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AN I"?TLR'-GTIVE FROCEIN. S ¥OR SUBSET SELECIION
(S

WITY ORITHAL PREFEREN é
In thls psper =n interactive procsdure is developsed for choculng

3 gwheat o altematives (items, projects, or setions) from ¥ aveilwble

gltemativras- It 13 alssumaé that the py-0ffs for the ~lterpatives crn—

not be axpresaad in mumerienl uaits. ‘st'-ver, ths decdd don-maker 1s

willing to provide ordinal >xprossions of preferanee over the subseiss

The procedure dsveloped here attempbs to mindird 2 the number »f subset

compard gons made explicitly by the ded don~mker. In section 1 mn

introduetion azid problsm_ gbatoment 1s givane BSome bnsic definiticns

and theurems ars stoted in soction 2, The interactive procecure is

doseribad Ip section 3. and n flow chert ig glven. In section 4

an example 1g oresentod to 1llugtrote the procedure. . The example

hips been devised to demnetrate all the featurds of the propesed

procedures In Appendix, ¢ Hnary representatdon of the proc»efiure

1s given thet facdlitates implementation on a eomputer.

1. Introdugtion end Problsm Stotsment

The problen we consider is one in which a deelsion—moker has
to choose = subset of alternatives (items, projccts or actions) from
N avalleble snlternatives. The chosen subsst should ales setisfy
certain lnear constrnints (reéource munrower, ote,)s If thz pey-
offs for the altemstives can bs exprossed in numeriecl units, the
subset selection problam can te modelsd as 2 linsar or nmonlinesr
integer program. In mony decdlslon sltuations, however, the poy—
offg for the -dternatives cre cifficult to quontify. In such situe-
ticns, the dedd Jdon—moker migt express hls preferenses sver the subsets



of slternatives to 1dentify n most preferred gubsets Here we agsums
that he 1s willing %o nrovide only ordinal expressions of preference
over the subsetss Evon these criinzl comparisons may require con-
gdderable thought by the decislon-msker.

L}

The subset sclection problem can b3 reprezsentod as follows:

ylz v, z,ys A ?YN_’ 'select the alternatives satisfy
the constraintss

(1) by < b
yj= Oori1forj=1,...4 N,

Here 4 1s an m by N coefficiont matrix, b'is an m by 1 resource vector,
and y 4s an N by 1 vector whoge ﬁth component 1s 1 if the alternative
vy 18 in the subset and O if the a.lternétiveyj 15 pot in the subsete
moons "is preferred or indiffersnt to" and represents the decision—
maker! s preference Indifference judgment. »

There are .‘?.N possible y vectors (subsets), some -of which may not
satisfy the consgtreints in (1) and hence are infeamsible, In a complete
snumeration schems the ded ddon-maker has to imake F(P-1)/2 peired com-
parisons between the subsets, where F is thé number of feadble subgets.
In mst non-trivial declsion gtuations the number of fessible subsets
is large, and hene it is not practical for the decision-moker to make
all possible paired comperiscns between the subsetse

The task of evaluating. the subsets of altematives is greatly
focilitated if certnin assumptions are made about. the decision-maker's
preferencges over the subseta. These asssumptions nllow the comparison
betwesn many subsets wi thout directly involving the decislon meker. .



Thoge essumptions arcd _
» 2
(1) Given any tWw. subs.ts yl and ya, ylzy or y2 = yl;

2 3 1 P
(i1) &ven sy thres subscbs yl, yy mdy, if yz Y - apd

. yzk ys, then ylz y5;

L |

2 3 4
(111) Gven sny four subsets :,'l, T s 7 s 2ud y ‘sueh *hat
1 3
¥ r‘w =¢=zrrdyzﬂy =B, iyt 2 y unﬂy 2? »
t.heny W y z yglJ o

The stntements (1) and {11) correspond to cssumptions of connectivit
gnd ’b‘r_nai.td.vity, regpectively, on the dacision—maker' rreferences.
According to assumption (114), if projoct ‘4 is preferred to project 2.
and project 3 lg preferred to project 4, then the doclgion-maker woul
rrefer projects 1 and 3 teken tagether to rrojects 2 and 4. “This would
be the case if the dzeiston—maker's prefercncs functlon definsd on the
ot of alternatives could bo written in the additive form (see ‘Fishhurn
(8) ), but the adcitivity assumpti-n is only ‘sufficient, not necessary,
for our purpossss

