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ABSTRACT 

More than two thirds of emerging infectious diseases in recent decades are zoonotic in origin. 

Timely prediction of these diseases which migrate from animals to humans and preventive 

measures to stop the loss in terms of morbidity and mortality is the requirement of health care 

industry. Avian Influenza is one of the zoonotic diseases that has created havoc in recent past 

especially in Asian subcontinent. In past, attempts have been made to predict influenza using 

traditional time-series techniques ( AR, MA, ARMA, ARIMA etc.) as well as machine learning 

techniques to capture the cyclicity and seasonality of these virus strains. In current research an 

effort has been made to utilize the Empirical Mode Decomposition (EMD) to extract the Intrinsic 

Mode function (IMF) and then apply state of art Machine Learning (ML) techniques to predict 

the series. Several machine learning techniques like Random Forest (RF) along with Gradient 

Boosting Machine (GBM) and Support Vector Regression (SVR) have been applied on the 

decomposed series. Exogenous meteorological variables like temperature, humidity and 

precipitation have been incorporated to improve upon the forecast. An ensemble approach of ML 

models showed significant improvement over the traditional models in terms of long term 

forecast accuracy. 

Keywords: Random Forest, Gradient Boosting Machine, Support Vector Regression, Machine 

Learning, Avian Influenza 

 

1. INTRODUCTION 

In healthcare industry, application of time-series modeling and prediction of future outbreak 

of certain infectious diseases and disease events which occur in a cyclic or rhythmic pattern is 

very crucial.  The forecasting of disease helps to predict the course of disease, warn health care 

experts and adopt control measures to prevent disease outbreaks. The US Agency for 

International Development launched its Emerging Pandemic Threats Programme in late 2009 to 

build an early warning system to detect and reduce the impacts of zoonotic diseases. 

Zoonotic diseases are a group of infectious diseases naturally transmitted from animals to 

humans. Avian influenza (AI) under consideration is one of those zoonotic diseases which pose a 



 
 

major threat to mankind in recent years. It refers to the disease caused by infection with avian 

(bird) influenza (flu) Type A viruses. Humans are affected by AI virus subtypes H5N1 and 

H9N2 and swine influenza virus subtypes H1N1 and H3N2. The AI (H5N1) virus subtype, a 

highly pathogenic AI virus, first infected humans in 1997 during a poultry outbreak in Hong 

Kong and China. Since, its widespread re-emergence in 2003 and 2004, this avian virus has 

spread from Asia to Europe and Africa and has become entrenched in poultry in some countries, 

resulting in millions of poultry infections and many human deaths. The mortality and morbidity 

associated with this disease have devastated communities in some countries and led to global 

changes in public health. Countries not only suffered huge economic loss but in some instances 

closed down – global travel and trade networks. These vulnerabilities emphasize the need for a 

systematic, pre-emptive, advanced and improved predictive modeling approach to predict the 

emergence of such pandemics that could impact the health risk to susceptible human population. 

AI also has some cyclic or repeating pattern to capture which, traditional time-series 

predictions are performed using the autoregressive integrated moving average (ARIMA) [Box, 

G. & Jenkins, G. 1995] technique. ARIMA model attempts to filter out high frequency noise in 

the data to detect local trends based on linear dependence in observations in the series. ARIMA 

models even though widely applied incorporate lot many assumptions. First, it assumes linear 

relationship between independent and dependent variables. Real-world relationships are often 

non-linear and therefore more complex than the assumptions build into ARIMA model. As a 

result this model does not perform well when data structure is complex. Also, these models 

assume a constant standard deviation of errors over time. This assumption can be removed when 

ARIMA is used in conjunction with a Generalized Auto Regressive Conditional 

Heteroskedasticity (GARCH) [Engle, R. F. 1995] model. GARCH technique attempts to 

characterize model’s non-constant standard deviations in a time-series but it comes with its own 

challenges and optimizing the parameters for GARCH is always a challenge. 

