3 4

2 ∞
3 1.14 1.00
4 0.00 0.00 ∞
5 ∞ 2.00 ∞ 0.00

Apq 1 2 3 4

2 1.59
3 0.00 0.00
4 0.00 2.00 3.82
5 0.67 0.70 0.00 2.00

The upper and lower tolerances for the facility length parameters are given below.

1 2 3 4 5

Bp 0.50 ∞ 0.00 ∞ 2.33
Ap 1.00 1.00 4.00 0.00 6.20

Instance S8 of size 8 (Simmons 1969) The optimal solution that we consider for this instance
is (4,6,8,3,5,1,2,7) with cost 801.0. The upper and lower tolerances for the transmission intensity
parameters are given below.

Bpq 1 2 3 4 5 6 7

2 ∞
3 1.33 0.50
4 1.00 0.50 4.14
5 ∞ 4.50 ∞ 3.75
6 1.00 0.50 2.00 ∞ 2.00
7 4.00 ∞ 0.64 3.04 0.80 2.00
8 1.00 0.50 ∞ 2.67 3.75 ∞ 3.47

Apq 1 2 3 4 5 6 7

2 1.50
3 4.00 1.00
4 1.00 2.00 0.00
5 4.00 3.75 0.80 0.80
6 3.00 2.00 0.64 2.00 0.00
7 1.00 0.50 2.00 0.00 3.75 3.00
8 0.00 2.67 0.64 1.00 0.80 3.50 2.00

The upper and lower tolerances for the facility length parameters are given below.
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1 2 3 4 5 6 7 8

Bp 1.33 4.39 1.40 ∞ 0.57 8.43 ∞ 1.14
Ap 0.80 0.33 1.88 3.04 4.50 0.67 2.08 2.00

Instance S8h of size 8 (Heragu and Kusiak 1988) The optimal solution that we consider for
this instance is (2,3,6,4,5,1,8,7) with cost 2324.5. The upper and lower tolerances for the transmission
intensity parameters are given below.

Bpq 1 2 3 4 5 6 7

2 1.11
3 1.77 ∞
4 0.80 3.00 3.00
5 ∞ 1.00 1.00 ∞
6 1.89 4.80 ∞ ∞ 1.00
7 2.00 2.82 1.11 0.80 1.70 1.50
8 ∞ 0.89 0.89 0.80 2.00 1.14 ∞

Apq 1 2 3 4 5 6 7

2 2.00
3 2.00 1.11
4 2.00 0.80 0.80
5 1.00 1.70 1.70 3.00
6 2.00 1.50 1.50 0.80 2.80
7 1.11 5.00 4.00 3.00 1.00 5.20
8 1.11 6.00 4.00 3.00 1.00 5.00 0.89

The upper and lower tolerances for the facility length parameters are given below.

1 2 3 4 5 6 7 8

Bp 0.46 ∞ 0.67 0.79 0.51 1.24 ∞ 1.35
Ap 1.15 0.71 0.91 4.00 5.00 0.92 1.21 0.42

Instance S9 of size 9 (Simmons 1969) The optimal solution that we consider for this instance
is (2,3,6,9,1,5,7,4,8) with cost 2469.5. The upper and lower tolerances for the transmission intensity
parameters are given below.

Bpq 1 2 3 4 5 6 7 8

2 1.00
3 5.67 ∞
4 0.33 1.00 8.00
5 ∞ 0.50 0.50 7.25
6 4.00 1.00 ∞ 4.00 0.50
7 0.33 1.00 2.07 ∞ ∞ 2.07
8 0.33 1.00 6.00 ∞ 6.00 4.00 6.86
9 ∞ 1.00 9.00 4.83 0.50 ∞ 5.80 4.83

Apq 1 2 3 4 5 6 7 8

2 0.00
3 0.33 8.00
4 5.67 0.00 1.12
5 6.22 2.00 1.12 0.50
6 0.33 4.00 1.12 0.00 5.00
7 0.00 4.00 0.00 2.07 0.50 5.73
8 1.00 4.00 1.12 8.00 0.50 2.00 2.07
9 0.33 4.83 1.12 6.00 6.00 4.83 5.73 6.00
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The upper and lower tolerances for the facility length parameters are given below.

1 2 3 4 5 6 7 8 9

Bp 0.25 ∞ 0.39 1.92 7.33 8.17 2.00 ∞ 5.12
Ap 2.00 0.33 6.30 2.67 0.33 2.00 2.64 1.72 7.11

Instance S9h of size 9 (Simmons 1969) The optimal solution that we consider for this instance
is (2,5,9,1,7,3,6,4,8) with cost 4695.5. The upper and lower tolerances for the transmission intensity
parameters are given below.

