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A LOWER BOUND ON FLEET4SIZE IN VARIABLE-SCHEDULE

FLEET~SIZE PROEBLEM

Suresh Ankaolaskar

Nitin R. Patel

Abgstract

This paper discusses an approach tao computz a lower

bound on tlept-giza in variable-schedyle fleet-size problem,
“Thiat1bwer bound is computed in two s?ages{\ In stage ons,

a fixed-schedule fleet-size problsm is solved for a relaxed
set of trips where easch trip is assumed to be departing at
its latest permissible departure time and yet arrive at
earliest arrival time resulting in reduced =lapsed tiye.

In second stage ths lower hound is augmented by ths minimum
additional fleet-size reguired to make each trip irndividually

regstorable to its original elspsed time.



A LOWER BOUND ON FLEZT-SIZE IN VARIABLE=-SCHEDULE FLEET-SIZE

PROELEM

The fleet-size problem is concernsd with minimising the
fleet-size required to operate a given set of trips. Thera.
are two versions of the problem deperding upon whether departure
‘times of t:ips:are slresady fixed, or yet to be fixed within a

prespecified intsrval for sack trip.

In the fixed-gchedule version of the fleest-size problem
where the departure times are already fixed, the task of
computing flest-size and achieving it is a simple matter

o3 23

In the variablz-scheduls version, theg departure times are
not fixed before hand, but are specified in terms of earlisst
departure time end latz=st departure time. Fixing the departure
tima for sach trip within the corresponding intervel is part of
ths problem. The varisble-schedule fleet-size prﬂblé% can be
formulated as network flow problem with 'bundle' constraints
{33. which has been shown @8 a NP-hard problem[8]. The solution
procedures usad to tackle the problem are usually branch-and-
bound tachnigues LS] for relatively smaller problems, and
heuristic approaches [1_] for large scale praoblams. Henee it is
useful to have a good lower beound on the flest-size requirement
in varisble-gchedule flert-size problem. In this paper we
develop a method to compute the lower bound on flect-size using
extansion of fixgd-gchedule typs of analysis and a graph-

theoritic Tesult.



LEt{<pi’qi’ai'li'rﬁ7}be the given set of trips, each trip

i being specified in terms of a S-tuple, ¢ pi’qi’ei'li’ri?’

where,
P; ¢ departurg terminal
; arrival terminal
e. : earliest departurz time
li : latest departure *tims
‘r, : elapsed time between departure and arrival,

Accordingly,
e, * ry ¢ garliiest arrival time

'-ii + ri : latest arrival time.

-

The lower bound is computsed in two phases. In phase one,
minimum fleet-size is computea for the fixeduschadule problem
with a sst of modified trips, where trips are assumed to be
depaorting at the latest departurv time efd arriving at earliest
arrival time resulting in reduced elapsed time compared to the
original elapsed time, Intuitively, it is clear that the minimum
flect-size Tequired %0: the reduced task would be less than the
minimum fleet-size required for the original task. Although,
for narrow intervals of departure times, this may be a rsasonably
good lower bound, it would deteriorate with widening of the
intarvals. Therefore, in phase twé, we enhance this by computing

minimum number of additional vehicles required to opsrate irips

with originel elapsed time.



Fleet-size Requirement in Fixed-Schedule Problem

In the fixed-schedule problem, since the departure time
for each trip is fixed, the trip can be specified by a 4-tuple

{P;+q428;97; >, where

di H departure tims

i vehicle would be either active performing a trip, or idle
at some terminal after performing 2 trip and before taking up
naxt trip.from that t=rminal. dc a2ssume that dead-heading is
not allowed, and hence a vehicle after completing a trip can take
up naxt trip departing from the same terminal as the arrival

terminal of the trip just completed.

et

F :+ minimum fleet-size
m{t) : number of txips active at time t
sa(t) : number of vehicles idle at time t at
te_rm inal 2
b (t) : number of arrivals at time t midus number
a . finds
of departurcs a2t time t oceuring at
texminal a
T :  plsunivg period.

Wa have
Total Flest-size = Active fleest-size at time ¢
+ totzl idle fleet-size at timz t.
Of the above, active fleetwsize at time t (i.e2e m{t)) is
determinsd by the set of trips, Therefore, fleet-size can be

minimised only by minimising total idle flest-sizp ot time t.