Another challenge in time series prediction is the prediction horizon. When the prediction 

horizon increases, the uncertainty of future trends also increases, rendering a more tough 

prediction problem. Researchers have always wanted to extract the maximum knowledge from 

the past values to better utilize them for long-term time series prediction. More recently, new 

classes of regression models along with machine learning techniques have been developed to 



 
 

address the challenges associated with classical methods. Literature suggests the usage of 

Random Forest [Kane Michael J, el. al. (2014)] technique for superior prediction accuracy when 

compared to the classical models. This paper makes use of an ensemble of Random Forest with 

Gradient Boosting Machine and Support Vector Machine models to come up with a better 

forecast for longer duration which can then be used for future planning and taking preventive 

steps to contain the disease from spreading and transforming into epidemic. 

 

2. DATA 

Data for avian influenza virus was collected from the online web-based application 

(EMPRES-i) [http://empres-i.fao.org/eipws3g/] which has been designed to support veterinary 

services by facilitating the organization and access to regional and global disease information. 

This platform is a global animal disease information system including emergent zoonoses and 

other high impact animal diseases. In this research, data was considered for a period of Jan’06 to 

Jul’14 for some Asian countries (China, India, Nepal, Bangladesh, Vietnam and South Korea) 

because these countries historically seemed to witness majority of outbreak cases of AI. Figure.1 

demonstrates the number of outbreak cases in Asian countries considered in the research work.  

 

Figure.1 Avian Influenza outbreaks for a period of Jan’06 to Jul’14 

Figure.2 shows the monthly time plot for avian influenza outbreak cases in nations under 

consideration. 



 
 

 
 

Figure.2 Time plot for Avian Influenza outbreaks in Asia  

Avian influenza was forecasted taking into consideration few exogenous meteorological 

variables like daily temperature (minimum and maximum temperature), relative humidity and 

precipitation. This data was obtained from [http://globalweather.tamu.edu/] for the Asian 

countries in the study for a period of Jan’06 to Jul’14.  The data from different sources were 

merged into a single data set and was then brought to monthly level taking the number of 

outbreak cases, average minimum temperature, average maximum temperature, average 

humidity and average precipitation. 

 

3. METHODOLOGY 

3.1 Preliminary Analysis 

Model was fitted considering data for a period of Jun’06 to Dec’12 and the forecast was 

validated on a period of Jan’13 to Jul’14. This period was selected considering the availability of 

data and to maintain the consistency of training and validation period across all modeling 

methods. Univariate time series analysis was performed on the data using few of the traditional 

forecasting techniques like Holt Winter’s, ARIMA models to get a benchmark estimate. 

Improvement was observed with application of models like AR-GARCH model over traditional 

Training Period Hold Out Period 

http://globalweather.tamu.edu/


 
 

forecasting models. Actual vs fitted are highlighted to show the performance of traditional 

models in figure.3. A detailed R syntax is shared in Appendix A for reference. 

 

Figure.3 Actual vs Fitted for traditional models 

However, real world forecasting processes involve complex nonlinear series having large 

number of components.  In the study for zoonotic diseases, occurrences are driven by lot many 

factors like weather, humidity, cleanliness, income group, etc. It is difficult to analyze such 

disease as its components, when interacting with each other, mask and distort the regularities 

which need to be identified. This gives rise to the requirement to break down the process under 

consideration into individual components and analyze each and every component separately. 

Analysis of individual component and consideration of contribution they make into the process 

at hand helps us understand the process better as well as increases forecast reliability. 

In the research work, decomposing the monthly influenza outbreaks using Empirical 

Mode Decomposition (EMD) [M.C. Wu and C.K. Hu (2006)] technique was done. Exogenous 

variables like temperature, humidity, and precipitation were used and a set of machine learning 

techniques like Gradient Boosting Machine, Support Vector Regression, and Random Forest 

were applied on EMD decomposed data to come up with the forecasted value. Models were 

compared on basis of mean absolute percentage error (MAPE) on the hold out validation period.  

For all modeling exercise, R-Studio programming environment was used and various packages 

were considered from CRAN [http://CRAN.R-project.org].  