Bpq 1 2 3 4 5 6 7 8

2 0.00
3 2.50 0.00
4 0.00 0.00 0.20
5 2.00 ∞ 0.00 1.28
6 0.00 0.00 ∞ ∞ 0.17
7 ∞ 0.00 ∞ 1.64 0.00 0.17
8 0.00 0.00 0.20 ∞ 0.27 4.00 2.54
9 ∞ 0.00 0.00 0.46 ∞ 0.17 0.80 0.50

Apq 1 2 3 4 5 6 7 8

2 1.50
3 0.20 0.20
4 3.44 4.00 0.00
5 0.00 0.00 0.00 0.00
6 4.14 8.00 0.00 0.17 0.00
7 2.43 2.75 0.20 0.00 0.00 0.00
8 4.14 6.00 0.00 0.23 0.00 0.17 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The upper and lower tolerances for the facility length parameters are given below.

1 2 3 4 5 6 7 8 9

Bp 1.61 ∞ 0.00 0.23 0.00 2.00 0.00 ∞ 0.00
Ap 0.00 0.00 2.57 0.73 0.44 0.06 6.00 0.67 1.06

Instance S10 of size 10 (Heragu and Kusiak 1988) The optimal solution that we consider
for this instance is (8,6,2,4,10,5,7,1,3,9) with cost 2781.5. The upper and lower tolerances for the
transmission intensity parameters are given below.

Bpq 1 2 3 4 5 6 7 8 9

2 4.75
3 ∞ 4.75
4 7.22 ∞ 5.00
5 11.00 1.14 5.00 1.14
6 4.00 ∞ 4.00 4.00 1.14
7 ∞ 4.75 5.00 7.22 ∞ 4.00
8 7.07 2.00 5.00 6.33 1.14 ∞ 9.73
9 3.33 3.67 ∞ 3.67 3.67 3.67 3.67 3.67
10 4.00 4.75 4.00 ∞ ∞ 4.00 4.00 6.00 3.67
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Apq 1 2 3 4 5 6 7 8 9

2 0.00
3 5.50 2.00
4 3.33 2.00 0.00
5 1.00 2.00 1.14 6.33
6 3.33 4.75 2.00 7.22 0.00
7 3.33 2.00 5.00 0.00 1.14 4.00
8 3.33 4.75 0.00 5.00 7.00 4.00 0.00
9 7.00 0.00 5.00 2.00 1.14 3.00 2.00 1.00
10 0.00 2.00 4.00 4.00 10.15 4.00 6.00 4.00 0.00

The upper and lower tolerances for the facility length parameters are given below.

1 2 3 4 5 6 7 8 9 10

Bp 2.31 0.67 1.94 4.19 9.57 3.27 3.38 ∞ ∞ 4.00
Ap 6.00 3.00 2.50 4.00 0.73 1.09 7.67 2.93 1.07 7.00

Instance LW11 of size 11 (Love and Wong 1976) The optimal solution that we consider for
this instance is (6,4,9,1,5,7,2,8,3,10,11) with cost 6933.5. The upper and lower tolerances for the
transmission intensity parameters are given below.

Bpq 1 2 3 4 5 6 7 8 9 10

2 4.40
3 1.18 1.43
4 3.56 3.56 1.18
5 ∞ 5.71 1.18 3.56
6 22.00 5.71 1.18 ∞ 7.33
7 4.40 ∞ 1.43 3.56 ∞ 15.59
8 4.40 ∞ ∞ 3.56 10.80 9.44 13.33
9 ∞ 5.71 1.18 ∞ 7.33 6.40 11.00 9.44
10 4.40 6.67 ∞ 3.56 22.12 7.91 6.67 3.33 11.00
11 4.40 6.67 14.33 2.70 11.78 2.12 6.67 3.33 4.15 ∞

Apq 1 2 3 4 5 6 7 8 9 10

2 2.00
3 0.00 0.00
4 4.40 4.00 0.00
5 14.11 6.67 7.33 15.00
6 0.00 5.00 0.00 3.56 12.00
7 6.67 12.33 6.00 6.67 6.67 2.00
8 3.33 3.33 2.00 3.33 3.33 2.00 3.33
9 4.40 6.40 6.40 11.00 6.00 8.00 6.40 3.33
10 7.00 5.71 1.18 1.00 7.00 1.00 4.00 9.37 1.00
11 3.00 0.00 1.18 7.00 3.00 0.00 6.00 5.77 6.40 2.00

The upper and lower tolerances for the facility length parameters are given below.

