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Abstract

We consider a service system that serves one class of customers, which is willing to

pay a premium for a faster delivery, with priority over the other class, which is more

price sensitive but is willing to wait longer. The demand from one class depends not

only on the price and delivery time quoted to it, but also on that offered to the other

class. The service provider needs to select the price and delivery time quoted to the

two classes, and the required service capacity to meet the quoted delivery times with

a certain degree of reliability, so as to maximize its rate (per unit time) of earning

profit. This results in a non-linear priority queue optimization model, for which the

analytical expression for service level constraint for the low priority customers is un-

known. We provide a cutting plane method to solve the problem, where constraints

to be satisfied are identified iteratively from results of matrix geometric evaluation of

the proposed system alternative, which are then added to the mathematical model for

re-optimization.

Keywords: Priority queue, Waiting time distribution, Matrix geometric method, Cut-

ting plane method
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Priority Service System Optimization under Service

Level Constraints

1 Introduction

We consider a server that serves two different classes of customers, called high priority

(indexed by h) and low priority (indexed by l). High priority customers are valuable as they

are willing to pay a comparatively higher price (ph > pl) for their service. In return, they are

guaranteed a comparatively shorter delivery time (Lh < Ll). Of course, given the variability

in the demand and the service process, the server can never meet the guaranteed service

level, no matter how pessimistic, with 100% reliability. The server, therefore, uses a service

level guarantee, αh and αl, with which it targets to meet its quoted delivery times Lh and

Ll. That is, the actual waiting time, Wh or Wl, of a customer until she is served should not

exceed her guaranteed delivery time, Lh or Ll, with a probability of at least αh or αl. High

priority customers are always served in (preemptive) priority over low priority customers,

irrespective of their order of arrivals. Customers from the same class are, however, served

on a first-come-first-serve (FIFO) basis. In real life, such a server may be representative of

an airline check-in counter serving both the business and the economy class; or a call center

serving both regular and priority calls. The incentive to use such a priority scheme stems

from the relatively shorter delivery time guaranteed to the high priority customers for which

they are willing to pay a price premium.

Customers arrive for service according to a Poisson process with rates λh and λl. Cus-

tomer demands are sensitive to their respective prices and guaranteed delivery times, and

also to their relative values (ph − pl) and (Ll − Lh). The service provider can, therefore, at-

tract new customers through price reductions or by offering shorter delivery times. Lowering

the price or delivery time for one class also induces the other group of customers to switch
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classes. The demand rates are described using the following linear functions [4], [20]:

λh = a− βpph + θp(pl − ph)− βLLh + θL(Ll − Lh) (1)

λl = a− βppl + θp(ph − pl)− βLLl + θL(Lh − Ll) (2)

where,

2a : potential market size, i.e., total demand if price and delivery time for the

service is zero

βp : sensitivity of demand to price

βL : sensitivity of demand to the guaranteed delivery time

θp : sensitivity of demand switchovers to the price difference (ph − pl)

θL : sensitivity of demand switchovers to the difference in guaranteed delivery times

(Lh − Ll)

Customers from either class have service times that are exponentially distributed with the

same rate µ since they differ only in their price and time sensitivity, and not in the work

content they present to the server. In the call center example, this is tantamount to saying

that the high and low priority customers have similar call durations. It costs the server $m

per customer in operation and $A per customer per unit time in capacity. The objective of

the service provider is to price its service for each customer class and offer them appropriate

delivery times so as to maximize its rate (per unit time) of earning profit. At the same time,

it needs to decide on an optimal service rate µ, in order to guarantee the service levels of at

least αh and αl. The service provider’s optimization problem can stated as the follows:

[PQO] : max π(ph, pl, λh, λl, µ) = (ph −m)λh + (pl −m)λl − Aµ (3)

s.t. Sh(Lh) = P (Wh ≤ Lh) = 1− e(λh−µ)Lh ≥ αh (4)

Sl(Ll) = P (Wl ≤ Ll) ≥ αl (5)

λh + λl − µ < 0 (6)

ph, pl, λh, λl, µ > 0 (7)
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Constraints (4) and (5) are delivery time reliability constraints. (4) uses the result that

the tail of the sojourn time distribution for high priority customers in a preemptive priority

queue is known to be exponential. However, there is no exact closed form expression for

the sojourn time distribution for the low priority customers, appearing in (5) . Constraint

(6) is the stability condition for the queuing system. Constraint set (7) is needed to define

realistic parameter values. We note that other objective functions are also be plausible. For

example, [21] minimizes the total cost per unit time incurred by the server, which is a sum

of its capacity induced cost and the expected delay costs to it customers.