 
 

3.2 Empirical Mode Decomposition 

Empirical Mode Decomposition is a decomposition technique which was proposed as the 

fundamental part of the Hilbert-Huang transform (HHT) [Huang NE, et. al. (1998)]. In contrast 

to other decomposition techniques, the EMD decomposes any given data into Intrinsic mode 

functions (IMF) that are not set analytically and are determined by analyzed sequence only. The 

basis functions are determined directly from the input data. An IMF resulting from the EMD 

shall satisfy the following requirements: 

1. The number of IMF extrema (the sum of the maxima and minima) and the number of zero-

crossings must either be equal or differ at most by one; 

2. At any point of an IMF, the mean value of the envelopes defined by local maxima and local 

minima shall be zero. 

Decomposition contains a family of frequency ordered IMF components. Each successive IMF 

contains lower frequency oscillations than the preceding one. 

 

Figure.4 Plotting the envelopes and their mean 

Figure.4 depicts the analyzed sequence of the thin blue line which is the actual series under 

consideration. The envelopes are shown in green. Mean is calculated based on the two envelopes 

and then subtracted from the initial sequence. To obtain the final IMF, new maxima and minima 

shall be identified and all the above steps repeated until stoppage criteria are met. This recursive 

process of subtracting the mean of envelopes from the initial sequence is called sifting. Figure.5 

shows the sifting process applied on the monthly Avian Flu cases recorded for Asian countries. 



 
 

The sifting process continues until the mean value of the minima and maxima envelopes 

becomes zero and that is the first IMF extract. 

  

 

Figure.5 Sifting simulations on Monthly Avian Flu cases in Asia 

 Monthly avian influenza outbreak data was first tested for various transformations and 

then square root transformation was considered to reduce on the variance along with handling 

months which had no outbreak cases as shown in Figure.6. 

 

Figure.6 Modified series using Square root transformation 



 
 

This transformed series was then decomposed into various IMFs using the EMD algorithm. 

Figure.7 demonstrates the decomposition of the monthly series into varying frequency IMF 

series. 

Figure.7 EMD Decomposition of Monthly Avian Flu Cases 

A maximum of 4 IMF series was extracted using the EMD algorithm for the given flu data. 

Along with the above 4 IMF series, the final residue series was also to be forecasted for a longer 

horizon. These extracted series were then forecasted using various machine learning techniques.  

All of these individual forecasts were summed up to obtain the final forecasted series.  

3.3 Application of Machine Learning 

 Comparative study was performed on the given dataset with a combination of machine 

learning models random forest, support vector machine and gradient boosting machine.  

Random forest (RF) is a typical machine learning technique which starts by creating decision 

trees in a recursive fashion. It selects a subset of available features and recursively partitions the 

data in the regression space until the amount of variation in the subspace is small. Random forest 



 
 

as a technique is greedy and as a result, does not necessarily converge to the global optimal 

solution. In order to avoid such indecisive convergence, a collection or ensemble of locally 

optimal trees is done which is termed as bagging. The ensemble of such trees is known as forest. 

Variables considered were the lagged values of temperature, humidity, precipitation, and 

seasonality indicators. All of these variables were scaled and centered. The model used 1000 

trees with a grid search approach to sample the efficient number of features to be selected to 

build the final model with least root mean square error. 

Another machine learning technique Support Vector Regression (SVR) [B. Scholkopf (1997)] is 

applied for forecasting in regression framework by introducing an alternative loss function. The 

loss function is modified to include a distance measure. It employs a rich class of non-linear 

modeling functions via the use of kernels. For the current research, svmPoly kernel was used to 

decipher the support vectors. This kernel takes in three parameters namely degree, scale and cost. 

A grid search was performed to choose these parameters automatically. Root mean square error 

was the metric considered to select the efficient parameters for each and every model. 

Finally, a class of machine learning models Gradient Boosting Machine (GBM) [Friedman, J. H., 

(2001)] which is again a tree based model involving a recursive addition to the initial learning 

from the residuals was applied. It fits a tree based model on the residuals using the specified list 

of variables at hand and explains the variance in the residuals. Total number of trees specified for 

model building was 500 with interaction depth as 5 and learning weight of iteration was 0.1.  