Obviously, for feasible operations sa(t) ),Ef must be atisfied
for =2l1 t at all the terminals. Fleet-size idle at time 1; will
depend upon net inflow of flest-size at time t and idle flaat-~
size at time t and idle fleet-size at time (t-1). Thus,

o (8) = w(t=1) +b () .. .. .. (f)

Again, in the above éxpresaion ba(t) is solely determined
by tha get of trips. In order that sa(t) is at.minimum leval,
‘thare must exist at least one time-point t* such that s (t*) = 4.
Otherwise, if -mi.n;{su{t}} > @ then clearly ea(t) can be minimisad
simply by substracting x = mg'.n {sa(t)} from all sa(t). still
retaining the feasibility conditicn namely sa(t)z,ﬂ. This gives

us a method to compute sa(f) as follows:

procedurs S,
initialiss s (1) €~@

for t = @ to T do
se( t) & a(t_” +* ba( t)

and€dr
X e min {s (t-}}.}
t a <+
for t = # to T do
s(t)(——-sa(t) - X
gndfor
TXRAM SARABHA! LIBRARY
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Having computed sa(t), it is now a simpls matter to

compute F. Thus, i

Fo= 2 s (8) +m(t) N €3
- _
_whare,
s (%) =8 {t-1) + b_(t) such thet miniﬂ (t)} =0 ... {J)
a. a a L2
ba(t)~can be computed from trip data as follows
Let Da(t) = {i.: p; = aﬁrdi = t} e e s e s e e e (8)
A lt) = {j: aj=_a/\di=ri=t} e e e e e e (5
Then. .
b (t) = [A(B)] - {o ()] e e e e s (8)

Similarly, m(t) can be directly computed from trip data, At
time t, the sat of trips thet are =ctive is given by

m(t) = {1:di$t<di+ri} O & ¢
A trip is considered to be inactive at the arrivalk since it

is alrsady accounted for in Aa(t).

Suppose that each trip i of the trip set is relaxed to from a

modified trip set as follows.
N#* =i<pi'qi'li’ri - li + ai)}
Let F, sa(t), ba(t) and m{t) correspond to tha trip set

N = {‘ pi’qi'di’ri>: ::iSdi.élig



dith respesct to time t, the two trip sats are related as
follows: '
1. Some departures occuring at or before t in N would
occur after t in N*, whereas departures occuring after

t in N would continue to do so in N*.

2. Some arrivals ocecuring after t in N would oceur at or
before t in N*, and arrivals occuring at or before

t in N would eontinuc to do so in N*,

The set of departures and arrivals crossing the time

instant t can determinsd as follows.

Let u,(t) ={i: p; =2 and di?g t<-l_i }
Va(t) _ ={j: q:i = a and 8, + ri\<.t<di + ri}
u (t) = fu_(¢)]

v (t) = Iva(t)l_

The trips Ua(t) will now contribute in computation of
sa(t) and m(t) only after t, and the trips Va(t} will now
contribute at and before t. If ws continue %o operate with

fleet-size F for trip sct N*, we have

T sl(t) + m'()

a

s (%) + u_(t)

mit) ~ 3 u () -3 v_(t)

a a

Let :
x; = mtn {F;(t}}

-
1]

1
whers sa(t)

it

m'{t)



We have, ";20' since ua(t)>/D, va(t);D, mi.n {s%(t)} =0

heccordingly we can compute F*, s‘;;(t) s M*{t} as follows.
* = - »
F F Za.xa
* = -
_sa(t) sa(t) + ua(t) + Va(t) .

m(E) = m(t) -2 u () - v ()
‘ =)

a

All the valuss related to trip set N* can alsc be comput =d
directly without referring to corrasponding values related to

trip set N as follows.

Let .
DH(E) = {i:pazaAli=t}
A;(t) s {j s q;i =a/\li+bri=t}
BY(t) = |at(e)] - |p*(e) |
Then
sg(t) = s%(t-1) + b*(t) such that mii:h s*(t) =0
Fr s T_et(t) + mé(%) .

8

Since F* is & constant Z s*;(t) + m*(t) must remain
o 3

invariznt for all t. Therefore,

P = L %)+ () = Y et (t-1) + mH(tot)
-a a

a
giving

m* ()

i

m*(£-1) - (gs;(t) - 2 st (ta1)

a

it

m*(tat) - $ bE(t)

a
m(t=1) +5" [p2 (1) | -5 [ax () |
a &




The sbove implies that a particular trip contributes
positively through the departurg cvaent and negatively through
the arrival event. This is quitz intuitiye for 'realistie!
trips with departurz event chronolugically przcading tha
arrival event, HahaVEr, in trip sot N* we arg quite likely
.to have some ‘negative"trips with arrival avant chrona;mgically
preceding the departure evant. This happens when the elapsad
fﬁime T, is less than the tolerance available toe fix the departure
timz, i.e.

r.i 4 li -8
 We gonsider the 'positiva' and ‘negative' trips separately

to compute m*(t) directly from tho trip data,

Let _
(OB 1, t<s, + ri}
M(t) = {i IPRERNS <1i}
Then,
w(e) = M) ] o ey |

It can be sasily shown that above method of computation would

maintain the required invarianca of’Z:rs;(t) + m*(t) as follows.
(w3

M;(t-‘l) = {i : lis t-1 (si + ri}
{s: it + ri}

T e, o+ ri<t‘<-li}

#
N
[

Similarly, Mm(t-1)

iaading to
) - mw9ta1) = | fi (e sl At<e o) V
(t =1, Ae, + Tt )

