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UM'ANTED CONSEQUENCES OF LARGE SAMPLE
SIZE IN ECONOMETRIC ESTIMATION

by
P N.Misra

Summary

In this paper we start with the problem of analysing unwanted consequences
of large sample size in eéconometric estimation and find that the problem
can be framed as special case to general problem of estimating a model sub~
Ject to linear restrictions on the barameters. It is proved that use of
large sample size leads to blased, ineffcient and inconsistent estimators
in the presence of slightest structural change over the observation span,
Explanatery power of the model is also shown to fall down., The analysis
is extended to provide a general test-statistic that embraces in its
ambit almost all the tests known for testing various hypotheses in context
to estimation and predictinn from linear models. The same test helps in
testing hypotheses relating to alternative specifications of variasbles in-
volved in the medel,

The results are utilised to suggest a method of segmentation of a popula-
tion or observation space in relation to a hypothesised econometric model,
The idea so developed is helpful in defining samples and populations when
data are required to be collected to estimate a relation. The same idea

can be used to grouwp a given nmumber of wnits into structurally homogenous

groups,



UNWARTED CONSEQUENCES OF LARGE
SAMPLE SIZE: TN ECONOMENRIC
ESTIMATION

by
P.N. Misra

Introduction

There appears to be ﬁnivei‘sa.l belief amongst applied researchers
that large sample size is'basic requirement for reliable inference,
It is only the cost of study that usually provides upper bound in
most casés.: The quest for large .sample size is reinforced by prevail-
ing statistical tests based upon F and t statistics, It is well

known that for a regression model specified as
K o

(1.1) y, = E . X, +u.
boog=0 g9t b

an F statistic is computed as below

‘ o
N . n-K:_;l._ R~
(1.2) F = iI'4 T_R=

where n represents number of sample observations, K represents
number of independent variables and_R2 represents squared multiple
correlation. For testing the null ‘hypothesis relating to Q? .

the population counterparts of R29 as given below
(1.3) H + ¥ =0

one requires the computed F to be larger .than the corresponding

tabular F. Computed F, as in {1.2), can be made large apparently



by decreasing K and increasing n but decrease in K leads_tq ;ednctiqn
in 112 also and therefore this alternative is not given any importance.
.Increase iﬁ n is thought to be safer though as we shall see later, it
is not sé. Often, applied Sresearchers tend to accept a model if n

is iarée‘enough to provide_signiiicant value of F eventhough 32 is
quite 15&.. Thig leaves an uneasy feeling because one ternds to bBelieve
that low valué.of R? should not be tolerated ewven though ¥ test were

significant,

An cobvious solution to this problem is to test the null

hypothesis,
' .92 _p?2
(1.4) H 2° = Eb

where. Q’o2 is any chosen level inclusive of zerc, -Here ome can test
g8 to whether {2 is -aclequaﬁe ‘enough for the model being used for

inference and prediction on the basis of sample data. Wespraees

One may define the following statistic, alternatively as

B2

(1.5) F= -~
1-R°

where n and K may influence ¥ via influencing 1?2 omly. It is well
known that increase in K leads to increase in R2 and therefore F
in {1.5) increases as K increases. But precise contribution of

. change in n to 7 is not known certainly in algebraic sense.



Present paper analyses these issues and provides appropriate solutions.

Some discussion on the nature cof sample and population concepis
in econometric ar.aa.l'yses is due before we proceed further. Generally.,
we are concerned with estimation of 'beha\fioura.'.l. relatione or such
other types of relations that cha.nge in structural sense over time
and space. 'I'hls fact is ‘not consistent with the usual a,ssumption
that a time series data is a s:.mple random sample with replacement
from a popule.t:.on represented. by the time span = to < ., A proper
definition of a populat:.on in econometric sense is oolleotlon of
those units 'Wthh satisfy the model to be estimated. Thus the unl‘és
relating to wh;c_h the observations satisfy a relation like (1.1)
econstitute the popula.tiozi because only in s_;lch.case the unknown
coefficients in (1.1) c;ﬁ be supposcd tol rema:.n invariant over
the obser{ration-space A ‘sample from onlyi suoh a population will
be & repreeentative sa.mple. "Aooordingly, the time ‘span—co 10 oo -oa.n _
not be deflned to constltute population i‘or 211 kinds of time |
geries data in the presence of structural ohanges. Only that
pa::t of the time Spa.n over which the mode,l to be estimated can be
| supposed to. rema.:m invar:.a,nt is the releva,nt populatmn._and this
may natura.lly vary from model to model A sa.mple rieeds to be . .-
selected. only after the population hes ‘oeen id.entlfled The sa.nle
holds good for cross—section data. There fore, a magor problem is.
to segment a given set of observat:.ons into homogenous populations |

