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SOME RESULTS IN FINDING A LOWER BOUND ON THE’
EFFIGIENCY OF LEAST SQUARE EST IMATES RELATIVE
TO BEST LINEAR ESTIMATZS IN REGRESSION MODEL

by

M.Kaghavachart
" Indian Institite of Management', Ahmedabad

1, IntrOduction:

Consider the usual Tregression model in matrix notation:
= xﬁ>+ U .

Qhere Y is mx1, X is nxk, ﬁis kx1 ana U i1s nx1l, The X matrix will
be regarded as fixed; the error vector U is random with E(U) = O and
E@u') = F, say. Assume that the ranks of X and (" are k andn
respectively, It is well known that the best linear éstimatpriu'
is given byﬂ N ,
po=w 7o (xept Y )
‘with

Var (= & tol

The least Squares estimator b is given by

-
~ L

b = @™ xy

with

-1 ~1

var (B =X " XX (X'X)

A measure of efficiency of the least squares estimator relative

[ "

to the best linear estimator is given by the ratxo of generalized

variances: .
(1) eff ¢b) =H}Var (;;)_)//Var(b) = |x'x | 2/jx- rxj|x x|,

It can be shown, see e.g. G.S. Watson (1967) that 0<% Leff(b) £ 1 and
that the upper bound can be obtained for a narticular chofce of X. It is

of interest ‘o determire an attainable lowsr bound for eff (b) For

—

Preseated at the VIII International Symposium on Mathematical Programming
held in Stanford University, Stanford, USA in August 1973, .



k1 and n)2k-1'G 's.'fwa‘t’gan (1955 and 1967) suggested the inmequality
s
@) ef£(b) 2[4 2,2 /(2 +,\,1)] [4) p _./ (A0, ,)] L*)" e/ eXY!

where 0 < ,\ >\:,_ £ % ) - are the eigen valt_xgs of [_’. For Kk#1,
(2) has shown to be true. See G.S. Watson (1967). The pu‘rpose of this
paper is'to study the problem for k71 Some 1rusights into the nature
of the problem for general k2 are given, These results may be use-
ful in settling the valild‘ity' of (2). " Oth.'er‘ lower bqunds for eff(l:v) |
have alsé beeh"'propbsé'd by G. Golub (1963) and G.S, Watson (1967).

2. As, shown In Section 1, the problem is to

(3) | nindmize fX'X[ / X'rxl [x! r-lyx B

G.S.Watson (1967) has shown tbat there 1s no loss of génerality in

assuming X'X =Ik in (3). Here Ik denotes the identity matrix of order k.
The problem (3) is then equivalent to the constrained maximization
problem: ‘ ) -
Find a X such that ]X'f X‘ 'X' r—l XI is maximum subject

to X'X = L,. We can further assume without loss of generality that [~

is a diagomal matrix with elements A }\2, An where the ;\’5
are the eigen values of [ ° This is because therc exists an
orthog: nal matrix C such that c'rc = dia'g( MRz, - )—,_\_)_and _!C'[:]'C =
diag (/\,, - ,);2 ). Thus the problem is equivalent to:? ) -
(%) maximize [x' r x‘ | 1 x|
subject to- “ ' X'X‘_Z— Ik .
with F "='h4‘diia.g (Avy-: ".)"\). .In what follows we will be concerned .
withrth'is,i?ro‘blem and F-;wi’«il be diag ¢ Ay - )7\). X will be a nxk

matrix with -
x12 . see xln
Xy cee T ¥gp

Kkz XK xkn




For k*1, the problem reduces to
‘ 2 2 A\
zraximize (;Xlx11 +/\2 X9 + ..t /n LT

-1 2 -1 .2\
(}‘1 1‘11 "12*“*,}‘:. xlrI)
. 2 2 1
subject to  xXy) *+ Xy, * ... +X] = 1,
An application of Kantcrivich's inequality solves the above problem
S%veral proofs of this inequality have been given in literature. We
give below another proof based on theory of Mathematical programming,

Proof for the case k=li By setting xij =Yy the problem is to

1 -1
maximize(%l y1 +2, Yy ¥ oee + D, yn)()\l Yyt e *AL yn)

(5) s.t. V¥ Y, ety =1

Yj>/ 0, }1=1,2,,..n

Let yg_),.,.y?\ be an optimal solution of (5) with

-1 -1 . ~ -1
M yi‘“)‘z y(2) *--"'_'_%,-, Yc,: = 5 Then yl,s.y 1s an..

optimal solution of the following problem
maximize )1 y]_ +)2 Y2 + 00 * )~n }'n
(6). s.t, } Yty * ..+yn=1:.,

. "‘.1 —Al‘ i ' _
Mty ey, = 6y
yj>/ 0 j=,1’ L ) n.