Unfortunately, oven under the ahove cesumptions, the decision=
maker may have to make z large pumber of paired eomparisons for idonti-
fying & preferred subsets The number 5f such noncsmparable subseta
incrensss exronentinlly as N inerensss (see Bartse (1) ). Tstle 1
glves the number of noncomzarable palred subsets for varions valuss of N,

Bartee (1) rroposes the oxaminati-n of all feasible subgets
Thus, all noncomparatle subscts mist be identified. These noo-
eomparable subssts ere presented to tho decislon-meker, who lg agked



to idontify o preferred subset. However, as noted above, the evelna
tion of all nom-comparsbls eubssts would place s emsideratle infor—
metion burdes on the dscisl sn=-mrksr.

Zable 1
Number of Number cf Sets Total Numbor of T-ired Subsets
Altematives 3In Powsr Set . Palred Comperisong N-ot Comparatle
Number A
2 4 5 0. 0
3 8 . .8 S 346
4 16 120 10. Bo3
5 32 496 86 153
6 64 2016 Bz 18,1
7 128 818 1821 2244

Referencet Bartee, E.M., "Problem Solving with Ordinal }basuremant,ﬁ
’ Manacement Science, Vol. 17, No. 10, Juna 1871,



Ve prorose an Interactive proccdurc for icdentifylng o rreforred
gubsob of ‘<ltemetivess The procadurs is lnteractive in the sense
thet it progrusses Yy sesking ceriain informsiirn from the declision=
maksr, and ean s implsrented on an np-lne interactive oomﬁuﬁaf. ‘
Ths central 1dsa ~f the procedure is tc minimiz ths number of subsct
ccmparianns made éxpiicitly bty the @aciéion—mrﬂcer. An 1m U clt snu-
meration schome isrdeﬁsed such that the cecisinn-maker steps in anly
when the cholec: hetvcen two subssets of ﬂ.temati&es cronot be reenlvad.
with aveilabls informetion. The infermntion sHught from the declsion-
mker-1s than 'utiliﬁéd’effidenﬂ&’tq snumersts as many subsets of
slternatives as prossible untll more infsrmation from the ded sion-
maker 1s absolutely essentind for further progresse

Vpromdure for the evaluation of subssts of altematives has
naxy important applieaticnse In Research and Dovelopment projoct
galeetion, vardoug seoring mdels have been used for the srtimel
selection of ‘o subset of projects (Dean (5), Gordon (10), Pesrsom (12),
Sobin steale (13) )e Howevir, the projoct scores offer only an ordinal
meagure, ané cannot measurs "how mich® one project is better thed -
anothe¥s In weny sltuations invslving the selection of multi-~attri-
buted alternatives (projscts), the attri>utes (objectives) and the
osutcomes cf the alternatives on varisus nttributes cannot be cqelly
gpecdfiece In the context of crimlnal justiee rcﬁrsjec'bs Eorich (7)
clagsifies such projects ns nonévoluable, Bartee (1) clscusses in
som dotadl tho usefulness of an >rdinal approach -such as nrepescd in
this paper for these cdeeision situatimse Te subset seleetion v
rrohlsm has also been studied when the elements ars rroduct defects
(stfllson (1%4) ), objcctives (Churchmen gt.=1l. (2, 3) ) =nd _cri'baria‘
(Eckenrode (B8) )o It hns arisen in the contuxts of marketing (’x@;n
etenl (11) ) fi61d seloction by gradustc students (Coombs (4) ) and
psychology (Tversky (15, 18) e




2. M&iﬁum_u 2 _Theore

Suppose that = preferencu ordering has bien obtalned on
altermatives. Without loss of gsmeranlity, we con now lsbel the
elt:matives aceerding to thedlr rank, We thus have an ordered
set S whoss 1M elemimt is the ith ranked slternatives Por N
availebls cltermatives, the g6t S4s (1, 2, ¢ o o 5 4y ¢ & o , N)

Definition 1t Partial sequencet A4 partisl sequence 1s an ordered
get of numbers such that a highor number never precedes a lower ome,
and the snme number i1s never repeated. Numbors in a partlal ssquence
corregpond to sltematives in S which are undertakens The nmumber of
clements in the partlal sequence sk is givan by n(Sk). e ¢
element from the left in the partial sequence ¥ is denoted =,

A partial sequence is feaeglble if it éatisf‘ies the constraints in (1).

