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Abstract 

This paper examines hedging effectiveness of futures contract on a financial asset and 

commodities in Indian markets. In an emerging market context like India, the growth of 

capital and commodity futures market would depend on effectiveness of derivatives in 

managing risk. For managing risk, understanding optimal hedge ratio is critical for 

devising effective hedging strategy. We estimate dynamic and constant hedge ratio for 

S&P CNX Nifty index futures, Gold futures and Soybean futures. Various models (OLS, 

VAR, and VECM) are used to estimate constant hedge ratio. To estimate dynamic hedge 

ratios, we use VAR-MGARCH. We compare in-sample and out-of-sample performance of 

these models in reducing portfolio risk. It is found that in most of the cases, VAR-

MGARCH model estimates of time varying hedge ratio provide highest variance 

reduction as compared to hedges based on constant hedge ratio. Our results are 

consistent with findings of Myers (1991), Baillie and Myers (1991), Park and Switzer 

(1995a,b), Lypny and Powella (1998), Kavussanos and Nomikos (2000), Yang (2001), 

and Floros and Vougas (2006). 
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1. INTRODUCTION 

Rising price volatility has led to a number of specialized financial instruments that allow 

participants to hedge against unexpected price movement. Like any other derivative, 

futures contracts can be used as an insurance against unfavorable price fluctuations. In 

Indian context, S&P CNX Nifty index futures and commodity futures are comparatively 

new and were introduced in the year 2000 and 2003 respectively. In last 4-5 years, the 

Indian stocks as well as commodity markets have grown considerably4. Bose (2007) 

found that Indian stock markets are more volatile as compared to developed markets.  

Indian commodity futures markets are going through many ups and downs and many a 

times allegations of speculative activity have been made in the popular press. Despite 

controversies, there is a need for systematic investigation of stock and commodity 

derivatives markets to asses their effectiveness in transferring the risk. This research  

investigates the hedging effectiveness provided by the futures market. Hedging 

effectiveness of futures markets is one of the important determinants of success of futures 

contracts (Silber, 1985; Pennings & Meulenberg, 1997). 

Price risk management, using hedging tools like futures and options and their 

effectiveness, is an active area of research. Hedging decisions based on futures contracts 

have to deal with finding optimal hedge ratio and hedging effectiveness. Role of hedging 

using multiple risky assets and using futures market for minimizing the risk of spot 

market fluctuation has been extensively researched. Several distinct approaches have 

been developed to estimate the optimal hedge ratio. Techniques like OLS, VAR, and 

VECM estimate constant hedge ratio and bivariate GARCH models estimates dynamic 

hedge ratios which factor in conditional distribution of spot and futures returns. However, 

there has been extensive debate on which model generates the best hedging performance 

(Baillie & Myers, 1991; Ghosh, 1993; Park & Switzer, 1995; Kavussanos & Nomikos, 

2000; Lien et al., 2002; Moosa; 2003, Floros & Vougas, 2006). Superior performance of 

bivariate GARCH models was supported by Baillie and Myers (1991), Park and Switzer, 

(1995), Kavussanos and Nomikos, (2000), Floros and Vougas (2006) etc. Ghosh (1993), 

however, found better performance of VECM among constant hedge models and Lien et 

al. (2002) and Moosa (2003) found that the basic OLS approach clearly dominates other 

alternatives. 
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Traditionally, hedging is envisaged using a hedge ratio of ‘-1’, i.e., taking a position in 

futures contract which is equal in magnitude and opposite in sign to the position in spot 

market. If the movement of changes in spot prices and futures prices is exactly the same, 

then such a strategy eliminates the price risk. Such a perfect correlation between spot and 

futures prices is rarely observed in markets and hence a need was felt for a better strategy. 

Johnson (1960) proposed ‘minimum variance hedge ratio (MVHR)’, which factored in 

less than perfect relationship between spot and futures prices.. Risk was defined as the 

variance of returns on a two-asset hedged position.  

The Minimum-Variance Hedge Ratio (Benninga, et al., 1983, 1984) has been suggested 

as slope coefficient of the OLS regression in which changes in spot prices is regressed on 

changes in futures price. The optimal hedge ratio for any unbiased futures market can be 

given by ratio of covariance of (cash Prices, futures Prices) and variance of (futures 

Prices). In other words, MVHR is the regression coefficient of the regression model 

(changes in spot prices over changes in futures prices) which gives maximum possible 

variance reduction or hedging effectiveness. 

Many researchers have defined hedging effectiveness as the extent of reduction in 

variances as a risk minimization problem (Johnson, 1960; Ederington, 1979). However, 

Rolfo (1980) and Anderson and Danthine (1981) calculated optimal hedge ratio by 

maximizing traders’ expected utility, which is determined by both expected return and 

variance of portfolio. Because of the relationship (trade-off) between risk and return, they 

argued that optimal ratio must be estimated in mean-variance framework rather than for 

minimizing only risk.  

Using OLS regression for estimating the hedge ratio and assessing hedging effectiveness 

based on its R-square, has been criticized mainly on two grounds (Baillie & Myers, 1991; 

Park & Switzer, 1995). First, the hedge ration estimated using OLS regression is based on 

assumption of unconditional distribution of spot and futures prices; whereas, the use of 

conditional distributions is more appropriate because hedging decision made by any 

hedger is based on all the information available at that time. Second, OLS model is based 

on assumption that the relationship between spot and future prices is time invariant but 

empirically it has been found that the joint distribution of spot and futures prices are time 

variant (Mandelbrot, 1963; Fama, 1965).  
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Recent advancements in the time series modeling techniques have tried to remove the 

deficiencies of the OLS estimation. Multivariate GARCH (Bollerslev et al, 1988) has 

been used to calculate time varying hedge ratio. Many recent works on the hedging 

effectiveness estimate time varying hedge ratios (Baillie & Myers, 1991; Park & Switzer, 

1995; Holmes, 1995; Lypny & Powella, 1998; Kavussanos & Nomikos, 2000; Choudhry, 

2004; Floros & Vougas, 2006; Bhaduri & Durai, 2008). Park and Switzer applied 

MGARCH approach to calculate hedge effectiveness of three types of stock index 

futures: S&P 500, MMI futures and Toronto 35 index futures and found that Bivariate 

GARCH estimation improves the hedging performance. Lypny and Powella (1998) used 

VEC-MGARCH (1,1) model to examine the hedging effectiveness of German stock 

Index DAX futures and found that dynamic model was superior than constant hedge 

model. However, some recent studies such as those of Lien et al. (2002) and Moosa 

(2003) have found that the basic OLS approach clearly dominates. Thus, empirical 

findings across markets seem to suggest that the best model for hedging may be country 

and market specific.  