where homogeniety is-to.be ensured wrth respect to -the model to be
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estimated. Un closerlscrutiny, resolution of this problem solves

the proﬁlem of stratification in multiveriate situation, segmentation
of mérkeﬁs, clustéfing,aggzégafion over relations and variables, and
fbrmatioﬂ of.inte¥ﬁéily:homogeﬁous groups,;etc; It may be observed
that stratifiéation ar'clustefiﬁg with respect to magnitudes of the
variablés involved is neither similar nor preferable to the concept

of structural segﬁéntation described above,

A mumber ‘of problems of estimation and_inf'erez.u:e_e"y ?hich!ﬁévé
been discussed in relevant literature in somewhat i;oiaygd faéhibn,
have been.gynthesised in this paper., A1l the tésfiqg p;pcedu#es
relating to linear models including t, F and those in Chow'(196é)
and Fisher, F.M, (19?0)‘§re shown to be special cases_of tﬁe ﬁeé£
proceduIE'emerging;from.our approac?. Tﬁelprohlems.éi'pfedictioﬁ,
specification error, dummy variables, qualitativrelvar:‘i_ables9
covariance ahalysis,.compatibility ofipripr intbfmgtion, pqoling
of timc—series and cross—section datez, cte,, are showntto_fe
derivable from our approach. The ldca of discriminant apélysié ﬁas beeri
extended in context to populations satisﬂying,mu;fifariaﬁe regression;
rodels, The problem of random cocfficicnts is Seen _ﬁo_bc_ekteﬁsidn

of the problem discussed in this paper.

Effect of Strﬁctural Changes on Estimatcd Models

Sincg users of large Sampleslare iikely to'treat”differing
structurers to bte similar, the'problems of large samples and structural

changes are two sides of the same coin. t us consider an observation



span consisting of n units. Let it be divided into two groups or
populations consisting of n, and n2' units, respectively, so that
observations in each group are internally homogenous with respect
to a specified model such as (1:1). Structural homogeneity 'implies
that the model remains the éame over various observational units and

the same holds good for the coefficients, Using usual notations in

econometrics, we may express the models in matrix form as

(2.1) vy = X1;31+u1

for n, observations in the first population and
= X 0o .
(2.2) Yo ooty

for n, cbservations in the second population. Thé berms pdp"ulation
and group are used interchangeably in proper context throughout this
paper. The vectors ¥4 and u, are each of size 1';,13:1 , matrix X1. is of
size n1x(K+~1 ), vector Q0 is of sizme (K¥+1)x1 and the same holds good

for model (2.2) with n, rcplaced by n2. The total number of units

n on both the populations taken topether is given as

(2.3) n = n1+n2

Models (2.1) and (2.2) can be written together as

(2;4) ¥¥ = X¥p¥pyx

where the notations are given by



(2-5) y* = {
fr U]
g* = {,Zl], u¥ = }’u*g
SR i"’2 L 2j
Let us assume that vectors & 1 and ﬂ.g are linearly rslated as
i e =
(2.6) R +Bofo = T
This can be written, altermatively, as

(2.7) Rg* = p

where R is of size Cx{(2K+2) and is defined as
(2.8) B = @1"323

and R, , 'R2 are cach of size Cx(¥+1) where C represenfs the number of
constraints, The elcments of R and v are siupposed to be knowm

constants, In particular, if

sl

0

i3

{2.9) R

i

r

where T 1s (1) x (K+1) identity matrix cnd O is (K41 )%l pulld

vector, the restriction (2_.7) simplifies to

(2.10) f; =iy =¥

[}
B



and model {2.4) gets simplified as

(2.11) y* = X +u¥*

A U

The model (2.11) is now defined in terme of pooled observatlons in terms
of n observations on the variables involved, Thus estimetion of model
(2.11) in terms of‘large sampie size implies estimation of model (2.4)
underrthe restriction (2.10). In other words, ﬁhc‘pfoplem at hand is
speclal case of estlmatlon under the: restrlotion (2.7). We shall,

- therefore, con81der the problam of estimating model (2.4) under the

_restriction (2.?).