Theorem 13 parti..l sequence Sl is uneomt guously not_inferior tn
another partial sequence S Arfs A S

2
1. n(sh 3 n(s%), nnd
2. ’ > s;' for j =1 to n(s ), that is, ench element fram the
left in 82 is not smnller than the corresponding elemant
1 ,
in S » :

Proofs Conditions 1 and 2 1mpl'y that for every slternative in 52 there
1s & corresponding altemative in S1 with the sams rank or a higher
once Thus, by invoking assumption (111) in section 1, Theorem 1 is

provece




Por oxsmple, 1 87 = 1. %, 6% md 8° = <2, 5, 63, then
bot.h conCitiong 1 and 2 aro sa‘biﬂﬁéd, nnd hencﬂ Sl is pot dpferior
to S « DBut, if 82 = €2, 3, 43>, then si 3; and henee we cannot

concluds that S is mt inferior t0 S .

: ’Ih.a above result will bo used extansively in our procedure.
The: ooﬁparlson between two oartial saguences using Thacrem 1 Will be
termod slemsnt by elenent com'pnrison (etec).

Definitisn 28 Brenc: (B,. )3 Branch 1 is the set of =11 possible par—
tal sequances of alternut‘;ives that include Alternative 4 but ds not
include any altemative § < 1, . Branch i will contnin ex‘*ctly ZN—i
partial sequencese The meximm number of elements that any f=2asibles

partial sequence in By can possibly hove is denoted n, .

Theorem 2¢. The enm‘uerati‘m of branches 1 =1 to N, imhes that all
possibls partial soquences have boen enumerateds

Proofs ﬂ Bj =P, & £ §; that i, no vartinl sequence 1s repeated
in o branc.hes. The total number of partial squencos in B = 2R,
T‘aeref')rb, the total number of partlal sequences in all hrancbes =

Z— 2N—1 = N—l, which is exnctly equnl to the number of -1 pcssil:-le
i=1 : .
partial equsncss excluding <¢f » , the null sequances This proves

Theorem 2

Definition 3 Level €3 Luwel & of 2 tranch i (8,) 1s 2 set of
a1l possible partiel sequences of alternatives such that each partial
soquence ¢umtelnsg exactly ni-.L+1 eiements. '.Iiuere w;ll be n, levels
in Bi Thoe first level of B, will contain partial s:zquences with
exactly ny elemsnts, ond the. nith level will contsin = gingle nartial

sequence with one elerent (the i alternativa from §). Thus, the



aot Bi is further partitionsd into n, gubsetss Thc number of poartisl

. e
gequances in 2 level A of the brench i is i )
Thoorem 3¢ The enumcrstion of rll levels of branch 1 implics that
ell feadble partial sequences in brunch 1 have besn enumcrated.

Irocf: Bg‘n B;n_ (forl;ém) = ,Q.» The number of partial ssgusnces

: U -4
in 41l levels of Bi = ‘E;( ),whic‘n 1la sxnetly c¢gusl to the

nunber of partial sequences in B, vhen no partisl sequence contains
more than n, @lemonts. Hence, Thoorem 3 1s proved,

Definition 48 - Fathomng of Branch (Lewvel): A brench (level) is
called fathomed whan elther a2 non-inforior feasible partial soquence
in the branch (level) has becn icdentified or it is nssertod that the
"branch (lsvsl) cannot contain n feasibls partiel sequence which is.
non=infarior to the incumbsnt, (the incumbent is the best feagibls
partial sequence obteined so for). h

Dafinition 55 Automatic Fathoming: A branch (level) is doclred
gnwi_momd when ths ‘ranch (level) cen bo fathomed without.
any additional information, except the ordinel ranking of altematives,

from the "ded slon—-maker.