There are very few empirical investigations of the stock futures markets and hedge ratios 

in emerging market context (Choudhry, 2004; Floros & Vougas, 2006; Bhaduri & Durai, 

2008) and especially in context of Indian commodity futures. Choudhary (2004) 

investigated the hedging effectiveness of Australian, Hong Kong, and Japanese stock 

futures markets. Both constant hedge models and time varying models were used to 

estimate and compare the hedge ratio and hedging effectiveness. He found that time-

varying GARCH hedge ratio outperformed the constant hedge ratios in most of the cases, 

inside-the-sample as well as outside-the-sample. Floros and Vougas (2006) studied the 

hedging effectiveness in Greek Stock index futures market for the period of 1999-2001 

and found that time varying hedge ratio estimated by GARCH model provides highest 

variance reduction as compared to the other methods. Bhaduri and Durai (2008) found 

similar results while analyzing the effectiveness of hedge ratio through mean return and 

variance reduction between hedge and unhedged position for various horizon periods of 

NSE Stock Index Futures. However, the simple OLS-based strategy also performed well 

at shorter time horizons. Roy and Kumar (2007) studied hedging effectiveness of wheat 

futures in India  using least square method and found that hedging effectiveness provided 

by futures markets was low (15%).  
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Since the hedging effectiveness has been found to be contingent on model used to 

estimate hedge ratio and whether it is kept constant or allowed to vary over the hedging 

horizon, it is interesting to investigate the same in Indian context. While there has been 

some work in this direction for the Stock Index Futures, Indian Commodity Futures have 

not been extensively researched empirically on the choice of model for estimating hedge 

ratio and resultant hedge effectiveness. Presumably, this research would help in 

understanding effectiveness of commodity futures contracts once the relationship between 

spot and futures prices is modeled and factored in estimating hedge ratio. It may also help 

concerned exchanges and the government to devise better risk management tools or 

supports towards commodity-specific public policy objectives.  At the time of writing this 

paper, reports suggest that the Indian government is planning on aggregation model to 

encourage participation of farmers on the commodity exchanges. Finally, this study may 

help hedgers in devising better hedging strategies.  

This study investigates optimal hedge ratio and hedge effectiveness of select futures 

contracts from Indian markets. Three different futures contracts have been empirically 

investigated in this study. One of these is a Stock index futures on S&P CNX Nifty, 

which is a value-weighted index consisting of 50 large capitalization stocks maintained 

by National Stock Exchange. The other two futures contracts are- Gold futures and 

Soybean futures. All futures contracts traded in the market at any point in time have been 

considered. Daily closing price data on S&P CNX Nifty index and its futures contracts5 

(all three) available at any given time, and similarly three Gold futures6 and three 

Soybean futures7 contracts trading contemporaneously are included. Since hedge 

effectiveness of NIFTY futures was investigated by Bhaduri and Durai (2008) for the 

period  4 September 2000 to 4 August 2005, we have used data for the period of 1st Jan 

2004 to 8th May 2008 of NIFTY futures to supplement their work.  

This paper is organized as follows: several model specifications used for estimating the 

hedge effectiveness and hedge ratio are presented in Section 2. In Section 3, description 
                                                 
5 S&P CNX Nifty futures contracts have a maximum of 3-month trading cycle - the near month (one), the 
next month (two) and the far month (three). A new contract is introduced on the trading day following the 
expiry of the near month contract (http://www.nseindia.com) 
6 Gold futures contracts are started from 22nd July 2005 on NCDEX and there are only three contemporary 
futures contacts of different maturity (http://www.ncdex.com). 
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7 Soybean futures are stared prior to 4th October 2004on NCDEX; however, because of less trading volume, 
futures prices before 4th October 2004, were behaving erratically, we considered the data from 
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period. 
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of the data used for the study and its characteristics is given. Results are presented in 

Section 4 and the final section concludes the findings of the study. 

2. HEDGE RATIO AND HEDGING EFFECTIVENESS  

In this study, four models, conventional OLS, VAR, VEC and VAR-MGARCH are 

employed to estimate optimal hedge ratio. The OLS, VAR and VECM models estimate 

constant hedge ratio whereas time varying optimal hedge ratios are calculated using 

bivariate GARCH model (Bollerslev et al., 1988). In this section, first we discuss the 

hedge ratio and hedging effectiveness and then all four models are presented. 

In portfolio theory, hedging with futures can be considered as a portfolio selection 

problem in which futures can be used as one of the assets in the portfolio to minimize the 

overall risk or to maximize utility function. Hedging with futures contracts involves 

purchase/sale of futures in combination with another commitment, usually with the 

expectation of favorable change in relative prices of spot and futures market (Castelino, 

1992). The basic idea of hedging through futures market is to compensate loss/ profit in 

futures market by profit/loss in spot markets.  