Variants of [PQO] are common in the literature on product pricing. [5] and [19] have ear-

lier studied a similar problem of a shared capacity, but they have used expected performance

measures instead of the entire distribution, which eliminates the challenges inherent in our

model. [4], [13], [14], [16], [17], [18] use the entire distribution of waiting times, but they

either consider a single class of customer or a dedicated server for each class, and can thus

use closed form constraints like (4). What makes the current model challenging is the use

of service level constraint (5) in a shared capacity environment, which cannot be expressed

analytically.

Using the linear demand function described by (1) and (2), [PQO] can be restated as:

[PQO] : max π(ph, pl, µ) = −(βp + θp)p
2
h − (βp + θp)p

2
l + 2θpphpl +

(−βLLh + θLLl − θLLh +mβp + a)ph +

(−βLLl + θLLh − θLLl +mβp + a)pl − Aµ+ βLLhm+ βLLlm− 2ma (8)

s.t. − (βp + θp)ph + θppl − µ ≤
log(1− αh)

Lh
− a+ βLLl − θL(Lh − Ll) (9)

Sl(Ll) = P (Wl ≤ Ll) ≥ αl (10)

− βpph − βppl − µ < βLLh + βLLl − 2a (11)

− (βp + θp)ph + θppl ≥ βLLh + θLLh − θLLl − a (12)

θpph − (βp + θp)pl ≥ βLLl − θLLh + θLLl − a (13)

ph, pl, µ > 0 (14)
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Thus, the model has a quadratic objective function with linear constraints, except constraint

(10) for which the exact analytical form is not known. There are approximations proposed

in the literature for Sl(·). However, they are complex and often not sufficiently accurate

[1]. Moreover, the appropriate approximation to use depends on the relative demand rates,

which may only be determined endogenously and not known in advance. The [PQO] model,

therefore, turns out to be challenging, which does not lend itself easily to conventional

optimization methods.

In the next section, we describe a proposed solution approach, which uses the matrix

geometric method in conjunction with cutting plane optimization method. Some of the

recent works (e.g., [2]) have used simulation in conjunction with cutting plane method to

optimize complex queuing systems. However, the strength of our solution approach lies in

the fact that it can find an exact solution in contrast with simulation, which at best gives

point estimates. Moreover, our solution approach is computationally efficient compared to

simulation. This is important especially in applications [6], [7] where one needs to run several

experiments with different parameter values. The proposed approach also has its limitations

in that it cannot work for some of the more complex queuing systems that simulation can

handle.

2 Solution Methodology

In this section, we describe our solution approach for [PQO]. Before describing the solution

procedure, we state the following important result.

Proposition 1: If Sl(·) is concave, [PQO] has a unique optimal solution. proof: The

Hessian for (8) is given by:


−2(βp + θp) 2θp 0

2θp −2(βp + θp) 0

0 0 0


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The first principal minor of the Hessian is negative, the second principal minor is positive,

while the third principal minor is 0. Therefore, the objective function (8) is concave. All

the constraints except (10) are linear. If Sl(·) in constraint (10) is concave, then any point

satisfying the Kuhn-Tucker conditions will optimally solve PQO [3].

It is important to note that the above proposition assumes the concavity of Sl(·). Our

initial computational results (obtained using a method to be described in subsequent sec-

tions) show that this is a reasonable assumption. Plots of Sl(·) vs. (ph, pl), and Sl(·) vs. µ

are shown in Figure 1. These plots suggest concavity of Sl(·) with respect to (ph, pl) and

separately with respect to µ. However, this does not necessarily justify the joint concavity

of Sl(·) with respect to (ph, pl, µ). We will, therefore, integrate in our solution method a

mechanism to make sure that the concavity assumption is not violated.