 
Figure.8 Fit using Random Forest, Support Vector and Gradient Boosting 



 
 

Figure.8 shows the fit for the class of machine learning models discussed. Detailed syntax used 

for developing these machine learning models along with IMF extraction is appended in 

Appendix B for reference. 

3.4 Ensemble Approach 

A state of art ensemble approach for harnessing the power of all the machine learning models 

was applied for coming up with the efficient solution. A flowchart explaining the ensemble 

strategy is shown in Figure.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                       

Figure.9 Demonstration of Ensemble of various Machine Learning Models 

Ensemble was done in order to come up with a stable forecast for longer horizon. Each of these 

machine learning techniques had a better fit when compared to any of those classical benchmark 

techniques applied during the preliminary analysis. A lot of numerical iterative methods along 

with some intuitive combination of models were performed to come up with ensemble 

coefficients. As shown Figure.9, Ensemble Forecast 1 is a combined result of first half of a year 

using SVR and second half of a year using RF model. Similarly, Ensemble Forecast 2 is a 

combined result of first half of a year using GBM and second half of a year using RF model. 
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4. RESULTS 

A summary shown in Table.1 compares results of ensembled machine learning models and 

shows improvement over traditional univariate models. The model performance is compared in 

the hold out period (Jan’13 to Jul’14) basis the mean absolute percentage error. There was a 

significant improvement observed in the forecasts that were obtained using machine learning 

methods.  

Table.1 Comparison of Mean Absolute Percentage Errors 

Forecasting Methods MAPE (DEVJun’06 – Dec’12) MAPE (VAL Jan’13 – Jul’14) 

Traditional Univariate Forecasting Methods 

Holt’s Winters 152.0% 108.5% 

ARIMA 90.7% 89.5% 

AR-GARCH 102.3% 88.9% 

Ensemble of Machine Learning Methods 

Ensemble 1   (SVR+RF) 70.6% 67.2% 

Ensemble 2   (RF+GBM) 28.7% 44.6% 

 

Ensemble 2 which constituted of intuitive ensemble of RF and GBM significantly reduced on the 

MAPE when compared to the best benchmark set by traditional models. For the hold out period 

ensemble 2 model reduced the MAPE to 44.6% in comparison to best performing traditional 

model at 88.9% MAPE. 

 

Figure.10 Graph showing the actual vs forecast for Ensemble 1 and Ensemble 2 techniques 



 
 

A visual display to show the model performance in the hold out period for different ensembled 

model is shown in figure.10.  

 

5. CONCLUSION 

Each method of forecasting has its own strength and weaknesses and hence an ensemble 

of these non-linear techniques tries to minimize on their shortcomings. In the present research 

work, ensemble of machine learning techniques random forest and gradient boosting machine 

models provide an enhanced predictive ability over existing time series models (ARIMA) for the 

prediction of Avian Influenza outbreaks in Asian regions. This ensemble model takes advantage 

of each of its components random forest and gradient boosting, and recursive learning 

component, to generate good prediction efficiency. Also, the proposed approach is capable of 

handling time series prediction over a longer horizon. As next steps for improvement of the 

current work additional factors could be incorporated into the predictive model. Also, more 

granular study for any specific country/location and incorporating the Geographic Information 

System to track the outbreak would improve the findings of research work further. 
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APPENDIX A 

 

 
Code for forecasting monthly Avian Influenza using Traditional techniques like Holt’s Winter, 

ARIMA, AR-GARCH 

 
 

#########Tile: Flu Forecasting using Traditional 

techniques like Holt’s Winter, ARIMA, AR-GARCH 

# Removes the junk variables from the memory 

rm(list=ls()) 

 

#########loading required packages for Analysis 

library(TSA);library(tseries);library(forecast);library(fGarc

h);library(PerformanceAnalytics);library(rmgarch) 

 

#########Setting working directory 

setwd("/Users/desktop/DATASET/Research") 

 

#########Reading Dataset 

flu <- read.csv("flutrain.csv") 

flu <- flu[,4] 

hist(flu) 

hist(exp(flu)) 

length(flu) 

 

# Converting Data to time series object 

t_data <- ts(flu$Flu_Cases[1:79], frequency=12, 

start=c(2006,6)) 