The optimal hedge ratio is defined as the ratio of the size of position taken in the futures 

market to the size of the cash position which minimizes the total risk of portfolio. The 

return on an unhedged and a hedged portfolio can be written as: 

( ) ( ttttH

ttU

FFHSSR
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−−−=
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+
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1                                                                                          [1] 

Variances of an unhedged and a hedged portfolio are: 
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=
                                                                                [2] 

where, St and Ft are natural logarithm of spot and futures prices, H is the hedge ratio, RH 

and RU are return from unhedged and hedged portfolio, σS and σF are standard deviation 

of the spot and futures return and σS,F is the covariance. 

Hedging effectiveness is defined as the ratio of the variance of the unhedged position 

minus variance of hedge position over the variance of unhedged position. 

( ) ( )( )
( )UVar

HVarUVarEessEffectivenHedging −
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2.1 MODELS FOR CALCULATING HEDGING EFFECTIVENESS AND HEDGE 
RATIO 

Several models have been  used to estimate hedge ratio and hedging effectiveness such as 

conventional OLS model, Vector Autoregressive regression (VAR) model, Vector Error 

Correction model (VECM), Vector Autoregressive Model with Bivariate Generalized 

Autoregressive Conditional Heteroscedasticity model (VAR-MGARCH). Hedge 

performance estimated by OLS, VAR, and VECM is based on assumption that the joint 

distribution of spot and futures prices is time invariant and does not take into account the 

conditional covariance structure of spot and futures price, whereas VAR-MGARCH 

model estimates time varying hedge ratio and time varying conditional covariance 

structure of spot and futures price. 

2.1.1 MODEL 1: OLS METHOD 

In this method changes in spot price is regressed on the changes in futures price. The 

Minimum-Variance Hedge Ratio has been suggested as slope coefficient of the OLS 

regression. It is the ratio of covariance of (spot prices, futures prices) and variance of 

(futures prices). The R-square of this model indicates the hedging effectiveness. The OLS 

equation is given as: 

tFtSt HRR εα ++=                            [4] 

Where, RSt and RFt are spot and futures return, H is the optimal hedge ratio and εt is the 

error term in the OLS equation. Many empirical studies use the OLS method to estimate 

optimal hedge ratio, however this method does not take account of conditioning 

information (Myers & Thompson, 1989) and ignores the time varying nature of hedge 

ratios (Cecchetti, Cumby, & Figlewski, 1988). It also does not consider the futures returns 

as endogenous variable and ignores the covariance between error of spot and futures 

returns. The advantage of this model is the ease of implementation. 

2.1.2 MODEL 2: THE BIVARIATE VAR MODEL 

The bivariate VAR Model is preferred over the simple OLS estimation because it 

eliminates problems of autocorrelation between errors and treat futures prices as 

endogenous variable. The VAR model is represented as  
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The error terms in the equations, εSt, and εFt are independently identically distributed 

(IID) random vector. The minimum variance hedge ratio are calculated as  
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The VAR model does not consider the conditional distribution of spot and futures prices 

and calculates constant hedge ratio.  It does not consider the possibility of long term 

integration between spot and futures returns. 

2.1.3 MODEL 3: THE ERROR CORRECTION MODEL 

VAR model does not consider the possibility that the endogenous variables could be co-

integrated in the long term. If two prices are co-integrated in long run then Vector Error 

Correction model is more appropriate which accounts for long-run co-integration between 

spot and futures prices (Lien & Luo, 1994; Lien, 1996). If the futures and spot series are 

co-integrated of the order one, then the Vector error correction model of the series is 

given as: 
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where, St and Ft are natural logarithm of spot and futures prices. The assumptions about 

the error terms are same as for VAR model. The minimum variance hedge ratio and 

hedging effectiveness are estimated by following similar approach as in  case of VAR 

model. 
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2.1.4 MODEL 4: THE VAR-MGARCH MODEL 

Generally, time series data of return possesses time varying heteroscedastic volatility 

structure or ARCH-effect (Bollerslev et al, 1992). Due to ARCH effect in the returns of 

spot and futures prices and their time varying joint distribution, the estimation of hedge 

ratio and hedging effectiveness may turn out to be inappropriate. Cecchetti, Cumby, and 

Figlewski (1988) used ARCH model to represent time variation in the conditional 

covariance matrix of Treasury bond returns and bond futures to estimate time-varying 

optimal hedge ratios and found substantial variation in optimal hedge ratio. The VAR-

MGARCH model considers the ARCH effect of the time series and calculate time 

varying hedge ratio. A bivariate GARCH (1,1) model is given by: 
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where, hss and hff are the conditional variance of the errors εst and εft and hsf is the 
covariance. 

Bollerslev et al. (1988) proposed a restricted version of the above model in which the 
only diagonal elements of α and β matrix are considered and the correlations between 
conditional variances are assumed to be constant. The diagonal representation of the 
conditional variances elements hss and hff and the covariance element hsf is presented as 
(Bollerslev et al., 1988): 
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Time varying hedge ratio is calculated as follows: 

fft

sft
t h

h
H =                    [10] 

3. CHARACTERISTICS OF FUTURES PRICES 

Daily closing price data on S&P CNX Nifty index and its futures contracts, published by 

NSE India, for the period from 1st January 2004 to 8th May 2008 has been analyzed in this 

study. All three futures contracts trading at a given point of time are analyzed and 

compared. Data for the period of 21st February 2008 to 8th May 2008 has been used for 

out-of-the-sample analysis. Similarly, two Gold futures for the period from 22nd July 2005 

to 8th May 2008 and two Soybean futures from 4th October 2004 to 8th May 2008 are also 

considered. For Gold and Soybean, data for the period of 21st February 2008 to 8th May 

2008 and 1st January 2008 to 8th may 2008 has been are used for out-of-the-sample 

analysis respectively. These commodities are traded on National Commodity Exchange, 

India. Spot prices obtained from the commodity exchanges are not reliable as there is no 

spot trading and they are collected from some regional markets. These prices might not be 

a true representation of spot prices because of market imperfection, difference in quality 

and policy restriction on the movement of commodities.  Hence, following Fama and 

French (1987), Bailey and Chan (1993), Bessembinder et al. (1995), Mazaheri (1999) and 

Frank and Garcia (2008), the nearby futures prices Gold and Soybean are used as a proxy 

for the spot price and the subsequent futures price as the futures price. Time series of spot 

and futures prices of these assets are given in Figure 1. 
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Figure 1: Spot and futures prices of a) Nifty b) Gold and c) Soybean 

3.1: TEST OF UNIT ROOT AND COINTEGRATION  

Stationarity of the prices and their first difference are tested using ADF and KPSS test 

statistics. KPSS is often suggested as a confirmatory test of stationarity. The null hypothesis 

for ADF test is that the series contains unit root whereas stationarity of the series is used as 

the null hypothesis for KPSS test. The summary statistics are shown in Table 1. 