2.1 Bstimation

let us consider a Cx1 vector_of_Lagrangian constants,;% , and

de fine the following function

(2.12) 4 = u*'u*+2/i'(Rﬁ3*—r)

Fipst order condition of optimisation of @ is given by

'

(2.43) X* x*p*aRA = X*y¥
Rp*

fl

r

Second oxder condition of optimisation can be obtained by examining

the Hessian
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t

oX* ¥* R
R 9

i !

= ;ix*'x*! 1" (x x*) iR

(2.14) H

Principal minors of this Hessian are negative definite,  Therefore
solution of £%and A from (2.13) minimise the function (2.12).
Constrained least squares soluticn for L¥ and A can be written

as

A 1 ~1 A
=p* 4+ (X* X*¥)T°RA

(2.15) b*
A A
A =W{(r-Rp*)
E* ={X*'j{*)"1 X*‘y*

N o= Rz~ tmd ol

A
where g* is unrestricted least—squares estimator of ¥, It ecan’
be easily verified that

Fa

A
(2.16) Rb* RE¥ + r-Ri*

I

= 2

so that the estimator b* satisfies the comsiraint (2,7) but the

A
same carmot be szid for estimator §* . In génerzl one may

ohserve that
A
(2.17) Rg* £ r

A
If (2.17) were not true, that is RF¥=r , one would find that

(2.18} p* = O



© implying that the restriction (2.7) is in fact rcdundant, Thu it

- follows that 're_s;:;-icted_ least-squares is needed only _wh_en (2.17) holds,
or, when one wishes t_q :meose restrictions_tmt are not supported.:-by"’

unrestricted lea.st—s.quare:s‘.- In’par_ticul:}_r_. if restrictions are given

A .
by (2.10) and RE¥ = O, that is

A
AN
Ind

A
(2.19) Fp = Fg

then, (2.18) can be expressed as

(2,20) b* = [%]f
= @omlugx

whereﬁ can be estimated directly from the pooled mo@efl (2.11). It
follows, thercfere, that pooling is desirable when (2.19) holds good.
Any divergence between g.land 32 is suggestive of f'rea}:ing the _th
populations separately.  Pooling can be toleratcd ‘in statistical
sense provided El and % 2a.fe El-if ferent from ez_a.c;h other_only insigni-
fiecantly. Properties of the restimator b* in (2.15) were analysed

by M:'L'.sra. (1973) by treating 't'.he: parameters to be mis—specified over
the sample space, In whaf follows, these are examinéd in slightly

different way to afford greater generalisation.

2,2 Bias
Combining (2.4) with (2.15) we obtain

[Ri2t) b*-g* = A(r-RE*)+ Aju¥

= (x*'xx)" iRy

(T-AR) (x* x*)~dx*’

A

H

44

H
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Taking eipécta‘tin':»n on both sides of (2.21 )-‘under usual lezst square

assumptions we heve

(2.22) B(o*-g*) = A(r-Rp*) .

This shows that estimator b* iz biased in case. the restrictio:lxl R2.;I')

is not true, The bias can be stimated ty veplacing ﬁ*“_by -/B\*.‘

Again the estimated Pias will not dissppear if data are such

that (2,17) is true. It follows therefore, that quest for lavge samplet
will generally lead to biasced estimates in case pocling of observations

is dorne as in (2,11).

The estimatorﬁ’ of B in model (2,11) can be expresscd, zliernatively,

as
N - A A A
(2.23) g = W.o, + WoR,
'__ rey=1+t
,Wlh (X :x:). XX
— 1 -.1 !
W= (X'X) XX,
W, + W, =1
B A A
which shows that { is weighted average <f pla.nd - Ea.nd. there fore

differs from both of these unless (2.19) holds good. Thisagain

M
shows that (3 is unable to estimate pi or ‘;2 unbiasedly. It may be
noted that g is simply a.rtii‘icia.lly constructed parameter vector to

substitute the parameter vectors g oand 5 .
‘ i "2

2.3 Efficiency

Using (2.21) and definition
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(2.24) E. u*u*' = 7%

we obtain variance-covariance matrix of estimator b* as follows

(2.25) B(b*-p*) (o*=%)' o A(r-Rp*) (z-mpw) s’