In the propssed procedure, the branch, level and sequenbe are
generated in a particuler orders Below we descride this orders

Drandy Gengratdons Branches are generated for unummti"n in increas-
ing Older, ioeo, B Y Bn’ ‘l‘, B L]



Lovel Geperrtiog: Levels in a given bmnch are algo ftnsr’a’k—ﬂ in ‘*:-
erecsing wier. In ~ branch, 3, cdrgt Jovel 1 (Bl) eraslsting of 221
n:\rtinl s2qusncss f n alternatives e enumera'bed, and then level 2
(51” ond s:'op t411 the last loval consistlng of mly the 1*“ alter=
naotive 1g enumerettd.

‘ngngn waer';tiu In a tranch 1, the flrst rartii lequen‘i:e af a
level with x altemetiveg, 1,94, thsz (n -z + l)th level, will heve
slenants 3, I4l,.., f4x-1. The. firzt u rtial sequenes cxsigts of

x olementay left mogt slement is i3 snd each next =lam:.nt is incre-
mented ty 1. For cx~zple, in branch 3, ir g lewel With four pmjecta,
ths first partial sequance will Yo €3, 4, 5, 6>, .’Ib generate’ Parthor
prrtial sequences iz & level, right most slement is ineremonted by 1
1111 the list of sltemntives in S 13 cxheusted. Tor cxomple, the nbowve
partial sequence <3, 4, 5, 85 will be chonged by. inecrementing 6. by 1
£411 1nst alternative N *"1s consldered (<3, 8, 5y B> €3, 4, 5, 73,

s eey €3, 4, 5, N> ). Waen the right mst elomant reaches N, the
partial soquence 1s initializsd by incrmen‘ging the next left element
(initi<l zed partial _seqzwnce' <3y4,6,7 ») an¢ thz orocedure is repested
{ €3,4,6,7 5, <3,4,6,8 >, ...y <3,4,5, N >). This &s done untdl

it 1s not posdtle to censtruct o valid partisl ssquenes of x elerents
ty increrenting the next left elenmnt (the laft to right most elemnt
takeg value N-1), Then, the next left element is rdcked and ineremented
h¥ ona, an-’? the rartial sequence initialiged ( <3,5,8,7% ), and the
nrbcodurc 1s ropested until =zaln o valid soquonce ceanot be generntod.
Tho preecdure stops when next right eloment to the flrst element takes

a valus (N~x+2), With this procszdurc ’\‘ all possibls rartinl sequencos

of a level ore gonerated. Sinoe no two partiel ssquences are identienl,
the procedurc is nwn—re_undant.
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Thoorem 43 If all lavels of o branch are fathomed then the branch
ig fathomed,

i
Eroof: Dufinition 4 and Thoorem 3 imply Theorem 4. 1

Theorem 5¢ If the best feasible varti=l ssquence .(non-inferior feast—
ble portial soquence) of a lavel is rreferred to the first nartial
soquenc® of the next higher level, then nll higher levcls are fathomeds
Hence, if incumbent, S#, 1s not inferior to the first rarvirl secquence
of the first lovel of a branch, then the branch is fathomads

Froofs Tere ig a strict preference ordering in the first partial
squances »f levelss '

1 1 1
S; 2 Sp D ees Zs.c.

1 &~ e
where S% = Firgt partial scquence of the level 2

Als0, by the ssquence generatlon proceduz\; » the first partial
sequence of 2 level 1s non-inferior to ell cther partial seqﬁences in
that level, By definition 4, 211 higher 1evéis are fathomod. Similerly
if S* 1s non-inferior to the first nartiel :seciuence of the first level
than all lewels in ths bremch are fethomed. By Theorem 4 tho branch
is fathomed.

Thogrem 63 If for a given levcl in o branch 1 the pertial sequence
<1, §, k, 1> 1s found to be thz first feasible péz‘;bial sequence then,
it ig also the best fomsible pertisl sequence in the level if the
following l:xold st '

(2) ¢1,5,k,1> 3 <i,3,k+1,ks2> , and

(3) <1,3,k,1> 5 <i,i41,1+2,1+3>
- —~



1

Progf: xi,i,k,1> is the first feasible partial sequehée, and hence all
previous partial sequences wete infeasible.. Thus we need to examine
or{ly:subsequént paf?tia]..:,sequex;ces. _Recall from the sequence géneratinn
procedure thét +he subséquent partial sequences are genasrated by first
incrementing 1, and then 1ncrement1ng k and in1t1a1121ng and respeating
the procedire, and flnally incrementlng 3 and initializing and repeating

the procedpre.