Table 1: Unit root tests on prices and returns 

Asset Price 
series ADF (t stat) KPSS (LM 

stat) 
Return 
series ADF (t stat) KPSS (LM 

stat) 
Spot -3.1287 0.518785** Spot -30.512** 0.053376 
Future18 -3.0217 0.512487** Future1 -32.2084** 0.061826 
Future2 -3.0141 0.510871** Future2 -32.31197** 0.054473 

Nifty 

Future3 -3.0036 0.512137** Future3 -32.27063** 0.051550 
Spot -1.4494 0.349708** Spot -24.59546** 0.156087 
Future1 -1.4692 0.364389** Future1 -23.59079** 0.128691 Gold 
Future2 -1.7648 0.374682** Future2 -22.9685** 0.123841 
Spot -0.2678 0.745553** Spot -27.48925** 0.047505 
Future1 -0.1900 0.692446** Future1 -28.09060** 0.031771 Soybean 
Future2 -1.2823 0.240624** Future2 -27.99354** 0.035745 

*(**) denotes rejection of the hypothesis at the 5%(1%) level 
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8 The near month futures are named as Future 1, next to near month futures as Future 2 and Future 3 
subsequently. So for Nifty futures there are three futures series (Future 1, Future 2 and Future 3) and for 
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Both ADF and KPSS test statistics confirm that all prices have unit root (non-stationary) 

and return series are stationary. They have one degree of integration (I(1)- process). The 

co-integration between spot and futures prices is tested by Johansen’s (1991) maximum 

likelihood method. The results of co-integration are presented in Table 2. It can be 

observed that spot and futures prices have one co-integrating vector and they are co-

integrated in the long run.  

Table 2: Johansen co-integration tests of spot and futures prices 

  Spot-Future 1 Spot-Future 2 Spot-Future 3 
Hypothesized  

  No. of CE(s) Eigenvalue 
Trace 

Statistic 
Eigenvalu

e 
Trace 

Statistic Eigenvalue 
Trace 

Statistic 
None  0.04048** 43.028** 0.01973** 22.3309** 0.014** 16.737** 

Nifty At most 1  0.00236 2.325366 0.002744 2.706341 0.0029 2.8595 
None 0.02739** 20.726** 0.02351** 18.62156 -- -- 

Gold  At most 1  0.0046 2.950516 0.005287 3.392959 -- -- 
None  0.02551** 23.823** 0.01589** 13.6849** -- -- 

Soybean At most 1  0.00408 3.255157 0.00117 0.931647 -- -- 
 *(**) denotes rejection of the hypothesis at the 5%(1%) level 

4. HEDGE RATIO AND EFFECTIVENSS: EMPIRICAL PERFORMANCE OF 
MODELS 

Hedge ratio and hedging effectiveness of Index futures (Nifty) and commodity futures 

(Soybean and Gold) is estimated through four models (OLS, VAR, VECM and bivariate 

GARCH) described earlier. We also estimated the time varying hedge ratio for Nifty and 

Gold futures by VAR-MGARCH approach9. In-sample and out-of-sample estimates of 

hedge ratio and hedging effectiveness calculated from these models are compared. 

4.1 IN-SAMPLE RESULTS 

4.1.1 OLS ESTIMATES 

OLS regression (equation [4]) has been used to calculate the hedge ratio and hedging 

effectiveness. The slope of the regression equation gives the hedge ratio and R2, the 

hedging effectiveness.  

 

 

                                                 

  
 W.P.  No.  2008-06-01 

9 For Soybeans futures, we did not get the optimized solution. As addressed by Bera and Higgins (1993), 
one disadvantage of Diagonal GARCH models is that the covariance matrix is not always positive definite 
and therefore the numerical optimization of likelihood function may fail. 
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Table 3: OLS regression model estimates 

 Nifty Gold Soybean 
 Future 1 Future 2 Future 3 Future 1 Future 2 Future 1 Future 2 
α -0.00708 -0.00172 0.00209 0.01025 0.01986 -0.02749* -0.03430* 
β 0.91181* 0.90519* 0.90836* 0.92387* 0.73613* 0.93092* 0.90329* 

R2 0.9696 0.9641 0.9483 0.8076 0.4749 0.9264 0.8856 
**(*) denotes significance of estimates at 5%(10%) level 

For all futures contracts, the hedge ratio is higher than 0.90 except for Gold far month 

maturity contract (Future 2). Hedge ratio estimated from OLS method provides 

approximately 90% variance reduction except for Gold far month maturity contract 

(Future 2), which indicates that the hedge provided by these contracts in Indian markets is 

effective. Hedging effectiveness was highest for Nifty futures. Near month Gold futures 

provides 81% of hedging effectiveness as compared to 47% for distant futures. Hedging 

effectiveness decreases as we move from near-month futures to distant futures (except 

Nifty futures where this decrease is not very high).  

4.1.2 VAR ESTIMATES 

To calculate the hedge ratio and hedging effectiveness, system of equations (equation [5]) 

is solved and errors are estimated. We used errors from the equation [5] to calculate 

hedge ratio and hedging effectiveness (equation [6]) of futures contracts. The estimates of 

the parameters of the spot and futures equations are given in Table 3 and the optimal 

hedge ratio and hedge effectiveness is presented in Table 4. 