b ] ¥ 1
+'A12 Al

The expressions in (2,25) can be further simplified as

(2.26)  B(o*—£%) (o*-*) = v 4a(V, V)4

where
(2.27) Vl = (X*'X-*)_lX*fZ*X*(X*'X*)":I
Vy = (rRg*) (z-Rpx)'
- A : '
Vo = B J(e-R3%) (r-rpx)] E?eRr-*)—(r—Rﬁ*)j
= R V]‘. Rt

o
Further, since {¥ is unbiascd estimator of ¥, we can derive

I}

(2.28) v V-V \
vy E(r~Ri*) (r-Ri*)

Combining (2,28) witn (2.26) we got

]

(2.29) B(p*-g*) (pr-p*)' = v,4av A (VT AT

1 2

The result (2.29) shows that the estimator b¥.is likely to be
A _ .

PiLay P % : :
Ln:e fficient as compared to B owing to several reesscns, Firstly, B*

A . .
is best estimated by ‘Prand in that case estimated value of V2—V4
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will be zero sc that estimated voriance of b* ig 1afger than tﬁat
of g*'by an amount AQQA' where ?2 is estimate of V2.r Secondly,
it is likely in most situations that},;;tructurql changes are so
frequent that n, and. n, represent poﬁulatién sizes. In that case
both V_] and V3 will disappear a{ld

(2.30) B(b*-g*) (b*-p*)' = AV A"
which does not vanish unless both RE*=pnd RE*=r nolq good.,

The result (2,30) shows that estimator b* will be inconsistent
if the restriction (2.7) is .no't ia:'u.el. In other words, use of large
sa.mplé size in the presence of structural change. is most likely to
lead to inconsistent estimate of unknown coefficients even though

all the least-squares assumptions were true, -

4 Ebcglanatorx Power

Using estimator v* of ¥ we can express

(2,31) 3% = 7% 4 O

where
(2.32) Px o xepx
) A
= M*y*aX*i (p-RP*) |
A A
u* = My*~X*A(r—Rﬁ*)
M* = X% (%% e )=y
¥ - Topix

and A is same as defined in (2.21). Remembering that
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1
3

(2.33) Mo

l|_‘
g.

i A

M = MK*=X* M = O
we can derive the‘fbllowing results!

T [}
(2.34) P* §* = y* We* + TN ONE

G&iék = y*'My* + (rJQ)'N (rJg)
ALCA A A A Ay
vy u* = o~ r'N{r-r) - (r—r)’N(r—é) = —p'N(r-1)

It ¢an be easily verified that
: A YA AtA t 1 o
(2.35) F% 3* + wewe + 2 P Qe = g ey 4 dge

AA B A
The result (2.34) shows that ¥* U* is not zero urless r = r orr = O,
This gives rise to what is kn-wn ~s covariance an@lysis. In other
- : ~
words, for all kinds of restrictions where r = O, the components y*

and G* are orthogonal. In that case explained and residual sum of

squares can be written as

(2.36) P*'P* = yx'wepx - B
'l = p'mgrs Bud

This result shows that restrictions similar to {2.10) are capable
of reducing explained sum of squares and increasin;; the residual

sum of squares and this undesirable property gets further enhanced
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as I{&*’ is found to deviate frem the null vector, In other words,
attempt to use large samples in the presence of structural change or

to mix samples from two different populaticns leads to reduction in
explanatory power. The reduction could be substantial if the structurecs

L]

are widely apart from each other.

3 Tegting of Hypotheses

A careful examination of the test statistics developed for testing
various hypotheses including those by Chow (1960) and Fisher (1970)
reveals that the tests have tg be constructed separately for every
hypothesis., A1l such statistics_a;e iound toc be sjecial cases of the
statistic, developed in thiswseétion to test the hypothesis that
restriction (2.7) holds. For predictive tests, however, the statistics
have to be developed separatcly whén n, { K+l Most of fhe results
developed so far, can be adapted to restriéted catimation of 2 single
equation moedel. The results can also be. cxtended to situaticns
containing more than twe regressions., We propose to develop an
appropriate'statistic for testing (2.7) and then show that most of
the known as well‘as unknown tests are special cases of the same.
Besides theoretical heatness, the proposed approach‘can prove helpful
in affectingjeconomy in computerisation of various tests. Predictive

tests are developed separately.