1 2 3 4 5 6 7 8 9 10 11

Bp 4.66 1.75 2.57 7.80 1.60 ∞ 2.98 0.71 0.86 2.35 ∞
Ap 1.57 3.00 0.28 0.44 5.00 2.25 7.00 4.15 2.00 3.07 3.43
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4.2 Quality of bounds obtained for larger sized instances

For larger sized problem instances, the use of exhaustive enumeration to compute optimal solutions
is prohibitively expensive. Studies in the literature (see, e.g., Hungerländer and Rendl 2011, Amaral
and Letchford 2012) show that even advanced algorithms require significant amounts of time to
obtain optimal solutions to these instances. Given that in order to test all bounds on a problem of
size n we need to obtain optimal solutions to at least n(n + 1) instances of the same size. we use
scatter search to generate good approximations to optimal solutions. We choose scatter search since
our initial experiments show that scatter search is able to obtain optimal solutions to all benchmark
instances with sizes up to 30.

Since the output of scatter search is not guaranteed to be optimal, our check for the quality of
bounds is slightly different for these instances. Suppose we are given an instance and an optimal
solution to the instance. Consider a parameter p having a value of vp in a given problem instance
with a given optimal solution S∗. Also suppose that we obtain an upper bound on the upper (or
lower) tolerance of p as Bp (respectively, Ap). We first change the problem data, so that the value
of the parameter is vp + Bp − ε (respectively, vp − Ap + ε), with ε > 0 and small, say 0.001; and
re-solve the problem using scatter search. Suppose the solution returned by scatter search is Ss.
(Remember that this may not be an optimal solution.) If the costs of Ss and S∗ are identical for
the changed instance, then we assume that the bound that we obtained is the true value of the
appropriate tolerance. If this is not the case, and if the cost of S∗ is higher than the cost of Ss

with the changed data, then we conclude that the bound that we have is not the true value of the
appropriate tolerance. If the cost of S∗ is lower, then we infer that scatter search has not obtained
an optimal solution to the instance with the changed data and we cannot conclude whether or not
the bound obtained by our heuristics matched the actual values of the appropriate tolerances.

We report the results of our experiments on SRFLP benchmark instances in Tables 1 and 2.
The structures of both these tables are similar. In the first two columns we report the name of the
instance and its size. The third column reports the number of bounds for tolerance values that were
checked. For a problem instance of size n, there are n(n− 1) bounds on tolerances for transmission
intensities (see Table 1) and 2n bounds on tolerances for facility lengths (see Table 2). The last three
columns in the tables report the number of these bounds which were found to be optimal (i.e., where
the costs of S∗ and Ss were identical), suboptimal (i.e., where the cost of S∗ was higher than the
cost of Ss), and where we could not conclude anything about the optimality of the bound obtained
(i.e., where the cost of S∗ was lower than the cost of Ss). This option is conceivable since scatter
search is a heuristic which does not guarantee to output optimal solutions.

From the tables we see that when computing the tolerances for transmission intensity parameters,
our heuristics were able to output optimal values in approximately 85% of the cases, while they could
output optimal values of tolerances for facility length parameters in approximately 46% of the cases.
We also observed that optimal values of tolerances were output more often when computing lower
tolerances than when computing upper tolerances. This may be because of the fact that the lower
tolerance values were truncated to the value of the parameter when they were too high to satisfy
the condition of non-negativity of problem parameters. We also see that our conjecture that scatter
search produces high quality solutions for these problems is empirically validated.

5 Tightening of the bounds on tolerances

Our computational experiments in Section 4 show that the bounds that we obtain through our
heuristics in Section 3 are not the actual tolerance values in many cases, especially for larger in-
stances. In this section therefore, we present a generic heuristic that iteratively tightens the bounds
output by the heuristics in Section 3. The heuristic that we propose can be combined with each
of the four heuristics to produce tighter bounds on the appropriate tolerance. It depends on the
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Table 1: Quality of bounds for tolerances on transmission intensities for larger instances

Nr. of Quality of bounds obtaineda

instance size tolerances optimal suboptimal inconclusive

P15b 15 210 208 2 0

H20c 20 380 342 38 0
H30c 30 870 668 202 0

N-25-01d 25 600 555 45 0
N-25-02d 25 600 546 54 0
N-25-03d 25 600 497 103 0
N-25-04d 25 600 547 53 0
N-25-05d 25 600 543 57 0

N-30-01d 30 870 690 179 0
N-30-02d 30 870 726 144 0
N-30-03d 30 870 766 104 0
N-30-04d 30 870 658 209 3
N-30-05d 30 870 682 188 0

a: based on scatter search results
Source b: Heragu and Kusiak (1991)

c: Heragu and Kusiak (1988)
d: Anjos and Vannelli (2008)

Table 2: Quality of bounds for tolerances on facility lengths for larger instances

Nr. of Quality of bounds obtaineda

instance size tolerances optimal suboptimal inconclusive

P15b 15 30 26 4 0

H20c 20 40 24 16 0
H30c 30 60 22 38 0

N-25-01d 25 50 15 35 0
N-25-02d 25 50 30 20 0
N-25-03d 25 50 28 22 0
N-25-04d 25 50 31 19 0
N-25-05d 25 50 23 27 0

