T. R. No.>¢

Bl
Technical

Report

We a3

WP38
L]
1974
(38)

AHMEDABAD

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD



QN _THE NUMBER OF NON-NREGATIVE
INTEGRAL SQLUTIONS TO THE
KNAPIACK PROBIEM

by
M. Raghavachari
Y. P. Sabharwal

July, 1974
T.R.No. 38

Indian Institute of Management,
Ahme dabad



No. - R.
Te
Chairnan (Rescarch) ,
IIMaA

Techmical Report

On the Nukber of Non=MNegative Integral Solutions
Title of the report ... cioeiiiiiieeeiaiine.sn Ceesermesencanaen .

to the Kl’lr_pSc.Cl( Problem
Nare of the Author ,....JN. Raghavachari .and .Y.'. Sabharwal

. e / S {76 Vat “‘f’”‘gi '
Under which area dc yeou like to be classified? . J\’a f.’.. v . .ﬁ ¢

s a s e

ABSTRACT (within 250 werds)
This paper devslops expressions for the exact number of

@ 0% &0 04 c2a g 06 34 v 2000 anDes s R R e I A R AT B R S SRR Y IR R A BT R BT RN ]

solutions f£o the well known Knapsack problem. These

IR R R R R R R N R R I N T T R S N S S O S I O R A S P N R BRI RN BN Y

formlae are compared with the bounds glven by other

R P N RN e P e st o s 2 e e e g0 se e . see 0 e 0 s e v ey v

researchers in this problem. A computer programme has also

been developed to find the number of solutions.
€ 4 ¢ 3 2 20 B 89 0 2 g e PN G s ey 68 B Aeag e e ane s e cscvevesvsrasans ® » a a s o
L 4

‘Cl..c'blc...c,.-.nn:-:n‘--r.' @ CEEINO M BB IEAN 1O N O530CCIABRNOORD *A B aneedAN

nal-c..-.AA--v-n-oo.¢-ouo---aa...g-..n_...---».o-. O r e g @B a2 s s aenm ey

L L A R I I I R R R R I R I N R I R R P R I A g e s e cacg evedann e

@ & 5 22 ) P e as e 00y NG 4o eeseBEBUEDSSaa ® 0 "~ 96 ;5 f 0 803 0V e g an tH» s s ap s sg e e

..‘..‘-BIIOO'l..‘.“iitl:“..'.!DOC"IC"lb‘.-"v"vi' em~a~fnacessvemascanmecsesae

s v ¢s0 0 a0 000t css00a

GV 0L B0 00aBra et e area tseters0aesgeanna

.-....4.;...:-.......-«..n..--n.---n-a... “e 2080800 ignsasaseserr0eD

Please indicate restricticns if any that the auther wishes tc place
upon this note A A A I R T O O N S O T S T S

.--l..l.llAlanI.a'-Q...OAl!q"lln....lugO‘OIACI/‘I.OJIIQl./;t.c"‘....l

. . ‘ ! /7
VRS LA (»LMoL&ﬁ-
Date 25.7.1974. .. ... Signature of tHs Auther



O THE NUMBER OF HON-NEGLTIVE INTEGtsL SOLUTIONS
TO THE i SuCK rROBLELT

by .

M, Reghovachari
and
.. S2bnarwal

Sumnary: Ths well-known Knrpsick problem is an integer programming
problem given by
maximize CiXy +CoXot soe o X

£

subjcet to &y %Xq \+ 8y X, + eoa + a, x = b ‘ (1)

xj 20 and integer
‘Here ai's arec positive integers.
M.W, Jadberg Y and .i.G. Beged Dov ;/ found upper end lowsr bounds on
the number of solutions to the above Knapsacl constreint. In this
paper we poi%xt' out that it is possible to calculate the exact number
of solutions., Exact expressions for the number of solutions are
developed. Fo<r a few exa.mpleé the bounds are compared with the exact
soclutions,