3,1 Test for RE* = r

e may express explained variation in (2.34) as
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‘i>

G.1) ¥ S, 8,
S = y* My
S = NP - p'Nr

where Sr represents variation ascribabi:c o restriction (2,7) and E‘:»f
represents variation ascribable to model (2.4 ) when it is free from

any restriction. HRemembering that

. A ' __1 1 )
(3.2) T = 1 o4 RUFXR)TIX* g
Wwe may ©Xpress Sr’ alternatively, as

1 — ¥
(3.3) 8, = 2 zNR(E* X*)7 ¢ ur
. . ] - 1 — B
=% Xx (X ) TTRINR(KR® X)X e
Using {2.33) we observe that both of the components of Sy are

' statistically independent with the quadratic form

il

y* 'My—)(-

]

(3:4) 8,

where .Sef represents residual sum of squares of the unrestricted

model (2.4).

Assuming that the errors in (2,4) are independent and homo—-

schedastic and have zero means, we can write (2.24) as
(3.5) ¥ = £°1

ﬂsing these assumptions we obtain the following results:
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(3.6)  BS_ = 6PR(x* ) Tix (e )R = g2ty
= 6%

and

(3.7) B, = §°(n-2K-2)

where C represents number of constraints on the parameters and also
the size of the square matrix N. Thercforc we can define an F

statistic as

| \ . .
(3.8) F(c, mox-p) = 22 Eleopil
R y* My

with C and n—2%-2 degrees of frecdom to test the restriction (2.7).

The statistic F can be computed in any given situation and if it exceeds
the tabular value of ¥, the statistical validity of the restriction (2,7
may be seriously doubted because Sr %ends to be larger owing to failure

cf restriction (2.7) to be compatible with the sample observations.

In case cne were dealing with a single regression model like (2,1)
and the corresponding restriction as in (2.7), one would obtain an F

statistic as

n, —K-1 Q”N{g - r'N1r

1
'
¥iMy,y

(3-9) F {(c, n1—K""1) = I

where the subscripted expressions refer to corresponding concepts when

model {2,1) is used instead of model (2.4).

The test holds good for all types of exact restrictions. What one
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requires is to use relevant values of R and to compute the needed
statistic. For instance, if one were intercsted to test constant
returns to scale in context to Cobb-Douglas producticn funbtions,

one can set r = 1 and define R to be an appropriate row vector so

thatjﬁp provides the desired sum of the coefficients.

3.2 Special Cascs

As pointed ou£ earlier, specific hypotheses can alwaya be_
transformed in the form (2.7) with specific valu:s of R and r.
At the same time one may also determine the corresponding degrees
of freedém.. In what follows, we shall illustrate in some cases as
to how the statistic (3.8) leads to certain well known tests, Ve
will also illustrate in certain other cases as to how certain
hypotheses can be transformed in the form (2.7) so that the test

(3.8) could be applicd.

Contribution of a3 Singlc Variable in a Sinele Model

Let us consider the hypothesis
(3.10) By

in context to model (1.,1). Here we can identify E and r as

(3.11) 2 = (00..1 0...0)

r = 0

C = 1
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where j-th place of R contains unity. With these values and formula

(3.9) we obtain the relevant statistic as

ne
i
(3.12) P (1, nK~1) = —
var(l.
; t-J)
= %
A ) . M
where'var(ﬁj) represents unbiazedly estimated variance of ﬁj.

The statistic (3,12) provides the well known t—test.

Simultancous Contribution of 511 the Causal Varisbles

In this situation the hypothesis to be tested is given as

(3-15) ?‘1 = @2‘”: e = ;ﬁk =0Q

If we redefine the model (1.1) with variables in terms of deviations

~around their sample means, then we have

(3.14) R = I
r = 0

where I represents KxK identity matrix. Combining (3,14).with (5.9)

we obtain the relevant statistic_gq“ o

‘ _ o nK=1 - y'Méy
(5-15) F(K:n—K_1 ) = K y'My
n—K-1 R2

K I-R2
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“where observations are measured aro,und their sampié‘ means, The test
(3.15) 1is same as (1 2) vhich is the well known F test for testing the
statistical validity of hypoth651sed model (1.1) in terms of n sample

obsexvations.,’

Altemé.tively, one may considér a hypothesis in terms of subsets of
thé paraméters and idenﬁify the corfes&ponding R. C(ne may alsc consider
_‘equality,proportionalitj or-linearity of two or more coefficlents in
model (1.1) and in each case identiiy R and T to dgfine.the corresponding

test statistic.