The problem (6) is a linear programmi;lg' problem with twol constraint
equations, It is well known from the theory of lineAr programming
that there exists an optimal 501ution of (6) with utmost two of yj
positive and the remaining y zero.' 1ot yfand yj B‘e the two
positive values satisfying

vy ¥ 'yj =1

ot s,



When ) = )j’ the value Gf the objective «—'Fuﬁck‘mo%)ed}ms 1
if /\1 -1: )‘j SOlving equations (+) we can. verify that

hi Yy +)j Yj = )£+)j- g >‘

69 that g ( ;\ +} - ‘go ;\i AD will te maxiﬁud»when*-
8°= 1( L . . This gives 'y£= yj = _1" :
) 2, ,\1 . ')j 2

and the vaiue of the obje’ct".ive function of (Q) egqudls

(;\1 + )j)z . which 18 2 1, Further
4>i)j
. Dy . 2 | 2
it can be checked that max K’\:l * /\j) = (7\1 + [\,)
© o lgi<n T : T

which ocecurs when y'l' = yr“ = %, This proves completely the case k =

General case: k 71 . The mathematical prcblem was given by (4), This
can further be reduced to another equivalent problem. This s, given 1ipn

the following lemma.

Lemma: The problem (4) 1is equivalent to’
paximize |X'Fx| [x 7 x|

(7) - so t. Xi Xi =1 i=1’2, -onk
vhere X{ = ( PR S .

Proof: We have to show that any cptimal solution of (7) gatisfies.

X, =0 , for 4 % b Consider the lagrangian function

- .k -
@ =perx feta] =g (gg-)
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Any optinal solution X- must satisfy Q‘@‘, =0 fordi=1, ,., k

X,
where as usual QQ" denotes the vector ( bQ , - oQ
b)(t' Exdl ‘ 'Dxc'n
We have ‘ . :
}?\X'r}(\ IX‘ I:IXlkﬁk):(' F-'I_XIB(‘}('f X, + )xl(' x| llxl ‘:lx\
‘ | =, dx
! »
0 x, X,
Note that
| xerx| = 9 o SEE L o SR XY X
I (8) o % in 2R VN I SUPPOP . X:,Z f‘xk
; S T -
L Xl'(r X1 xl't r ‘x2 ...... Xkr xk

It can be shown that _ .
' : - Py
Xrxy X0 x .. (X

,Xéer X:‘Z M Xy eeees x'z f'xk

xi}{x-rxl=

> X

(9) . 4
2);{”&_ 2)(;. r Xz sonae 2Xi ["X.k

/
Brx A X ... X X

=2 ‘x'rx\v

Also



RY[H, ooi KX Y
X}rx ZX'rxi xljrxk .
Gth g
r ' ,
xk’ xz xk[x:l Xk rxk
(10) ‘
R /.. !5 .o ; ) H
e (anrX1> X 0%, 1I‘X X1 rxi 1 Xif"ny_--?“ﬂ?_ﬂ
- . A/'/ ' 4 . - e T e R v ,

x;_‘,—xl jrxz ’
e R XX ‘kf

. v

/
xg-1 ‘S ¥4

M¥%a

where 1in AK there are two identical columns, nauély"_ h

/ Sy
7 / -
xj r Xl ’x as e xj rxi-l XJ r Xi+1 “‘.ou

1]
1. 4

=0

X% )

o

xjﬂlT:
3 |
%g I

%~
oI

Both these results (9) and (10) can be véi'ifiéd by expanding the deter-

minant in (8) by the ith row, differentiéting' "aﬁd‘collecting terms

We thls/h&ve / ;} '
.’ D Krxl . a2 Xrxls
D X,
/K>l o X O B
J —-'5;(" - S S

(3

L':,)-"

c#J

xEx) _ 2] xf%)

— Ex

R



A1l

Any optimal solution therefore satisfies

Q1) X} —%Q ;s XX =0
n 08 - =
5 (12) X} 28 bX) X =0

i /=1
In virtue of (9) and (10), (11) implies t, =2 IX‘FX , l X Fx‘

and (12) fmplies X{ X =0 for # § which proves the lemm.