#Holt Winter  

holt<- HoltWinters(t_data) 

holt_forecast<- forecast.HoltWinters(holt, h = 19) 

holt_forecast 

plot(holt_forecast) 

holt<- as.numeric(holt_forecast$mean) 

write.csv(round(holt), file="Holt.csv") 

 

#########creating reg variable to have intercept 

t <- seq(1,79,1) 

nt <- seq(80,98,1) 

str(flu) 

#transforming time series. 

flue <- ts(sqrt(flu),frequency=12) 

class(flu) 

# creating Arima using Auto.Arima 

flu.auto <- auto.arima(flu) 

adf.test(flu) 

adf.test(flu,k=12) 

adf.test(diff(flu,lag=12)) 

adf.test(diff(diff(flu,lag=12))) 

acf(flu,lag.max=200) 

pacf(flu,lag.max=200) 

acf(diff(diff(flu,lag=12))) 

eacf(diff(diff(flu,lag=12))) 

#craeting Arima model manually 

flu.arima <- arima(flu,order=c(0,0,1), 

seasonal=list(order=c(0,1,1),period=12),xreg=t) 

fluarpreA <- predict(flu.auto,n.ahead=19) 

fluarpre <- predict(flu.arima,n.ahead=19,newxreg=nt) 

#writing csv file 

write.csv(fluarpre$pred,file="ffores.csv") 

write.csv(fluarpreA$pred,file="fforea.csv") 

plot(residuals(flu.arima),type="p") 

res <- residuals(flu.arima) 

resa <- residuals(flu.auto) 

Box.test(resa) 

resasq <- resa*resa 

Box.test(res) 

Box.test(resasq) 

resq <- res*res 

Box.test(resq) 

plot(resq,type="l") 

acf(resq) 

pacf(resq) 

eacf(resq) 

eacf(resasq) 

#Aarch Modeling for Residual 

#spec <- ugarchspec(variance.model = list(model = 

"sGARCH", garchOrder = #c(1,1)), mean.model = 

list(armaOrder = c(0, 0), include.mean = FALSE),  #  

distribution.model = "norm") 

eacf(resasq) 

#creating Garch model from residual from autoarima 

resag <- 

garchFit(~garch(1,0),data=resa,cond.dist="norm",include.

mean=FALSE) 

resagp <- predict(resag, n.ahead=19) 

eacf(resq) 

 

#creating Garch model for residual of Manual Arima 

Model 

resgp <- 

garchFit(~garch(2,0),data=res,cond.dist="norm",include.m

ean=FALSE) 

resqg <- predict(resgp, n.ahead=19) 

write.csv(resqg$standardDeviation,file="sd1.csv") 

write.csv(resagp$standardDeviation, file="sd2.csv") 

 

 

 

 

 

 



 
 

 

APPENDIX B 

 
Code for forecasting monthly Avian Influenza using Machine Learnings methods (Random 

Forest, Gradient Boosting Machine and Support Vector Regression) 

 

 
rm(list=ls()) 

root <- 

"C:\\Users\\vshar50\\Documents\\Research_n_Developmen

t\\Research Papers\\DATA" 

setwd(root) 

 

library(data.table) 

data<- as.data.frame(fread("Weather_Data.csv")) 

t_data<- ts(sqrt(data$Flu_Cases)[1:79], frequency =12, 

start= c(2006,6)) 

 

library(EMD) 

### Extracting the first IMF by sifting process 

par(mfrow=c(2,3)) 

tryimf <- extractimf(t_data, check=TRUE, 

boundary="wave") 

 

### Empirical Mode Decomposition 

par(mfrow=c(4,3)) 

try <- emd(t_data, boundary="wave", plot.imf=TRUE) 

 

# Collecting IMF 

# These are the series to be forecasted 

imf1= try[[1]][1:98] 

imf2= try[[1]][99:196] 

imf3= try[[1]][197:294] 

imf4= try[[1]][295:392] 

error= try[[2]] 

 

training<- cbind(data[1:79,5:ncol(data)], error[1:79]) 

names(training)<- c(names(data)[5:ncol(data)], "error") 

