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Abstract

In this paper, we present a two-stage heurisatic which 1{identifies
the wmost economical way to connect the nodes of a data
communication network. We formulate this network design problem
as a star-star concentrator location problen. To solve this
problem, a Lagrangian relaxation procedure {8 proposed. The
tirst stage of the procedure, namely the solution to the relaxed
problem, 1identifies the optimal locationa of the transit nodes.
Then a greedy type heuristic, as well as an optimal procedure are
used to Jldentify the linkage of these transit nodes to the other
nodes. Computational resultg are provided and the results are
also compared with another method.

Introduction

A data communication network consists of a number of nodes
(points, terminals etc.) to be linked with each other soc that
data (of any desired form) can be transamitted from one node to
another within the network. Normally, thesé nodes are dispersed
over 8 wide geographical area typically consisting of sany
clusters. Figure 1 gives & schematic ‘aprosentation ot the nodes

and 2 possible network linking these nodes.

In practice the network usually consists of transit nodes, or
concentrator nodes, which are linked to each other by high speed
lines, or digital links. The rest of the nodes are linked to
these transit nodes via low speed lines or analogue 1inks. A
node 18 linked to only one transit node. Normally, the transit

nodes are linked in the form of a star, which forms the main



natwark, ta a aeentral nade. The ordinary nodes are then Iinked
to the transit nodes algo in the form of a star network, refer to

figure 1.

Figure 1. A typical network problem and solution.
]

The design of the dats communication network involves the optimai
way ot connecting these nodes together.\ The objective i3 usually
to minimize the cost in linking the nodes together. There exlist
a8 number of methods to achieve such a network optimization. Some
ot these techniques use exsct procedures Chandy and kuesel
(1872), Mataul (1878), and Tabourier (1973), while others use
heuristic methods to arrive at an approximate sclution Bahl and
Tang (1872), Karnasugh (1876), Hoang (1082), Greenhop and

Campbell (1864), snd Mirzeian (1985).



A heuristic procedure {18 proposed in this paper based on the
Lagrangian relaxation technique. A formulation of the network
design problem i8 given Iin the next section. In the tollowing
section the heuristic procedure 18 .described and then the

computational results are discussed and 1 the final section we

provide some concluding remarks.

Problem Formulation

In this section a formulation for the data communication network
design problem &as described above will be given. This network
design problem {s formulated as a star-star concentrator location

problem as described in Mirzaian (1985). Let

Py refer to the node site |,
TJ refer to the transit node site }j,
To refer to the central node site,

€yy = the cost of connecting an ordinary node Py to s
transit node T4,

t, = the cost o installiing, operating and
connecting a transit node TJ to the central
site To,

k = the <capacity of a* transit node, i.e. no more
than k nodes be connected to a transit,

m = the number of nodes, also the capacity of the
central node Tgp,

n = the number of transik node sites.

Define
1 it Py is connected to TJ
X = {
13
O otherwise
and
1 1t TJ is a selected transit node
Y] = |

O otherwise.

t <=t <= m, O <= § <= n.



The network design problem can now be formulated as

2 = manZc” Xy 4 fz_fj Yy e (F)
< j J

gsubject to

™M

) X{y = 1, 1= , .., m e (1)
J:o ’
z X{4 <= kyj' R TR . (2)
[

X{q ij(O,l) e ().

The objective is to minimize the cost of installing, connecting
to the central node and operating the transit nodes and the cost
of connecting each node P; to one of the chosen transi{t nodes.
Constraint (1) along with canstraint (3) ensures that each
ordinary node Py is connected ¢to only one transit node.
Constraint (2) ensures that a tranist node TJ 18 connected to not
more than k ordinary nodes. The central node Tg has capacity m
and therefore does not get affected by the capacity constraints

relating to the trans{t nodes.

-

In the next setion, a Lagranglan based heuristlc procedure to

tfind an aspproximate gsolution to this network desfign problem s
)

given.
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Heuristic Procedure

In this section, we propose a heuristic procedure for the network
aesign probleax described sbove. This  heuristic procedure f§s
based on & Lagranglan relaxation of the problem. The  heurlistic
solution {nvolves the fdentification ot a lower bound, namely the
sotutfon of the relaxed problem, and the {dentiftication of an
upper bound, that {s, 8 feasible solution to the orfigins!

problem. The methods adopted for {dentifying the lower bound,



the wupper bound and the heuristic procedure for the network

design problem will be given now.

Lower Bound

A Lagrangian relaxation LR(u) of th. network design problem {s
obtained by duslizing the demand constraints ({) with multipliers
uj. The relaxed problem so obtained 1is
Z(LR(u)) = min Z;E;(Cij - uyg) XxXg{4 v Z;ijj + ILU‘
subject “to

Ekxij <= kyj, for all 3,

X{3s Y} € {0,1), tor aill {, j.