Table 3: Estimates of VAR model 

a) Spot prices 

 Nifty Gold Soybean 
  Future 1  Future 2 Future 3 Future 1  Future 2 Future 1 Future 2  
α 0.09214 0.08637 0.08509 0.06614 0.06546 0.00085 -0.00353 
βS1 0.14468 0.2071 0.12434 0.09816 0.11122** -0.19642 -0.13519 
βS2 -0.12895 -0.16246 -0.30353* 0.36298** 0.12681 0.03143 -0.07937 
βS3 0.10678 -0.03455 -0.03626 0.09341 -0.00594* 0.04543 0.00736 
βS4 0.50512** 0.19228 0.19243 0.10787 0.14862* -0.00664 -0.00246 
βS5 -0.32561* -0.31132* -0.20545 0.10335 -0.05476 0.15701 0.15894 
γF1 -0.10171 -0.16171 -0.08523 -0.08508 -0.12387** 0.22555* 0.16481 
γF2 0.04836 0.07645 0.21881 -0.31548** -0.02595 -0.02557 0.08449 
γF3 -0.15247 -0.01885 -0.01435** -0.06837 0.01545* -0.04081 0.00479 
γF4 -0.42778* -0.12553 -0.13059 -0.01858 -0.10056 0.04695 0.04648 
γF5 0.27177 0.2698* 0.17751 -0.13055 0.10731 -0.1385 -0.1397 
R2 0.0246 0.0201 0.0213 0.0285 0.0319 0.0084 0.0094 
**(*) denotes significance of estimates at 5%(10%) level 
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b) Futures prices 

 Nifty Gold Soybean 

  Future 1  Future 2 Future 3 Future 1  Future 2 Future 1 Future 2  

α 0.12091 0.10755 0.09914 0.05415 0.05605 0.02916 0.03014 
βF1 -0.4732** -0.5627 -0.492** -0.53844 -0.4942** 0.22818* 0.18973* 
βF2 -0.0285 -0.05761 0.06083 -0.40597 -0.3183** 0.00498 0.11157 
βF3 -0.19424 -0.05445 -0.09935 -0.22715 -0.1462** -0.00003 0.03671 
βF4 -0.4963** -0.20183 -0.2154 -0.0619 -0.13343 0.02607 0.03589 
βF5 0.33615* 0.34771 0.2572** -0.17291 0.04439* -0.13979 -0.08613 
γS1 0.4955** 0.58919 0.51681** 0.6106 0.63558** -0.23662* -0.20014 
γS2 -0.06068 -0.04133 -0.14814 0.45884 0.39217** -0.00376 -0.11967 
γS3 0.14156 -0.00243 0.03812 0.24972 0.17249** -0.00964 -0.04245 
γS4 0.57068** 0.27239 0.27647 0.16595 0.19705** 0.01516 0.00659 
γS5 -0.4091** -0.40625 -0.3009** 0.12147 0.01591 0.1641 0.11441 
R2 0.0301 0.0296 0.0332 0.084 0.2229 0.0073 0.0089 
**(*) denotes significance of estimates at 5%(10%) level 

Table 4: Estimation of hedge ratio and hedging effectiveness 
 Nifty Gold Soybean 
  Future 1  Future 2 Future 3 Future 1  Future 2 Future 1 Future 2  
Covariance(εF, εS) 1.955675 1.964752 1.927051 0.626340 0.446827 0.572247 0.562553 
Variance (εF) 2.136124 2.155891 2.105059 0.643147 0.505961 0.616320 0.622840 
Hedge Ratio 0.915525 0.911341 0.915438 0.973868 0.883125 0.928490 0.903207 
Variance (εS) 1.840382 1.848928 1.846569 0.720482 0.717998 0.574066 0.573491 
Variance(H) 0.049913 0.058369 0.082473 0.110509 0.323394 0.042741 0.065389 
Variance(U) 1.840382 1.848928 1.846569 0.720482 0.717998 0.574066 0.573491 
Hedging 
Effectiveness, E 0.972879 0.968431 0.955337 0.846618 0.549590 0.925547 0.885981 

Hedge ratio calculated from VAR model are higher and perform better than OLS 
estimates in reducing variance. Hedge ratio estimated through VAR model increased from 
0.71 (OLS estimate) to 0.88 in case of Gold Futures 2. For the same futures, hedging 
effectiveness also increase from 47%, in case of OLS, to 55%. Improvement is also 
observed for other futures contracts.  

4.1.3 VECM estimates 

Using the same approach as in case of VAR model, errors are estimated and hedging 
effectiveness and hedge ratio are calculated for VECM model. Results of the equation [7] 
are presented in Table 5. Table 6 illustrates the estimates of hedge ratio and hedging 
effectiveness of futures contracts.  
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Table 5: Estimates of VECM model 

a) Spot prices 

 Nifty Gold Soybean 
  Future 1  Future 2 Future 3 Future 1  Future 2 Future 1 Future 2  
α -0.00001 -0.00149 -0.00224 -0.00532 -0.00202 -0.02532 -0.0408** 
βS 0.05004 0.08557 0.09408 0.20126 0.10592 -0.09951 -0.07257 
βS2 0.46701** 0.55394** 0.42326** -0.3692** -0.05038 0.28075** -0.1840** 
βS3 0.05165 0.08965 -0.02764 -0.01643 0.05927 -0.19247* -0.14661* 
βS4 0.05019** 0.18872 0.32751* -0.06997 -0.02164 -0.04046 -0.03318 
βS5 0.54985 0.68071** 0.64861** 0.01489 0.17944** -0.2038** -0.08434 
γF -0.04993 -0.08532 -0.09376 -0.20043 -0.10544 0.10293 0.07811 
γF2 -0.36327* -0.4412** -0.32379* 0.40538** 0.05899 0.28704** 0.1867** 
γF3 -0.12872 -0.16659 -0.04819 0.04557 -0.01813 0.15622 0.10214 
γF4 -0.07455 -0.20544 -0.33422 0.03953 -0.00939 0.05576 0.04407 
γF5 -0.4718** -0.5920** -0.5729** -0.02166 -0.2352** 0.24222** 0.1148 
R2 0.0243 0.0318 0.0358 0.0258 0.0307 0.0384 0.0385 
**(*) denotes significance of estimates at 5%(10%) level 