The following theorem gives the properties that an opt:imal solution (7)

must satisfy

Let ;\u)/\z)"- )y\be all distinct -. P -

Theorem:  There exists an optimal Solution X to (7). ‘Where m2k
cclumns are all zeros,
Proof: Let 8y (]7) dencte the (4, j) element of the matrix X' [X

--1.e aij ) = X'FXJ .. Similarly let aiJ ({"1 denote the(i »3)
element of the matrix (X'[‘ X);'ife ai] (|‘ ) r]X Let Aij(r B

.‘ d'eln'ot'e the éofactor of a5 ([ in XX and Ay ( r 1y denote the cofactor
of a, (r ) inX'[ LX Consider the problem (7) and the Lagrangia.n
equations are given by -
k A :
A — o -1 d
z(/\PAij(g) \x-r xl + \ Aij (r)[x'rx}—-cg \xij o

=1 p
/' ’ i = 1’2’ .‘Ik

S

where 1j 1s"'nthe usual Kronecker ‘delta, . - - ; p=1,2, ...n



)

For a given X'f X)’-l -and (Xt r-1X)~1 , the equation

.8

For a given p, the system of k homogenecus equations in k unknowns

EEdh ISR O

X1p s X5 } eee xkp has a non—-triv:[al 501ution if and only 1f the

determinant of the coefficient -ma(:—rix vardshes. ThitS'\'COﬂditiﬂn 15 seen

I

to be equivalent to

llx'r x,} Ay

1]

(|')+\x'f‘x|>1 ij(rl)-ti 1| =0

Simce t, \X‘r X’ 'X‘ r x] by i) , the condition reducel to

LA

')\p(x'rx.) +);1 o ™ -21, . =0. (p-12 n)

y (X'FX) -1 + y (X'r X) - 2 1 \ =0 .. . B . i T

Z - - i
*~ TS A=

is of degtee 2 k in y and the relati.on holds for atmost, (2k) valges .of )

S:lnce the ?\6 are assuued to be all distinct, it fol 1ows that x]_p seus

!
,,-—-\. p

xkp must be a.ll zero for &tleast (n-2k) values of p. This ‘)roVes the

Y

theorem,, S o : IR DA XY
" The _ab_ové theorem shows that we can consider Xt as e matrix with k
rows and 2k cr,>1umm 1.e. we can a_Ssuuig:néZk. Ass ume fc_af""fé'efidtétxgss

that (xlp » b "kp) are all zero.for 'p = 2k+l , ... n. Then we have.

1

the corollary.

Corollary: Let. >‘ 1 "')zk be distinct and consider the. groblem.
" magimize’ \x'rx |x- - x|

s.t . X XEl 1

Withx;. =<x11, e xizk) and r=diag(»1, e 22}‘)



For an optimal sclution X of (7) we have

\x'rx\/lx'r']x} =Xy e Zk-

k

= Xrx = }\l‘r)\z +_,+>_ﬁ\21ég

=1

ﬁX' X, Q 2t +..+/\;i)/9_

Proof: Consider the equation of degree 2k in y given by (14),

A ,) 9 een )21( are the rpots of the equation and the corcllary

follows immediately by ccnsidering the product and sum of the roots,

It can be vegified that the values of the x;js which yield the

watson's becunds satisfy these properties., The author has not been
able to settle the conjecture for the general k. However, the
mathematical problem has been reduced to & simpler form as given in
the corollary., The constraints Xi X, = 1,1=1,2, ... k can also be
written as Xi Xy é 1 ,1=1,2, .,. k without changing the problen.
The constraint set then becomes a comex set in xijs' It may be
possible to exploit the convexity properties to settle the validity

of Watson's bcunds, In fact it is well-known that

- I S, N
max ‘X'FX( “el w2 ot
Xy X, =1
i“lgzcok

(Note that _/\« 1 < )‘ 2 <-“‘()2k ) and the maximum value 1is

2
attained for x =1fori= 1,2,,.k and other x§j= 0

1,2k=1+1
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Simtlarly
-1 -1 -1 -1
nax ‘xo{- X‘ = 2‘4‘/\2‘ ‘ ...}\K
Ry %g=1 - |
i=1,2,..k o . ' R .;--‘;:-;‘ ‘

and 4s attained for X = 1 for i =1,2, .. k and other xij = 0.
The midpoint of the line segment joining these.two solutions in

2 2 2. N _ o
Xy is given by Xy = xi;Zk-1+1 = % for 1=1,2,..k and the.

2
other x:lj Lo
objective function \X'T".X;, \ Xt

= 0. This solution gives the Watson's bound for the

-1 -x". . . o

1
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