-I{':("b =L T ALV = L AL Y



By =dding and subtracting l{i: 1, = tAt = e, + xi}l to RHS
. N 1 €.
m¥(t) = m*{t-1) = ]{1: t = li}’ - ]{1;‘ to= e+ ri}]
Thexrefore, m*(t) = m*{t-1) E: b* (t

Thus, computation of F* can he summarised as follows.,
* * #*
F agsa(t) + m*(¢t)

where s*(t) = s*(t 1+ b*(t) such that m1n i *(t)}

b%( t) =‘{i:t=c. } ]{1.1::1}’

mt(t) = fur(e)] - 1% () |
where M‘;(t} = ii: li$t (Ci + ri%

ME(E) = {i: TEENS: (11}

1

F* baing the fleet-size requirement for the relaxed swt
of trip forms only = part of the lower bound., All the rel 2xead
trips have reduced elapged time r, ; .1i + ei.instaad of T
Dne wey to improvs the lower bound is to fores the original zlapsed
tims T on each trip, and compute the additional mi;imum flast-
Size required to maintain the feasibility condition sa(t)zcl
The most ideal éituation would be if we could compute the
additional minimum fleet-sizs when we force all the trips iE£Q§£¥
to have ths required elapsed time. But this is likely to be quite
difficult as it almost amounts to solving the variable-schédule
praoblem itself, However, we may still improve the lower bound

by exploring the recovery of gplapsed time T, of one trip at a

time kesping other trips still reloxed at ry - li + B,
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The amount of enhancement J_i -5y in recovery time can
be fully effected sither at thes deparfure end or the arrival
end or partly at both the ends, as long as the feasibility

s;(t)Q 0 is not affected.

Suppose the trip i is recovered to(pi,qi,di,ri‘) such that

. f ; d s
ei‘ﬁdi‘ﬁli The effect of this weould be to raduce sp(t) by 1

in the interval di$t <1; and reduce s;(t) by 1 in the interval

&, + riét (di-i- T because, the trip i would now negatively

contribute in the interval ap @ ¥ t L1, and fail to contribute
iOAN i ——

positively in ths interval e, + ri.ﬂ\t (di T Therefors,

if there exist any time instant t¥ at p; such that s*(t*) = 0O

1

and/or t; at g, such that sq(t*) = 0 then the feasibility

|
1
‘condition ¢an be restored only by injecting additional vehiclas

at these terminals. Thus, freedom for relaxation of a trip is

restricted by the critical time points with a{t) = @ at sither

gnd of the trip.

Let
+ 9y = time gap baetween

l 9 pearest critical time-

i d
paint before 8. an li

sz(tqlsﬂ h, = time gap betwean
ngarast critical t©ime
. P - ‘
point after e, * Ty

and 8. + I,.
i i
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The trip i1 can be singly rastored without affecting the

fzasibility as long as i, - li4$gi + hi'

If 1 - 1,%g, + h, for some trip, it can ba restored to
i i i i ‘

original elapsed time only by injecting additiogg; vehicle
either at P; OF qg. The effect of additional vehicle is to
drive ona of ths value, g; or hi to @ for trips either
dapérﬁinglfrom or arriving at the terminal where the additional
‘vehicle is injected. We compute tha minimum number of additional
fleet-size as follows.

Let
R = i_l:li-li791+hi}

be the set of trips that cannot be restored without sacrificing

additional vehicles.

Let W ={pi ‘ 1@&} U{qi : J.C—R}
be the set of termimals spanned by the set of trips R.

x

Let &8 = {W,Y} be a graph with ssgt of nodes W and set of _
undirected arcs Y such that
Y = { (pi.qi) : 1€ H}

Each are indicates that there is at least one trip operating
bhetwaen Py and qi that cannoct be restorad unless we inject‘une
additional vehicle either at Py OF at qy Injecting a vehicle
at any node would result in removal of *interfering' arcs
incident on that node since.gi or hi of all tzips either

departing or arriving at that tarminals would bzcome non-hinding.
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Thus we have a node-cnﬁefing problem of finding the smallest
subset of Z* nodes such that each arc of G is coverad by at

least one node in the subset,

‘The lower bound on flest-aize for the variabls schedule

problem is giveh by F* 4 Z¥,

The node-covering problsm or relator maximum independent
set problem can be solved wusing well-known methods (6).
Although fhe problem is NP-complete, in tha context of lower
bound computstion, the dimension of 'interference graph' G
would be negligibly small compared to the network flow graph

of original problem with 'bundle' constraints.
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