b) Futures prices 

 Nifty Gold Soybean 
 Future 1 Future 2 Future 3 Future 1 Future 2 Future 1 Future 2 
α -0.003 -0.00339 -0.00415 -0.00749 -0.00367 -0.00949 -0.0205 
βF -0.2064** -0.1512** -0.14817 -0.2663 -0.15307 0.04014 0.03983 
βF2 -0.6994 -0.90632 -0.8538** -0.27776* -0.4906** 0.28336** 0.18402** 
βF3 -0.26479 -0.36496 -0.32946* -0.25836 -0.3937** 0.15243 0.0755 
βF4 -0.16024 -0.2986** -0.5275** -0.2692* -0.2634** 0.01391 0.03344 
βF5 -0.6037** -0.76175 -0.7618** -0.1454 "-0.259** 0.16678 0.07962 
γS 0.20687 0.15161 0.14868 0.26741 0.15376 -0.03881 -0.03701 
γS2 0.79099** 1.01436** 0.95749** 0.3334** 0.55949** -0.2917** -0.1886** 
γS3 0.19292 0.29177 0.26873** 0.30404* 0.43944** -0.18824 -0.12756 
γS4 0.1372 0.28757 0.52992** 0.24972 0.261** -0.00141 -0.03412 
γS5 0.69213** 0.86826** 0.855** 0.14775 0.26046** -0.1378** -0.06379 
R2 0.034 0.0475 0.0604 0.0551 0.1828 0.0201 0.0181 

**(*) denotes significance of estimates at 5%(10%) level 

Although VECM model does not consider the conditional covariance structure of spot 

and futures price, it is supposed to be best specified model for the estimations of constant 

hedge ratio and hedging effectiveness because it factors in any long term co-integration 

between spot and futures prices. It has been found that in-sample performance of VECM 

model provides better variance reduction that VAR and OLS model. OLS seems to be 

least efficient. Our results are consistent with the findings of Ghosh (1993).  

 

 
  
 W.P.  No.  2008-06-01 Page No. 17 

 



 IIMA    INDIA Research and Publications 

Table 6: Estimation of hedge ratio and hedging effectiveness 

 Nifty Gold Soybean 
  Future 1  Future 2 Future 3 Future 1  Future 2 Future 1 Future 2  
Covariance(εF, 
εS)

0.00029897 0.00029729 0.00029241 0.00010045 0.00007981 0.00011045 0.00010678 

Variance (εF) 0.00032731 0.00032633 0.00032054 0.00010070 0.00008141 0.00012089 0.00012563 
Hedge Ratio 0.91341151 0.91101612 0.91224194 0.99757688 0.98027566 0.91357658 0.85001364 
Variance (εS) 0.00027996 0.00027782 0.00027665 0.00011035 0.00010979 0.00011397 0.00011395 
Variance(H) 0.00000688 0.00000698 0.00000991 0.00001013 0.00003155 0.00001307 0.00002318 
Variance(U) 0.00027996 0.00027782 0.00027665 0.00011035 0.00010979 0.00011397 0.00011395 
Hedging 
Effectiveness, 
E 

0.97542167 0.97487147 0.96418452 0.90816098 0.71260213 0.88532617 0.79655091 

 

4.1.4 VAR-MGARCH MODEL 

VAR-MGARCH model is used to modify the estimation of hedge ratio for time varying 

volatility and to incorporate non-linearity in the mean equation. Errors of the VAR and 

VECM models are analyzed for presence of “ARCH effect” and it was found that the 

errors have time varying volatility. Errors obtained from the VAR and VECM model are 

shown in Appendix 110. VAR models with bivariate Diagonal GARCH (1,1) are used and 

results are presented in Table 7. 

Table 7: GARCH estimates of the VAR-MGARCH (1,1) model 

 Nifty Gold 
  Future 1  Future 2 Future 3 Future 1  Future 2 
Css 1.88922** 1.89082** 1.74192** 0.67245** 0.68831** 
Csf 2.01818** 2.00367** 1.85564** 0.58417** 0.43065** 
Cff 2.19812** 2.17527** 2.20075** 0.53565** 0.47647** 
α11 0.0014** 0.14607** -0.43134** 0.69091** 0.32432** 
α22 -0.00147** 0.15032** -0.42755** 0.55232** 0.26384** 
α33 0.00312** 0.16131** -0.39683** 0.45838** 0.32959** 
β11 -0.00523** 0.02881** -0.05434** 0.00961** -0.01095** 
β22 0.01247** 0.00045** -0.02726** 0.05161** 0.01465** 
β33 -0.00589** -0.03453** -0.05503** 0.10733** -0.06218** 
**(*) denotes significance of estimates at 5%(10%) level 
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request.  
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  Hedge Ratio Min Max Mean SD 
Future 1 0.79112 0.935219 0.931028 0.011024 

Future 2 0.710722 1.153131 0.9476 0.027281 Nifty 

Future 3 -9.039 9.616319 0.842709 0.655289 

Future 1 -0.56527 1.884075 1.028782 0.141592 
Gold 

Future 2 -0.46332 3.213549 0.951656 0.201246 

Since the dynamics hedge ratio are less stable and having pronounced fluctuations, the 

hedger has to adjust their futures positions more often. The negative hedge ratio reflects 

the fact that spot and futures prices may move in opposite direction (negative covariance) 

in short run (Tong, 1996). It requires the hedger to go long in futures market to hedge the 

long spot position. 