The solution to LR(u) for a given u is obtained as follows., The
problem LR(u) separates Into n {ndependent (0,1) knapsack
problems LR{(u;3) on X9 for each J, see Bitran et =al. (1977).

This can be written as
Z5(LR(u;3)) = min ZQ(CIJ T upixyy + 1y

subject to
% <= k
Z; 19

Xyy = 0, { tor all {.

[]
Let xy4 be the optimal solution for these knapsack problems.
1)

Then &an optimal solution of LR(u) {s given by the following
theorem.
Theorem 1 : An optimal solution of LR(u) is
£ 11 4 ¢+ Z.(cyq - ugPdxgq <O
b] N 1] 17%14

Yy * { NN (6)

O otheriwse

xij‘ it Yy = 1
Xyj = .o 7
O otherwise.

Proof : First we note that LR(u) breaks up into n {ndependent
(0, 1) knapsack problems, one for each J. We denote these



knapsack problems as Zj(LR(u;j)). In each ZJ<LR(u;j)) it s

clear that xg4" = O for 4 : (cqy - uy) >= 0. Now, for sll 1 :

(cgy - wup) <O, xij. ie given by the solution to the knapsack

problem. Now, consider Z(LR(u)). T. & cgan be written as

n

Z(LR(u)) minngo'1Z%ZJ(Li:u;j))yj Q??i

"

minyj=o,12;[(cij—u1)xiji MRS R +ZP1

It can be seen that yj = O when (Cij"ui)xij’ t+ fy >= 0 and yy = 1

otherwise. Thls completes the proof of the theorem.

Therefore, a lower bound for the network design problem is found
by simply solving at most n knapsack problems for a given wvaslue
of uy. But, studlies on problems with similar structure, as the
Capacitated Plant Location Problem have shown that +the lower
bound obtasined by &dding sultabie surrogate constraints are
tighter, see Cornuejols, Sridharan and Thizy (§989), and
Sridharan (1989). Therefore, we .further strengthen this

relaxation by adding a surrogate constraint

2ky >z m.
d ) ’
We will refer to the Lagrangian relaxation with the surrogate
constraint as LRg(u) and the n Independent knapsack problems on

Xy{4 BS LRg(u; §) . It can immediately be seen that LRg(u;J) {s the

same problem as LR(u;Jj).

This . addition of the surrogate constraint will modify the yj’s
defined 1{n (6) but wil]l leave the values of '11'5 unaltered as
glven In (7). The optimal values of yJ's with the surrogate

constraint can now be computed as given below.

Let ”lj' te defined, s before, s the solution te LR(u; 3). 1t



L
is {mmediate that xgy4 will also be the solution to LRg(u;}).

»
Once we have the xjj4 's, the following (0,1)-knapsack problem on

the vy, variables results.

Z(LRg(u)) = min,jzo,l%zju T usdddyy +Tuy
[3

L ]
mingd=0,1 ZlCeqg-updngy ¢ fylyy +3uy
subject to
Zkyj >= m A (8)

Let yj. be the optimal solution to the knapsack problem defined

above.r Then,

Theorem 2 : An optimal solution to LRg(u) is given by the xiji

defined in (7) and yj' defined as the optimal solution to the

knapsack procblem defined above.

Proof : Omitted as the proof is very similar to the one glven

for theorem 1.

For a given u, a value for the lower bound {s obtained for the

network design problem by solving st most (n+1) knapsack problems

when the proposed surrogate constraint {s added. This lower

bound is computed at every lagrangian fteration and the value {¢

$

updated as is nececsary.

Upper Bournd

Every Lagrangian ({teration to identiffy a given lower bound
returns a set of yj’s fixed at one. The rest ot (.o yj's are
fixed at zero. In the network design problem once the valucs of
yy's swre fixed elther at zero or one the problem reduces to =&

single source transportation problem as given below.



Let J' = (3 Yy tixed as one in the procedurel
Then the single source transportation problem will be,
* min Zgzj‘:ij*ij
subject to

Z,*ij =1, { =1, ..., m;

Je3t .

z‘:"ij <= k, j € J ;

X4y = (0, 1).

The solution to this single .source transportation problem
provides an upper bound to the network design problem. The
single source transportation problem {tself (s NP-hard and
therefore polynomial time bounded algorithms do not exist. We
use a heuristic procedure called "HRSTIC"™ for {dentifying an
approximate solution for this problem. We also solved all the
network design problems using an exact procedure, "TSTU", to find
the solution to the single source transportation problem

developed by Nagelhout and Thompson (1880). A comparison {s

provided In the next section.