1, By adding e slack verieble x ., to (1) we can transfarm the in~

+1
equality constraint to an equality constraint. Thus, we are interested
in finding the number of solutions to the Knapsack equation,

- h. = 3 3
2%, + 8%+ «es +2 X =b; x, T 0 and integer (2)

where 84y Boes By b are anygiven positive integcrs,



2, po1s6t: - L,
L.E, Dickson = * reporte that'G. wlene . © gave a method for flnd-

ing the exact number of solutiox;xsh to (2). 1% C(i), i=1,2,.. for the
number of solutions to (2) with b rep.?.-'—b.ce?l. b 1. Let 8(j) der;qte the

sum of those of ayy 2gees which are divisor. of j i.e.

n

s1) = = .
j%l %15

Cn

where
5j1=1 if ay is a divisor of 1
=0 otherwise.

Then Mignosi gave the recursion formula

S(1) C(b-1) + S(2) C(b-2) + ... 48(b) C(0) = kG (b) (3)
where C(0) = 1. By ‘using the recursion formula (3) we can compute C(b)
for any integer b=1,2,...4
Example : Suppose that the Knapsack equation is given by

5:1:1-!-2::.2+41-.x.3> +3x, +4x +%X; =11 |

x; £ 0 and integer; 1=1,2,..6

Tne can 2asily verify that
s(1) =1; 8(2) =3; 5(3)=4; S(4) = 11
5(5) =6; S(8) =6; S(7)=1; S(8) = 1L
$(9) =i; 5(10)=8 and S(11) . =1



wn

applying (3) we f ind recursively
c(1) =1; C(2) =2; C(3) =3; C(4) = 6;
c(5) =8; C(6)=12; G(7)=16; C(8) =4
¢(9) =31;0(10)=42; C(11) =53
Since the work of Mignosi is not available to us and may nct be available

to many we give an independent proof of thi - cursion formula.

rroof of Mignosi's forrmla: Define the gencrstiing function:

o’ b
Ky) = =_ o)y (4)
b=0

s0 that
bG(b) is the coefficient of yb in yK{y) where prime denotes derivative

C(b)}, however, is the coefficient of yb in

n a, "t
T )
j=1
Thus
n ay / a L
i(y) =K(y) Z oy vi(1-y71)
j=1
Sincé 1
a a.\ o
! j) S Y
y 1-y = Z. ¥,
( = It

We see therefore from (4) that
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=1 o -~
a. ac b-1 r‘
Ey)yd (v 4 = 21 = o b
v) ¥ ( y ) b:li - ) 3 (b~k) y

Hence collecting ths coefficients of yb WO 1. T
. n , b-1

.= L= §
oe)= S a = o) b
b-1 n é‘
= & %) oA e
b1

= é) 6(k) s(b=k)

which is ths required formila (3).

2. an_acrgéma&.iﬁ prmmgn_ﬁm:.c.(hl_and @n_..ntwal_ represegntation
of K(s)e Deflne ,

R(s) = Z o) st
' 1=0

oQ
P(s) = Eo s(i) gt
Then bC(b) is the coefficient of s>t in Kt(s) and 3%0 S(3) c(b=j)

(with séo) =0) is the coefficient of & in E(s) P(s¥. Therefore Mignosi's

recursive formla can be expressed as

s Kt(s) =K(s) P(s)

or k(s) = exp [ ,( Bls) J (5)



(5)

C(b) is therefore the coefficient of s? in K(s) given by (5).

Ls an application of this integral form consider the case when
89 T 8y T eee = a = 1. In this case s(i) = foralli 4 1, so
tk;at Pls) = ns/(1-s8).