Assuming Sl(·) is concave, we can approximate it by a set of tangent hyperplanes at various

points (pkh, p
k
l , µ

k), ∀ k ∈ K, that is

Sl(·) = min
k∈K

{
Skl (·) + (ph − pkh)

(
∂Skl (·)
∂ph

)
+ (pl − pkl )

(
∂Skl (·)
∂pl

)
+ (µ− µk)

(
∂Skl (·)
∂µ

)}

where Skl (·) denotes the cumulative distribution function of Wl, while
∂Sk

l (·)
∂ph

,
∂Sk

l (·)
∂pl

and
∂Sk

l (·)
∂µ are

the partial gradients of Sl(·) at a fixed point (pkh, p
k
l , µ

k). This means constraint (10) can be replaced

by the following set of linear constraints:

Skl (·) + (ph − pkh)

(
∂Skl (·)
∂ph

)
+ (pl − pkl )

(
∂Skl (·)
∂pl

)
+ (µ− µk)

(
∂Skl (·)
∂µ

)
≥ αl ∀k ∈ K (15)

Let us denote the resulting mathematical model by [PQO(K)]. We propose to use the matrix

geometric method to numerically evaluate Sl(·) and its partial gradients, which is described next.

2.1 Estimation of Sl(·) and its Gradient

In this section, we describe the use of matrix geometric method to numerically evaluate Skl (·) at

a given point (pkh, pkl , µ
k), and show how to use this method to obtain its gradient (we refer our
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Figure 1: service level vs. prices and capacity

reader to [12] for a detailed discussion, and to [11] for an excellent tutorial on the subject). To

evaluate Skl (·), we first need to obtain the joint stationary distribution of high and low priority

customers in the queue.

2.1.1 The Matrix Geometric Method for Joint Stationary Distribution

If we choose Nh(t) and Nl(t) as state variables representing the number of high and low priority

customers in the system, then {N(t)} = {Nl(t), Nh(t), t ≥ 0} is a continuous-time two-dimensional

Markov chain with state space {n = (nl, nh)|ni ≥ 0, nh ≤ M ; i = l, h}. The key idea we employ

here is that the Markov process {N(t)} is quasi-birth-and-death (QBD), which allows us to develop

a matrix geometric solution for the joint distribution of the number of customers of each class in the

system. A simple implementation of the matrix geometric method, however, requires the number
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of states in the QBD process to be finite. For this, we treat the queue length of high priority

customers (including the one in service) to be of finite size M , but of size large enough for the

desired accuracy of our results. Since high priority customers are always served in priority over low

priority customers, its queue size will always be bounded by some large number.

A transition can occur only if a customer of either class arrives or a customer of either class is

served. The possible transitions are:

From To Rate Condition
(nl, nh) (nl, nh + 1) λh for nl ≥ 0, 0 ≤ nh < M
(nl, nh) (nl + 1, nh) λl for nl ≥ 0, 0 ≤ nh ≤M
(nl, nh) (nl, nh − 1) µ for nl ≥ 0, 0 ≤ nh ≤M
(nl, nh) (nl − 1, nh) µ for nl > 0, nh = 0

The infinitesimal generator associated with our system description is block-tridiagonal, represented

as:

Q =


B0 A0

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .


where B0, A0, A1, A2 are square matrices of order M +1. These matrices can be easily constructed

using the transition rates described above.

A0 =



λl

λl
. . .

. . .

λl


; A2 =



µ

0

. . .

. . .

0


; B0 =



∗ λh

µ ∗ λh

µ ∗ λh
. . .

. . .
. . .

µ ∗


where ∗ is such that A01 + B01 = 0, and 1 is a column vector of ones of size M +1. A1 = B0−A2.

We denote by x the stationary probability vector of {N(t)}, where x is represented as:

x = [x00, x01, . . . , x0M , x10, x11, . . . , x1M , . . . , . . . , xi0, xi1, . . . , xiM , . . . , . . .]
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The vector x can be partitioned by levels into sub vectors xi, i ≥ 0, where xi = [xi0, xi1, . . ., xiM ]

is the stationary probability of states in level i (nl = i). Thus, x = [x0,x1,x2,x3, . . . , . . .] can be

obtained using a set of balance equations, given in matrix form by the following standard relations

[9], [11], [12]:

xQ = 0 ; xi+1 = xiR

where R is the minimal non-negative solution to the matrix quadratic equation:

A0 +RA1 +R2A2 = 0

The matrix R can be computed using well known methods [9], [11], [12]. A simple iterative

procedure often used is:

R(n+ 1) = −
[
A0 +R2(n)A2

]
A−11 ; R(0) = 0

The probabilities x0 are determined from:

x0(B0 +RA2) = 0

subject to the normalization equation:

∑
xk1 = x0(I −R)−11 = 1

where 1 is a column vector of ones and is of size M + 1.