N-30-01d 30 60 11 49 0
N-30-02d 30 60 25 35 0
N-30-03d 30 60 31 29 0
N-30-04d 30 60 21 37 2
N-30-05d 30 60 25 35 0

a: based on scatter search results
Source b: Heragu and Kusiak (1991)

c: Heragu and Kusiak (1988)
d: Anjos and Vannelli (2008)

empirical fact that scatter search produces solutions that are very close to optimal for small and
medium sized SRFLP instances. For illustration purposes, we describe this heuristic for tightening
the upper bound on the upper tolerance for a transmission intensity parameter. It is easy to extend
the same argument for all the other bounds obtained by the other heuristics in Section 3.

Suppose that we want to tighten the upper bound on the upper tolerance for cpq obtained using
COMPUTE-Bpq. The upper bound is given as input to the heuristic, along with the SRFLP instance
and an optimal solution S∗ to the instance. Each iteration of the heuristic starts with an upper
bound u on the upper tolerance. Scatter search is used to compute a good quality solution Ss to the
instance obtained by increasing the value of cpq by u. Let the costs of S∗ and Ss with the original
instance data be z∗o and zso; and with the value of cpq reduced by u be z∗n and zsn. Denoting zso − z∗o
by ∆o and z∗n − zsn by ∆n, the value of u is then revised to u∆o/(∆o + ∆n) if ∆n > 0 and left
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unchanged otherwise. Iterations stop when there is no revision in the value of u, and the value of u
after the last iteration is output by the heuristic.

The rationale behind the iterative process is the following. Suppose that the bound u that we
have at the beginning of an iteration is not the actual tolerance for the parameter. Then when the
corresponding parameter is increased by u, the original optimal solution S∗ ceases to be optimal
and a different solution becomes optimal, i.e., has lower cost than S∗ for the changed instance. We
use scatter search to obtain a near optimal solution to the instance with the changed data, and use
this solution Ss as an approximation for the optimal solution to the changed instance. The iteration
then finds the the value of u for which the cost of S∗ matches the cost of Ss with the changed data.
Beyond this, S∗ definitely is suboptimal, and hence the new value of u is saved as an improved
bound. This process fails when the cost of Ss for the changed instance is not lower than the cost
of S∗ for the changed instance, i.e., when scatter search cannot find a good quality solution to the
changed instance, or when the value of the bound is indeed the exact tolerance value. In these cases
the bound is not changed.

We cannot test the quality of bounds obtained after the tightening, since that would require
an exact and fast algorithm to obtain optimal solutions to SRFLP instances. It does not make
sense to test the quality of bounds using scatter search output, since scatter search was used to
obtain the tightened bounds in the first place. We however checked to see whether the tightening
process described in this section improved the bounds in the 1378 cases where the bounds obtained
by the heuristics in Section 3 were clearly suboptimal (see Tables 1 and 2). We noticed that the
tightening process improved 841 of these bounds. This leads us to conclude that the tightening
process described in this section is indeed useful to obtain good quality bounds.

6 Summary of contribution

In this paper we perform sensitivity analysis for the single row facility location problem (SRFLP).
The problem is an important one in facility layout, and is frequently used to model real world
situations in which facilities have to be arranged in a single line with an objective of minimizing total
inter-facility communication costs. We use the tolerance approach to perform sensitivity analysis
and obtain upper and lower tolerances with the property that if the value of a problem parameter
increases (or decreases) by a value not exceeding the upper (respectively, lower) tolerance, then the
optimality of a given optimal solution is not compromised.

In Section 2 we present closed form expressions for the values of upper and lower tolerances for
each problem parameter. Most of these results require information about another solution to the
problem instance having particular properties. Since the search for such solutions does not seem to
be possible in time polynomial to the size of the instance being considered, in Section 3 we present
heuristics that output bounds to the tolerance values. We then perform computational experiments
to test the quality of these bounds in Section 4. The first part of the section shows that the bounds
are in fact optimal for small problem sizes. The second part of the section demonstrates that the
bounds obtained by the heuristics are not always optimal for medium sized instances. In Section 5
we propose a method to tighten the bounds output by the heuristics described in Section 3. We
observe that the tightening procedure improves more than 60% of the bounds that were found to be
suboptimal in our experiments in Section 4.

The work presented here can be advanced in several directions. For example, one could use
specialized algorithms to obtain optimal solutions to SRFLP instances of medium size, and hence
test the quality of the bounds obtained after the tightening process described in Section 5. One
could also perform stability analysis for the problem, in which more than one problem parameter
could vary simultaneously.
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