K(s) =(1~s) "

s =}
| | @ ]

—

Hence C(w) = (,n-}b-i ) which is a well known result.
\ b

3. A determinant expression for C(b): The recursive formulas

can be expressed as a system of linear equations in C(1), ... C(b)
as

AC =S
where C is a colum vector (C{1), ... C(b)), S is a colum vector

(s(1); ++. 8(b)) and the bxb matrix & given by

T . o

l O 0 ev e O O
L= - s1) 2 0 .0 0
- S(R) =s{1) 3 «es O 0

- 5(b=2) =S(b-3) =S(b=4) ... (b-1) O
- 5(b-1) =§(b=2) =S(b=3) ... =SAF  b-.

e



for i=j
Note that a_(a 2, j J.—j) for j 1
for j i

4. . Comp ﬁtgic_j._gn of C(b) and corparison with upper and
computer programme was written to caleulate. G(b) from the recursive
| Y Y i
forrmla, FPadberg and &.G. Beged Dov studiecd the prablem of
finding upper and lower bounds on the mumber I of integral solutions to

: &
Knepsack constraint

n
= <
Z oy T (6)
— xi‘ :2-0 and integer.,
ai's and b are integer and =0, A4.G. Beged Dov showed that
n n
n < < .
b -~ N - _(b + Z ?‘_‘) (7)
: n ) ) 1 )
n’ :[1 Q. n
= nf Loy
=1
Padberg in '3/ sharpened the above low.r boul o =
(8)

(b1 )" < N
n.
n! /f 25

j=1
and gave alternative beunds -on N as followss '_
/ n-l-b*.\] < § = (néb**)- (9)



where b* is the l-rgest integer.=nd b#* the smllest integer satisfying

b* = b/a, for all j
o Z[b/ay | for 211

where [ p_7 denotes the integral part of p,

Formila (9) has the advantage of yielding the exact rrumbér of solutions
to (6) for the case when all the aj"s are equal. The exact expressions
for N developed in this paper serves us to compare these bounds in a few
exarples, The following nine examples were consic-iered' and the exact
nmnbér of solutions were given by the recursion farmla. 4 table

givimg the comparison of the bounds with the exact valwes has also

been prepared.

\'q|. l
: <
(2) 5xlfﬁx2+4‘x5+5x4+4x5 =
: <
() x +x, +10x; S 12 |
) . - _
{(c) 5..x1+92§2+2x3 +11:ctj=-+6x5 =25
() 1lx +33x, +2% +7x, +197x, =89
X _ <
(e) 5 xl+7 x2+ll x5+15 X, +17 x5+19 x6-b‘33 x7+29 :FS - B9
(£) 2x ¥ x +3% +4% +2 % +X +2 X <90
- <
(g) 55 x, +57 x5 + 34 x5 + 32 %/ +3 xg - 61
(h) 11x1+15x2+25x3+57x4+6x5+19x6 = 97
. <
(i) 3x1+2x2+515+7x4+3x - 87

5
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Table; Comparison of the boundg with the Exact Values

g:a@le Exact mnber “Fc;rrml;a (7) Formt;la (9) o
of solutions Lower Bound Upper Bound Lower Bound Upper Bound

() 55 - 5 356 21 252
(b) 97 .o 230 . 4 © s

) e 2 1287 21 6188

(@) 2460. 510 . © 9385 21 Clex10®
(6) . 4942 . 100 - 97450 165 1.08 x 10°
(£) ;4.9 x 107 2.67 x10' 8.85 x 10'  1.56 x 10°  1.28 x 100
(g) a6 1 675 6 53130
(h) | 936 58 - 8659 - 7 © 74613
(1) 115560 69806 185523 . 618§ * 1.71 x 10°

It is clear froﬁz the table that, formila (9) zives very poor résults in
case where a.j difff;: very much. ZEven when the;{-* wmry in a smll range as
in example (f )Gai"s vary between 1 and 4) formsle {9) need not give
cloaer bou.nds In general for thosc expmples . formila (7) seems td ‘be
better tlhan formla (9). E%ren_,forﬁlula (7) loes rot fare well in examples

(a)y (o), (&), (g) and (n).
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