2.1.2 Matrix Geometric Method for Estimation of Sl(·)

The delivery time, Wl, of a low priority customer is the time between its arrival to the system till

it completes its service. It may, however, be preempted by one or more high priority customers

for service. It is, therefore, difficult in general to characterize the CDF, Sl(·), of the time spent

in system by low priority customers. [15] presents an efficient algorithm based on unifromization

to derive the complimentary distribution of waiting times in phase-type and QBD processes. The
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same approach is used in [10] to derive the complimentary distribution of waiting times in a more

complex queuing system. We adopt their algorithm to derive Sl(·).

Consider a tagged low priority customer entering the system. The time spent by the tagged

customer depends on the number of customers of either class already present in the system ahead

of it, and also on the number of high priority arrivals before it completes its service. All further low

priority arrivals, however, have no influence on its time spent in the system. The tagged customer’s

time in the system is, therefore, simply the time until absorption in a modified Markov process

{Ñ(t)}, obtained by setting λl = 0. Consequently, matrix Ã0, representing transitions to a higher

level, becomes a zero matrix. We define an absorbing state, call it state 0
′
, as the state in which

the tagged customer has finished its service. The infinitesimal generator for this process can be

represented as:

Q̃ =



0 0 0 0 0 · · ·

b0 B̃0 0

0 A2 Ã1 0

0 A2 Ã1 0
...

. . .
. . .

. . .


where, B̃0 = B0 + A0; Ã1 = A1 + A0; and b0 = [µ 0 · · · 0]TM+1. The first row and column in

Q̃ corresponds to the absorbing state 0́. The time spent in system by the tagged customer, which

is the time until absorption in the modified Markov process with rate matrix Q̃, depends on the

prices (ph and pl), through the arrival rates (λh and λl), and the service rate µ. For given prices

(pkh, pkl ) and service rate µk, the CDF of the time spent by a low priority customer in the system is

Skl (y) = 1 − Skl (y), where Skl (y) is the stationary probability that a low priority customer spends

more than y units of time in the system. Further, let Skli(y) denote the conditional probability that

a tagged customer, who finds i low priority customers ahead of it, has to spend a time exceeding y

in the system. The probability that a tagged customer finds i low priority customers is given, using

the PASTA property, by xi = x0R
i, as derived in the previous section. Skl (y) can be expressed as:

Skl (y) =

∞∑
i=0

xiSkli(y) (16)

Skli(y) can be computed more conveniently by uniformizing the Markov process {Ñ(t)} with a
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Poisson process with rate γ, where

γ = max
0≤j≤M

(−Q̃)jj = max
0≤j≤M

(−Ã1)jj = max
0≤j≤M

− (A0 +A1)jj

so that the rate matrix Q̃ is transformed into the discrete-time probability matrix:

Q̂ =
1

γ
Q̃+ I =



1 0 0 0 0 · · ·

b̂0 B̂0 0

0 Â2 Â1 0

0 Â2 Â1 0
...

. . .
. . .

. . .


where Â2 = A2

γ , Â1 = Ã1
γ + I, b̂0 = b0

γ . In this uniformized process, points of a Poisson process are

generated with rate γ and transitions occur at these epochs only. The probability that n Poisson

events are generated in time y equals e−γy (γy)
n

n! . Suppose the tagged customer finds i low priority

customers ahead of it. Then, for its time in system to exceed y, at most i of the n Poisson points

may correspond to transitions to lower levels (i.e., service completions of low priority customers).

Therefore,

Skli(y) =
∞∑
n=0

e−γy
(γy)n

n!

i∑
v=0

G(n)
v 1, i ≥ 0 (17)

where, G
(n)
v is a matrix such that its entries are the conditional probabilities, given that the sys-

tem has made n transitions in the discrete-time Markov process with rate matrix Q̂, that v of

those transitions correspond to lower levels (i.e., service completions of low priority customers).