Bquality of Coefficients in Two Regressions

' Let us consider the problem of testing the equality of parametric
vectors as Ain‘k‘2.1l0) with R and r as defined in (2.9). In -_‘t}iis case
the test statistic in (3.8) grts simplificd as

n—2K=2 R
t
T -

(3.16) _F(k+ﬁ, ﬁfzxrg) =

AN -
where ﬁl and 132 represent unrestricted cstimates oi‘}?land ’{52.

respectlvely, and y*. My* represents sum of residual squares in

the two regress:.ons. .

One may visualise several cases of restriction (2,10). If it is

restricted to-equality of eonstant terms only, one may test for
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significance of dunmy variables, or differences in time unit specifics
or cross—scction unit épecifics in context to estimation of such’
booling models as in Misxar({9720, 1976). . It may be noted that tests
in context to covariance anaiysis 2lso fall in this category. One’
may consider equality or any lincar combination of a subset of
coefficlents and usc the test statistic (3,8) with apﬁropriate ﬁ and r,

¥

There are several interesting 1ppllcatlons of the test in (3. 16)
It can help us in 1dent1fy1ng those micro relations which if defined
in terms of macro variables will have no aggregation bias inm estimates
as wcll as predictions, The truth of this staten&nt can be easily
verified by considering relevant. results in Misra (1967, 1969a, 1969b)
The test can be used to decide a8 tu whether two sample sizes n and
n, can be pooled fbgether fo obtain larger sample size, Test for
aggregability of micro units may help in determining homogenous
groups of units (firms, consumers, 1nvestors, ete,) or regions where

homogeneity is sought to be in: terms of hypoth9815ed structures.

Speciiieation of X

- A major problem of decision making in actual practice is to
decide specification of varizbles in matrix X, They could be totals,
ratios, percentages, first order differences, ant101pated values,
bgged values, qualitative or any other form and one does not known
which one of these is the right choice, Representing two
alternative specifications of X by X1 and X2, Ve can specify the

following models to explain the same~y=
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'1 ) —
(3 T Y 1}5 1 1
= X +
y = Xofatiy |
Now the hypotheses X, = X. and 3 1—,6’23,:'6 equivalent in context %o
above speci'fication. There fore, one may wee (3. 16)to test (2 10)
and if Bl is found to be different from ,.2, the choice of the

specification in (3. 1"{) leading to higher R is more deszrable.
Sgec_ifica.tidn cf ¥

Alternative specifications of ¥ variable corresponding to given
X can be tested by testing the restriction‘(z.-‘l'O) in context to -

models
(3:18) ¥1 ='xgl+u1
yg = X+
1f Bl 'is found %o be sa.gnif:.cantly differemnt from 532, one may

opt for the specification in (3.18) providing hlgher R

The hypotheses ¥,=¥, and X1==X2 considered together are equivalent
to testing the restriction (2.10) to lead to test in (3.16). In this
case alsc if ?1#1320ne may opt for the s;)_e_cifica.tion that yields

higher R .

“Bffect of Inclusion of a Variable

Several times one is interested in testing as to whether
inclusion of an additional variable, X, changes the coefficients

in a model significantly. Thus given a model as
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one may augment the matrix X1 as

and then estimate the mod®l
- n
(3.21)  y=X%,8, 4+,

The problem is, then, to test as to whether the common'ébéfiiaiéhfs'
in gzland. By are different from each other when considered, singly
or jbintly tégether. In case one is interested in testing. the
significance of change in i h'coefficient, one may consider the.

following restriction
22 - =
(3.22) . 0

P11 = Foy
for each'i, The coefficient:'g x@pxesents coefficient of x_ in
model (3 19) when x_ is assumed to be hypothetically included in Xy
Given the restrlctlons in (3.22) /s one may identiﬁy R and ‘r and carry

on the test as in (3 8).