The mean hedge ratio estimated from the time-varying conditional variance and 

covariance between spot and futures returns are higher than other methods (except Nifty 

Futures 3). The average optimal hedge ratio for Nifty Futures 1, Futures 2 and Futures 3 

are 0.9310, 0.9476 and 0.8427 respectively. For Gold Futures 1 and Futures 2, this ratio is 

1.0288 and 0.9516 respectively. It is found that as we move to distant futures the variation 

in hedge ratio increases (0.011024 to 0.655289 in case of Nifty and 0.141592 to 0.201246 

in case of Gold). 

 

Time varying hedge ratio for Nifty and Gold futures has been estimated using error 

structure and GARCH (1,1) parameters obtained from equation [8]. Time varying hedge 

ratio estimated from constant conditional correlation and time varying covariance 

structure of spot and futures prices are shown in Figure 2. Statistical properties of Hedge 

ratio obtained from M-GARCH model for Nifty and Gold futures are given in table 8. 

Table 8: Statistical properties of dynamic hedge ratio fromVAR-MGARCH model 
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   a) Nifty Future 1       b) Nifty Future 2 
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c) Nifty Future 3 
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Figure 2: Estimates of time varying hedge ratio from VAR-MGARCH model. 

d) Gold Future 1                                                                      e) Gold Future 2 
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Constant hedge ratio obtained from OLS, VAR, VECM and average of time varying 

hedge ratio obtained from VAR-MGARCH model is compared in Table 9 & 10. Our 

results show that hedge ratio calculated from VAR-MGARCH (1,1) are higher and 

provide greater variance reduction than other models. Similar results were reported in the 

previous studies of Myers (1991), Baillie and Myers (1991) and Park and Switzer 

(1995a,b) in the US financial and commodity markets. In case of constant hedge ratio 

estimation, VECM performs better than OLS and VAR models. Similar results were 

found by Ghosh (1993).  

Table 9: In-sample comparison of optimal hedge ratio estimates by different models 

 Nifty Gold Soybean 
 Future 1 Future 2 Future 3 Future 1 Future 2 Future 1 Future 2 

OLS 0.91181 0.90519 0.908360 0.92387 0.73613 0.93092 0.90329 
VAR 0.91552 0.91134 0.915438 0.97387 0.88312 0.92849 0.903207 

VECM 0.913411 0.91102 0.912242 0.99758 0.980275 0.913576 0.850013 
VAR-MGARCH 0.93103 0.9476 0.84271 1.02878 0.95165 -- -- 

Table 10: In-sample comparison of optimal hedging effectiveness estimates by 

different models 

 Nifty Gold Soybean 
 Future 1 Future 2 Future 3 Future 1 Future 2 Future 1 Future 2 

OLS 0.9696 0.9641 0.9483 0.8076 0.4749 0.9264 0.8856 
VAR 0.972879 0.968431 0.955337 0.846618 0.54959 0.925547 0.88598 

VECM 0.9754217 0.9748715 0.964184 0.908161 0.712602 0.8853262 0.79655 
VAR-MGARCH 1.009626 0.977068 0.911171 0.892781 0.597047   

4.2 OUT-OF-THE-SAMPLE RESULTS 

Brook and Chong (2001) suggested that out-of-the-sample evaluation of models is more 

appropriate because traders are more concerned with future performance. This is 

particularly true for comparing performance of a model using dynamic hedge ratio. 

Hence, data for the period of 21st February 2008 to 8th May 2008 has been used for out of 

sample analysis for nifty futures. Similarly, for Gold and Soybean, data for the period of 

21st February 2008 to 8th May 2008 and 1st January 2008 to 8th May 2008 has been used 
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  Nifty Gold Soybean 
  Future 1  Future 2 Future 3 Future 1  Future 2 Future 1  Future 2 

Covariance(εF, 
εS)

2.497725 2.810920 1.855876 0.645968 0.417951 2.127770144 2.100567881 

Variance (εF) 2.728433 5.152587 4.004857 0.978732 3.410071 2.307298235 2.300496681 
Hedge Ratio, 
H 0.911810 0.905190 0.908360 0.92387 0.73613 0.93092 0.90329 

Variance (εS) 2.452104 2.452104 2.452104 1.08058933 1.08058933 2.094264 2.094264 
Variance 
(Hedged) 0.165615 1.585141 2.384976 0.726082 3.107916 0.132059 0.248292 

Variance 
(Unhedged) 2.452104 2.452104 2.452104 1.08058933 1.08058933 2.094264 2.094264 

Hedging 
Effectiveness, 
E 

0.932460 0.353559 0.027376 0.328069 -1.876130 0.936942 0.881442 

  Hedge Raio Min Max Mean SD 
Future 1 0.872641 0.935207 0.929749 0.012059 
Future 2 -0.20942 1.392218 0.730338 0.321048 Nifty 
Future 3 -6.21891 2.526035 0.524149 1.452091 
Future 1 0.211217 1.953885 0.989963 0.241402 Gold 
Future 2 1.099314 16.79628 3.456777 2.652792 

Out-of-sample estimates of dynamic hedge ratio in Nifty and Gold futures have higher 

variability than in-sample estimates. As observed in in-sample results, variation in the 

dynamic hedge ratio of distant month futures is more than in near month futures. Out-of 

sample performance of hedging effectiveness calculated from OLS, VAR, and VECM 

model are estimated and given in Table 12 to 14. 

for out-of-sample analysis respectively. For OLS, VAR and VECM models, the estimated 

hedge ratios from the estimation period are used for testing their out-of the-sample 

performance. For bivariate GARCH, we estimate one-period-ahead estimates of 

conditional variance and covariance of spot and futures prices from parameters estimated 

from estimation period. Out of sample estimates of hedge ratio and their statistical 

properties for VAR-MGARCH (1,1) are presented in Table 11. Figure 3 illustrates the 

comparison of out-of-sample estimates of hedge ratio from GARCH model and in-sample 

estimates of OLS, VAR and VEC model. 