Substituting the expression for Skl i(y) from (17) in (16), we obtain:

Skl (y) =

∞∑
n=0

dne
−γy (γy)n

n!
(18)
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where, dn is given by:

dn =

∞∑
i=0

x0R
i

i∑
v=0

G(n)
v 1, n ≥ 0 (19)

Now,

∞∑
i=0

Ri
i∑

v=0

G(n)
v 1 =

n+1∑
i=0

Ri
i∑

v=0

G(n)
v 1 +

∞∑
i=n+2

Ri
n∑
v=0

G(n)
v 1 (since Kn

v = 0 for v > n)

=
n+1∑
v=0

n+1∑
i=v

RiG(n)
v 1 + (I −R)−1Rn+21

(
since

n∑
v=0

G(n)
v 1 = 1

)

=
n+1∑
v=0

(I −R)−1(Rv −Rn+2)G(n)
v 1 + (I −R)−1Rn+21

(
since

n+1∑
v=0

G(n)
v 1 = 1

)

=
n∑
v=0

(I −R)−1RvG(n)
v 1 + (I −R)−1Rn+1G

(n)
n+1

=

n∑
v=0

(I −R)−1RvG(n)
v 1

(
since G(n)

v = 0 for v > n
)

= (I −R)−1Hn1 n ≥ 0

where, Hn =
∑n

v=0R
vG

(n)
v . Therefore,

Skl (Ll) = 1− Skl (Ll) = 1−
∞∑
n=0

e−γLl
(γLl)

n

n!
x0(I −R)−1Hn1 (20)

Hn can be computed recursively as:

Hn+1 = HnÂ1 +RHnÂ2; H0 = I

where, I is an identity matrix of size M + 1. Therefore, for given prices (pkh, pkl ) and service rate

(µk), CDF, Skl (·) of Wl in (15) can be computed using (20). We next describe the procedure to

numerically estimate the gradients of Sl(·) used in (15).
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2.1.3 Estimation of Gradient of Sl(·)

There are several methods available in the literature to compute the gradients of the CDF Sl(·) of

Wl. We use a finite difference method as it is probably the simplest and most intuitive, and can be

easily explained (e.g. [2]). Using the finite difference method, the gradients can be computed as:

∂Skl (·)
∂ph

=
S
(pkh+dph,pl,µ)

l (·)− S(pkh−dph,pl,µ)
l (·)

2dph

∂Skl (·)
∂pl

=
S
(ph,p

k
l +dpl,µ)

l (·)− S(ph,p
k
l −dpl,µ)

l (·)
2dpl

∂Skl (·)
∂µ

=
S
(ph,pl,µ

k+dµ)
l (·)− S(ph,pl,µ

k−dµ)
l (·)

2dµ

where dph, dpl and dµ (referred to as step sizes) are infinitesimal changes in the respective variables.

These estimates of the gradients are used in the cutting plane algorithm to generate constraints/cuts

of the form (15).

2.2 The Cutting Plane Algorithm

 
 

 

 

Solve [PQO(K)] to obtain . 

Given , compute   

Is   ? Stop 
Yes 

No 
  Add a cut to [PQO(K)]. 

  k = k + 1 

Start 

k = 0, i.e., constraint set (15) is initially 

empty. 

Compute gradients  

using finite difference method. Generate 

a cut of the form (15). 

Figure 2: Cutting Plane Algorithm

In this section, we describe the cutting plane algorithm to solve [PQO(K)]. The algorithm fits
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the framework of Kelley’s cutting plane method [8]. It differs from the traditional description of the

algorithm in that we use matrix geometric method to generate the cuts and evaluate the function

values instead of having an algebraic form for the function and using analytically determined

gradients to generate the cuts. Figure 2 shows a flowchart of the cutting plane algorithm. The

algorithm works as follows: We start with an empty constraint set (15), which results in a simple

quadratic programming problem (QPP), and obtain an initial solution (p0h, p0l , µ
0). We use the

matrix geometric method to compute the CDF, S
(p0h,p

0
l ,µ

0)

l (·), of Wl. If S
(p0h,p

0
l ,µ

0)

l (·) meets the

minimum required service level αl, we stop with an optimal solution to [PQO(K)], else we add to

(15) a linear constraint/cut generated using the finite difference method. The new cut eliminates

the current solution but does not eliminate any feasible solution to [PQO(K)]. This procedure

repeats until the delivery reliability constraint is satisfied within a sufficiently small tolerance limit

ε (
∣∣Sl − αl∣∣ ≤ ε). The method has been proved to converge [2].