The upper bound is not necessarily computed at every Lagrangian
fteration. Upto ftive different combiqet!ons of yy’s tixed at one
for which the upper bound has already been computed are stored.
Only when the Lagrangi{an {teration returns a new combination of
yj's, other than the five mentioned asbove, the upper bound
procedure {8 {invoked. This has resulted Iin significant savings
in computation time. The upper bound value {s continuocusly
updated and the best value {s Blways used for computing the value
of the Lagrangian wmultipliers {n the subgradient procedure

described later.



The Heuristic Procedure

The heuristic procedure for solving the network design problem is

described now.

Step 1: Identity the initial upper bound with all yj's
fixed at one and solving the single source transportation
problem. The solution to this transportation problem will
return a set of transit locations that will be servicing the
terminal nodes. Add the fixed costs of those transit
locations that are wused in the final solution to the
objective value of the single source transportation broblem
to arrive at the {nitial upper bound ZUB. Initialize the

Lagrange multipliers uy = mingy cyy. Go to step 2.

Step 2: Solve the (0,1) knapsack problems LR(u;j) and
LRg(u) to compute the lower bound Z;gp. Update the lower
bound 1{f necessary. With the set of yj's fixed at one, go

to step 3. .

Step 3: Update the upper bound, if necessary, using
either "HRSTIC"™ or "TSTU". It the upper bound is equal to
the lower bound, stop; an optimal solution has been found.
It the number of Lagrangian iterat{ions has exceeded 100,
stop. 1f the lower bound converges to a particular wvaiue,

stop. Else, go to step 4.

Step 4: Update the Lagrange multipliiers using the
subgradient spproach. lf all subgradients are zero, stop.

Else, go to step 2.



The subgradients for u; are computed as followa, Let x‘j. and
yj. be the optimal solutions to the Lagrangian problem. Then the
subgradients NU(1) for uy are

NUCD = Foxgy" - L.

desde
The Lagrange multipliers are then updated as follows.

u =t e N
where
t, = 2z"® - z p)/Norm.
We start with an initial ‘kvalue of 0.6 and halve the value every

twelve {terations. Some computational results for this approach

are provided in the next section.

Results
The procedure was coded in FORTRAN77 and run on a DEC2060
timesharing system at Carnegie-Mellon University. A code was
s6lgo written in Microsott FORTRAN to rgn on a Personal Computer.
The PC results were obtained on a I1BM FC/XT machine. The test
problems were obtained from Mirzaian ;1985) to make comparisons.
Both the "HRSTIC"™ procedure and the "TSTU"™ procedure were used

for f{dentifying the upper bounds. T:E results for the test

problems are provided in Table 1.

The test problems using the "HRSTIC"™ procedure had been solved on
an [IBM PC/XT machine. As we can see from the results this
procedure {8 comparable to that of Mirzafan (1985) Iin terms of
the solution accuracy. While the "TSTU" procedure is
computatfonally more time 'consuming it definitely generates

superior upper bounds. The "HRSTIC" procedure provides competing

10



regulta {n many of the teat problems. Also, since the Lagrangian
heuristic provideg an upper and a lower bound the decision maker
{3 aware of the extent to which his/her solution {s close to the

best that can be achieved.

Conclusion
We conclude this paper by noting ¢that the Lagrangian based
heurf{stic 1{s very efficlent [{s solving the network design
problem. It is true that the formulgtion of the network design
problem ignores some of the.real life constraints and conditions.
For example, the cost of a transit node is function of the number
ot terminal nodes to which it {8 connected. But, it the
formulation were to consider such realities then the resuiting
problem may become computationally very hard to handle. In spite
of such assumptions and approximations, we feel that the decision
maker will benefit {mmensely by using the procedure we have

presented here as a tool for decision making.

Tablie |
Problem MIRZAIAN LAGRANGIAN HEURISTIC
Size TSEU HRSTIC

ftns LB uB ltns LB UB ltns LB UB
50X20X3 100 368 371 100 369 374 100 369 391
S0X20XS 100 298 305 100 298 307 100 298 307
50X20X7 100 276 276 100 277 278 100 277 280
40X20X3 100 322 331 100 322 326 100 322 334
40X20X5 100. 248 254 100 248 254 100 248 254
40X20X7 100 232 234 100 232 234 100 232 238
23X5X3 1 264 264 33 264 264 100 264 280
23X5X5 25 223 223 39 223 223 100 223 228
23X5X7 1§ 218 218 22 218 218 22 218 218

e e e e e e e m e m e e me e e e e e e e e m e e e e e e e e e e e e e e e e e e e
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