3.3 Predictive Tests

The tests in section 3,1 hold good provided both*hi“and n, are
greater than K+1, In actua; practice one faces several situations
when n, > K+1 but n, < K#%.. In aimost all the short-term prediction
exercises né;includes thé’peiiods‘tb be ib#ecasted and .these normally
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do not exceed the number of explanatory variables. The problem is
therefore to test the restriction (2.10) when 3 oan be estimated
from model (2.1) hitLQE camnet be estimzted from model {2.2) owing |

to shortage of number of observations, We shall discuss two

interesting situations,

BEquality ofgl and g_s--g_

Assuming (2,10) holds good, -one mey estimate ¢ from 7(2.1‘1 .) to

obtain the estimator in (2,20). This estimator may be used to

obtain
A _ v B
(3.23) . 7, = X,
Rlternatively y, may be estimated direetly from mocel (2.1) as X, ¥ 1

without imposing any restriction. Using these estimates-, vie may
obtain present version of Sr a8
~

(3.24) 5% = £'x x 7 DI ¥
. S A s L UL S

The hypothesis to be tested in the present case is as to
whether ¥1 = Pgand as to whether ¥, is predicted accurately by 'Xzﬁl.

This is equivalent to testing ths resiriction

(3.25) ¢, = By = f

U.2_H= Q
Using (3.25)} we have

yi= BBy

R
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. - _ A
Combining (3.26) with (3.24) and using relevanl expfessions for g31

A
and £ . we get variation owing to restriction (3.25) as
-1

. * = ' ' ' —
(3.27)  Sp = u "X, (XK )7K, "y,
' vy~ Ty e D
u, 'X, (X X) X, x1(x X) X, u,

+ expressions in terms of X1 'u‘1

It can be easily verified that individual terms on the right hand side

of (3,27) are distributed independently with
_1
* = 1 - ' f
(3.28) S* ¢ v, [1}:1(1(1 x1) X, ’.u‘l

'Therefore we may define an F statlstic as

.

. mE sy
T 4Y = I

where d,! is obtzinable from

2
(3.30) 6,

#
E(Sr) |
2 -1
6 [®1 ~ +2(x'x)7'X, "L (X'X) X%, ]

An interesting adaptation of the test in (3.29) is to test

as to whether a restriction like
(3.31) Rz = p

is statistically compatible with the # defined in model

(3.32) vy = X7+u
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Compatibility of Additional Data to Estimated Structure

Suppose that estimated version of nocel (2.1) is used to generate

¥, as
A

(3.33) §5 = Tl
whereas the true Y, is given by
(3.34) Y23X9§1+u2
This gives

| ¥ . ’r\\ o
(3'35) Yg‘Y2 = Xz(?‘l"i‘“l)“%
and

3380 Bpg)' Bgmvg) = (F1-81) 1% My (B vy

+ terms in u2

Agsuming that u, and u, ‘are statistically independent, the terms in

(3.36) are found to be statistically independent with S*e de fined

f
in (3,28). Therefore if u1'andzu2 are homoschedastic we can de fine

an F statistic as

- A ' A
'n-l_I\- 1 (y2—yg) (.YQ y2)

(3.37) R(ayon, K1) = .
d2 Sef

where d2 is c¢btainable from

(3.38) dizdz =B [(?z—yE)'(§2—y22]

2 -1 2
61 tr X2(X1'X1) X2'+d1
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In particular, if n, =1, so that 2 = x,', We can express d2 as

-
(3.39) &% = Xy () KL )T 30
In this case we can coupld g together with S ot Jand define an T as -
— )@ —
(y2 y2) (n 1{1)

* O¥
d2 S ef

(3.40) F(1,n, —K—Q

This shows that we can define a t-statistie

A
(yz"yz) Hnl"—K-l
ha2 gef

which can be used for cbtaining interval estimates of ¥, at a

(Gua1) t =

specified level of confidence,

The test in (3,37) cnables one to test as te whether an external
data set (y2X2) belongs to an estimated strucfure ¥y = X1§1 o In
this sense the test enables one to ascertain as to whether an external
set of observations belongs to a given linear model, In other words,
the test serves the same purpose in context to regression model as
discriminant analysis serves in context to multivarlate normal
distributions, It has been shown by Misra (1972a, 1972b) that least—
squafes'estimated‘iegressions tend to follow t—distribﬁtion even
fhough regression errors are found tc be heterotypic., Thus
the discriminating ability of the tests in this paper may nct get
retarded even though the regression errors do not follow any known

distribution.
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4 TFormation of Structurslly Homogenhus Gfouﬁs

Results developed in the preceding seétions can be used to sub-
divide any n observations into internally homogenous group while
homogeneity is ensured with respeet to o model, This problem has
earlier béen_posed by Misra (1978, Ch.5), in context to market
segmentation in relation to general demand functions and the same
holds good in general. Examination of result (2.23) provides an
use ful clue to resolve this‘problem. ‘I‘he, fesult holds gogd for
sample as well as population sizcs and therefore segmentation can
be done in either case. The result (2.23) states that the plane
in (2.11) passes through the zone falling in between the planes

in (2.1) and (2.2).