The success of the cutting plane algorithm relies on the concavity of Sl(·). We have already

demonstrated, using computational results obtained by the matrix-geometric method, that Sl(·)

is concave in (ph, pl) and separately concave in µ. However, it is difficult to establish the joint

concavity of Sl(·) in (ph, pl, µ). If the concavity assumption is violated, then the algorithm may cut

off parts of the feasible region and terminate with a solution that is suboptimal. We, therefore, need

to include a test to ensure the concavity assumption is not violated. This is done by ensuring that

a new point, visited by the cutting plane algorithm after each iteration, lies below all the previously

defined cuts, and that all previous points lie below the newly added cut. The test, however, cannot

ensure that Sl(·) is concave unless it examines all the points in the feasible region. Still, it does help

ensure that the concavity assumption is not violated at least in the region visited by the algorithm.

Details of the test can be found in [2].

3 Illustrative Example & Computational Experience

We now illustrate the solution approach using the following model parameter values: a = 10, m =

3, αh = αl = 0.99, Ll = 1, Lh = 0.5, A = 0.5. The demand parameters are specified as: βp = 0.50,

θL = 0.25, θp = 0.10, βL = 0.25. For the specified values of the parameters, the model [PQO]
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reduces to:

[PQO] : max π(ph, pl, µ) = −0.60p2h − 0.60p2l + 0.20phpl + 11.50ph + 11.25pl − 0.50µ− 58.875

s.t. − 0.60ph + 0.10pl − µ ≤ −19.2103

Sl(Ll) = P (Wl ≤ Ll) ≥ 0.99

− 0.50ph − 0.50pl − µ < −19.6250

− 0.60ph + 0.10pl ≥ −10

0.10ph − 0.60pl ≥ −9.6250

ph, pl, µ > 0

For the solution algorithm, a bound (M) on the high priority queue size needs to be specified

to facilitate use of the matrix geometric method. To find an appropriate value for M requires

some experimentation. Computational experiments of a priority queue with a reasonable range

of parameter values suggested M = 100 to be a good choice with little effect on the accuracy of

results. For the cutting plane algorithm, we set the tolerance limit (ε) at 10−6, and the step sizes

(dph, dpl, dµ) for gradient estimation at 0.01.

The algorithm works by relaxing the service level constraint (Sl(Ll) = P (Wl ≤ Ll) ≥ 0.99)

at iteration 0, and successively adding linear cuts of the form (15) until the stopping criteria

is met. At iteration 0, the model reduces to a simple QPP, which gives the following solution:

ph = 11.696429, pl = 11.178571 and µ = 13.310340. the corresponding values for the demand

rates are: λh = 4.100000 and λl = 4.087500. With these values, the service levels achieved for

the two classes are: Sh(Lh) = 0.990000 and Sl(Ll) = 0.957852. Since Sl(Ll) < 0.99, following cut

is appended to the model: 0.0203ph + 0.0087pl + 0.0266µ ≥ 0.7212. Table ?? shows the results

for successive iterations of the algorithm. The algorithm terminates after iteration 4 once Sl(Ll)

approaches αl within the tolerance limit. The optimum solution, reported to six decimal digits,

is (ph, pl, µ) = (11.836961, 11.355344, 15.399650) with an objective function value, π = 61.326491.

Computational results, showing the number of cuts used and the time (in seconds) taken by the

algorithm for a range of parameters values, are reported in Table 2. All computations are performed

on a Pentium IV (3.06 GHz, 512 MB RAM) machine. The results suggest that the proposed

algorithm is very efficient, taking only a few seconds.
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4 Conclusion

We presented a priority queue optimization problem under service level constraints, which is chal-

lenging to solve due to the absence of analytical expression for one of its constraints, corresponding

to the service level for low priority customers. We resolved the problem by iteratively generating

the violated low priority service level constraint using matrix geometric method, which are then

added to the model for re-optimization in a cutting plane framework. The algorithm works very

efficiently, solving the problem to optimality in a few iterations. The proposed method, we hope,

will allow researchers to revisit some of the seemingly intractable queuing optimization problems.

The problem of product differentiation has been studied in [4] in which each customer class is served

by a dedicated server. The proposed method allows us to obtain managerial insights into the effect

of capacity sharing in a monopolistic market [6] and in a competitive market [7].
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