 

testing<- cbind(data[80:98,5:ncol(data)], error[80:98]) 

names(testing)<- c(names(data)[5:ncol(data)], "error") 

 

library(caret) 

# setup learning method 

require(randomForest) 

library(doParallel) 

 

 

# try the random forest fit 

# using parallel computation if available 

set.seed(9) 

rfGrid = expand.grid(mtry = c(3,5,7,9,11,15,20)) 

cluster <- makeCluster(detectCores()) 

registerDoParallel(cluster) 

 

# applies for each classification or regression fit 

fitControl <- trainControl( 

  method = "repeatedcv", 

  number = 5, 

  repeats = 5, 

  classProbs = FALSE, 

  verboseIter = TRUE, 

  

preProcOptions=list(thresh=0.95,na.remove=TRUE,verbos

e=TRUE), 

  seeds = NA, 

  allowParallel = TRUE 

) 

 

paste(names(training),collapse="+") 

################################################ 

# Forecasting IMFs 1st , 2nd, 3rd, 4th and error using Random 

Forest 

 

cluster <- makeCluster(detectCores()) 

registerDoParallel(cluster) 

#Random Forest Code 

fit.raf <- train(error~ <List of Variables>, 

                 data=training, 

                 method="rf", 

                 preProcess=c("center","scale"), 

                 tunelength=10, 

                 tuneGrid = rfGrid, 

                 trControl=fitControl, 

                 ntree = 1000, 

                 importance=TRUE, 

                 metric="RMSE") 

stopCluster(cluster) 

predicted.raf <- predict(fit.raf,newdata=testing) 

fitted.raf<- predict(fit.raf,newdata=training) 

################################################

############################ 

#Support Vector Machine 

library(e1071) 

cluster <- makeCluster(detectCores()) 

registerDoParallel(cluster) 

svm<- train(error~<List of Variables>, 

            data=training, 

            method = "svmPoly", 

            trControl = fitControl, 

            preProc = c("center", "scale"), 

            tuneLength = 10, 

            metric = "RMSE") 

stopCluster(cluster) 

predicted.svm <- predict(svm,newdata=testing) 

fitted.svm<- predict(svm,newdata=training) 

################################################

############################ 

#Gradient Boosting Machine 

 

set.seed(9999) 



 
 

cluster <- makeCluster(detectCores()) 

registerDoParallel(cluster) 

gbmFit <- train(error~<List of Variables>, 

                 data = training, 

                 method = "gbm", 

                 trControl = fitControl, 

                 verbose = FALSE, 

                 ## Only a single model can be passed to the 

                 ## function when no resampling is used: 

                 tuneGrid = data.frame(interaction.depth = 5, 

                                       n.trees = 500, 

                                       shrinkage = .1), 

                 metric = "RMSE") 

stopCluster(cluster) 

predicted.gbm <- predict(gbmFit,newdata=testing) 

fitted.gbm<- predict(gbmFit,newdata=training) 

 

#Predicted Residue 

par(mfrow=c(1,1)) 

pres<- error[80:98]- (predicted.raf)  

plot(predicted.svm, type="l") 

plot(error[80:98], type="l") 

plot(error, type="l") 

 

 

#Predicted and Fitted 

raf<- c(fitted.raf,predicted.raf) 

svm<- c(fitted.svm,predicted.svm) 

gbm<- c(fitted.gbm,predicted.gbm) 

final<- cbind(data$Key,error, raf,svm,gbm) 

write.csv(final,"LogError.csv", row.names=FALSE) 

 

#Storing the Predicted IMF's 

 

imf1_pred<- predicted.raf 

imf2_pred<- predicted.svm 

imf3_pred<- predicted.svm 

imf4_pred<- predicted.gbm 

error_pred<- predicted.raf 

 

final_series=imf4_pred+imf3_pred+imf2_pred+imf1_pred

+error_pred 

final_series<- final_series^2 

final_series1=ifelse(final_series<0,0,round(final_series)) 

 

flu=imf1+imf2+imf3+imf4+error 

flu<- data$Flu_Cases[80:98] 

abs_error= abs(final_series1-flu) 

MAPE= mean(abs_error/flu*100) 

MAPE 