Suppese we consider the signs of the residusls -corresponding to

model (2.11) and group the observations corresponding to positive
" o and use
these to estimatc the models (2.1) and (2.2), rcspectively. In

(inclusive of zero ) and negative residuals into n, and n

this situation we have

(4.1) X

Further, remembering the pattern of grouping of the residuals
we have
X8, < yqi-XF
) S > 1
2g-y2 2P2“"y2
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This shows that erroré éorrespondlng to mocd els (2,1) and (2. 2) are
reduced in terms of absclute magnltude when compared to correspondlng
errors in relation to model (2.11). Thls 1mp11es that the grouping is
such that the observations are internally more homogenous withr respect
to the specified model, In other words, the residual variation corres—
ponding to model (2,1) and (2.2) will be reduced substantially by
following the above mentioned subgrouping, The explained variation
in both the models will be increased by an amount equal to S 2 defined
in (3.1), because separate estimation does not require imposition of
any restriction like (2.10. The sub-grouping criterion, as outlined
above, is there fore capable of reduc1ng errcr sum of squares and increasing
explained sum of squares and these together will lead 10 improvement in
32. Thus segmentation of cbsexrvations into homogenows groups should

lead to improvement in 32.

This approach holds good for all the models that are estimated in
accordance with the style of llnear models, To start with, one ‘may
consider possible causal variables and divide the total size into two
homogenous groups as above., Similar procedurc may then be adopted
to segment further the twe groups separately, The process may be
continued +ill there»is no significant improvement in Re as a result

of further segmentation,

If the groupings n, and n, are not intra homogcnous with respecf'

to a model, the Ra corresponding to pocled model (2.11) is shown by
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Misra (1975) to lie in between the R2 values corresponding to models
(2.1? aﬁd?(2.2); 'Thé'same is found to hold éood in resﬁect of
etipirical estimates of T° as computed By Fisher (1958, pp.203~204). This
is'éxpécted in view of the foregoing discussion because any arbitrary
diviéidn will make one of tﬁe groupsrto be more homogencus as compared
to the pooléd size and this property'will lead to improvemént in Hz.
Cor&ésﬁbﬁdingly, the other group is rendered more heterogenous and the

‘ - : 2
result ig exhibited in terms of reduced R .

The concept of stratification in sampling is simply a special
case of the present approach when the models are specified as

(4.3)

Il

Y11 = Fro*¥yy i = lyees ng

(4.4) : 1 =1n,+ly.0., D

Yoi = Bootioy 1 Q,

(4.5) v, =%, 0t u, i=1,.ve, 0

: 1
where n is same as defined in (2.5) . This shows that stratification
may lead to subgroups that may not be proper segments when segmenta-
tion is required to be done in relation to models containing

. explanatory variables,

Tsee Misra (1978, Ch.4) vhere all the sampling results in case

cf simple random sampling are derived as special cases of a

general regression model. The sampling models are, in fact,
regression models without heving any causal variable in it.

The tests in (3.9) and (3.8) can be used for the abaove simple
models to obtain the well-known t tests for testing the significance
. of sample mean and difference of sample means, respectively.
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The idea of segmentation can be used to ascertain the point of
structural break in case of time—series as well as cross—section dat#.
The subgroups need not be temporally or Spatially'qontiguous.‘-In time~-
series data one simply defines 5,blopk of time-period to be a sample
and the results of the segmentation may provide further insight_tp
redefipe_the sample span, More often it may turn out to bg pepulation
span rather than sample span if the structural breaks happén to be moré
frequent over time., In any casg"one can group the time-periocds into
internally homogenous sroups and use that structure for predictive
purposes that‘seems to be compﬁfible with the prediction pericd in

gquestion. The same holds good in case of cross—section data.,
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