Table 11 Out of sample estimates of hedge ratio and their statistical properties 

Table 12: OLS model 
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Figure 3: Out-of-sample comparison of hedge ratio 
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Table 13: VAR model 

  Nifty Gold Soybean 
  Future 1  Future 2 Future 3 Future 1  Future 2 Future 1  Future 2 

Covariance(εF, 
εS)

2.695598 2.459859 2.223129 0.621495702 0.767535287 2.101569844 2.088639265 

Variance (εF) 2.868049 3.841825 4.037208 0.647550447 3.492637982 2.292162006 2.297210329 
Hedge Ratio, 
H 0.915525 0.911341 0.915438 0.973868 0.883125 0.92849 0.903207 

Variance (εS) 2.692616 2.460410 2.923080 1.086411499 1.241911142 2.060467463 2.08568957 
Variance 
(Hedged) 0.160799 1.167668 2.236094 0.490051 2.610194 0.133953 0.186767 

Variance 
(Unhedged) 2.692616 2.460410 2.923080 1.086411499 1.241911142 2.060467463 2.08568957 

Hedging 
Effectiveness, 
E 

0.940281 0.525417 0.235021 0.548927 -1.101756 0.934989 0.910453 

Table 14: VECM Model 

  Nifty Gold Soybean 
  Future 1  Future 2 Future 3 Future 1  Future 2 Future 1  Future 2 

Covariance 
(εF, εS)

0.0002501 0.0007967 0.0004581 6.63211E-05 -3.89E-06 0.0002335 0.0002289 

Variance (εF) 0.000278 0.0013100 0.0008337 9.34037E-05 0.000346896 0.0002415 0.0002106 
Hedge Ratio, 
H 0.913411 0.911016 0.9122419 0.99757688 0.98027566 0.913576 0.850013 

Variance (εS) 0.00024 0.000590 0.000426 0.000113105 0.000111004 0.0003519 0.0002116 
Variance 
(Hedged) 0.000020 0.000225 0.000284 0.000074 0.000452 0.000127 -0.000025 

Variance 
(Unhedged) 0.000245 0.000590 0.000426 0.000113105 0.000111004 0.0003519 0.0002116 

Hedging 
Effectiveness, 
E 

0.917644 0.617806 0.333268 0.348076 -3.071775 0.639576 1.119445 

Out-of- the sample, among constant hedge models, OLS and VAR models perform better 
than VECM for near month futures. However, for distant month futures VECM perform 
better than OLS and VAR11 models. We also compare the out-of- the sample hedging 
effectiveness of constant hedge ratio models and dynamic hedge ratio models, bivariate 
GARCH. These comparisons are presented in Table 15. 

                                                 

  

11 In case of Gold futures 2, we find negative hedge effectiveness estimated from all constant hedge 
models. This may be because of higher futures return variance. 
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Table 15: Out-of-sample comparison of optimal hedging effectiveness of different 

models 

 Nifty Gold Soybean 
 Future 1 Future 2 Future 3 Future 1 Future 2 Future 1 Future 2 

OLS 0.93246 0.353559 0.027376 0.32807 -1.87613 0.936942 0.88144 
VAR 0.94028 0.525417 0.235021 0.54893 -1.10175 0.934989 0.91045 

VECM 0.91764 0.617806 0.333268 0.34808 -3.07177 0.639576 1.11945 
VAR-MGARCH 1.00710 0.752793 1.312628 0.787436 2.69272     

Across all futures contracts, dynamic hedge ratio model, bivariate GARCH, performs 

better than constant hedge ratio models in variance reduction. Similar results were found 

in studies of Myers (1991), Baillie and Myers (1991) Park and Switzer (1995) 

Kavussanos and Nomikos (2000), Yang (2001), and Floros and Vougas (2006). However, 

hedging strategy suggested by VAR-MGARCH model may requires frequent shift in 

hedging positions and would result in associated transaction costs. 

5. CONCLUSIONS 

In an emerging market like India, where stock and commodity markets are growing at a 

fast rate and derivatives have been introduced recently, it is important to evaluate the 

hedging effectiveness of derivatives. In the present paper, we report hedge ratios of Nifty, 

Gold and Soybean futures from four alternative modeling frameworks, an OLS-based 

model, a VAR model, a VECM model and a multivariate GARCH model. We compare 

the hedging effectiveness of the contacts using these models, ex post (in-sample) and ex 

ante (out-of-sample).  

Our results show that futures and spots prices are found to be co-integrated in the long 

run. Among constant hedge ratio models, in most of the cases, VECM performs better 

than OLS and VAR models, which is consistent with previous findings of Ghosh 

(1993b). Time varying hedge ratio derived from VAR-MGARCH model provides highest 

variance reduction as compared to the other methods in both in-sample as well as out-of 

sample period for all contracts. This result is consistent with the results of Myers (1991), 

Baillie and Myers (1991), Park and Switzer (1995a,b), Lypny and Powella (1998), 
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Kavussanos and Nomikos (2000), Yang (2001), and Floros and Vougas (2006). VAR-

MGARCH hedge ratio, however, varies dramatically over time and calls for frequent 

changes in hedging positions. Transaction cost in implementing dynamic hedging using 

VAR-MGARCH may nullify some of the gains provided by it. Both stock market and 

commodity derivatives markets in India provide a reasonably high level of hedging 

effectiveness (90%) and it can be said that derivatives markets in Indian context provide 

useful risk management tool for hedging and for portfolio diversification. 
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APPENDIX 
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Figure 1: Residual series from spot and futures equation in VAR model for nifty 
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Figure 2: Residual series from spot and futures equation in VAR model for Gold and Soybean 
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Figure 3: Residual series from spot and futures equation in VECM for Nifty 
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Figure 4: Residual series from spot and futures equation in VECM for Gold and Soybean 
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