Thermfore, (i,j k 1)) (1,3, k,l ) for: all. "> 18
If (2) holds then ,

<1,3,k, 1a> 1,3, X k(’) for all k” > k+l and k”) )

If (3) holdsthen . e T
<1,3,k,18 » (1 j*’,’jr»,jm’) for all 5’» 441, 3“7 342 and
PRI )

LN

Thus all partial sequences of the level aré exhausted, and hence
4,3,ky1 1s the best feasible partial sequence in the level,

It should be noted that the comparisons. in (2) and (3) would
sometimes be automatie, while at other times .the decision-maker may be

isked to make a choice. As before, for automatic comparison, element

'y element comparison (ebec) as in-Theorem 1 should hold.

xamele: Suppose S = (1 2yveeay7), and Ny = 43 then the number of

artlal sequences in E 15 20. "The se partial sequences are generated

1n the order given below

€1,2,3,4>  <€1,2,3,5%  €1,2,3,6>  €1,2,3,75
€1,2,4,5  €1,2,4,6>  <1,2,4,7%

'€1,2,5,6%  <1,2,5,7>

<€1,2,6,75 |

<1,3,4,5>  <1,3,4,65 <1,3,4,7>

€1,3,5,6>  <1,3,5,7>
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<1,3,6,7>
€1,4,5,6>  <1,4,5,7>
€1,4,6,75
<1,5,6,7>

Suppose <1,2,3,6> 1s found to bé feasible; Obviously, 1t s preferred
to €1,2,3,7», so we ask the decision-maker to compare <1,2,3,5» with -
<1,2,4,5% (equivalent to (2) ). )

!

If (1,2,3,6):t <1,2,4,5)1then it is non-inferior to all subsequent
partial sequences which have elements 1 and 2 (by seguence generation
procedure)... Now compare <1,2,3,6> with <1,3,4,5% (equivalent to (3) ).
If <l,2,3,5>3§j<1,3,4,5), then 1t is non-inferior to all subsequent
partial sque?ces. Thus, <1,2,3,6> is the best feasible‘gequence in Bi
Note. that 1f (2) holds; that is, «1,2,3,65 3 <1,2,4,5, then, (3)
holds automatically, since <132,4,5 % €1,3,4,5> by element by element

_comparison (ebee) as tn Theorem 1.

3.  Imteractive Procedure
Using the results of section 2., we shall now describe the
interactive procedure for ‘optimal subset selection,

Step 1 ~ Obtain ths ordinal ranking of alternatives to construct the
set S.. . -
Step 2 Obtain en upper bound n, on the maximum number of feasible

-—

alternatives for eagh-b?anch_lél‘to N. If Nyy = maximum
number of alternatives in branch’i‘which satisfy constraint
3y ng = Min(nil, Nypsesesy ni&p, ';n oiger to obtain Ny
fix the variable corresponding to the 1~ ranked alternatiwve
in the jth constraint to 1, Then-successively fix the
variables corresponding to lower than the 1th ranked alter-
native, starting with the smailest coefficient, to 1 until
the jth constraint is violated., The number of alternatives
fixed at 1 before the Jth constraint is violated gives nij‘
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_To obtain ti‘g}lter bounds, the following 0-1 integer program
needs to be solved for all i=1 to N,

N
Max ‘Zo ¥y
=1
s.t. Ay €b .
Yy =1
yj =0 for § <1
Yy =0orlfor iIx i

N -
Then, ni==§:: y&. It should be noted that it may be more desirable %o

work with

t he looser upper bounds since the computational effort in

solving the 0-1 integer programs s considersble.

Step 3

_Step 3.1

Step 3,2

In step 3, partial sequences aré,generated, and an. optimal so-~
lution s identified. In the enumeration of partial sequences,
sometimes the intervention of the decision-maker 1s required,
The flbw chart of the procedure is given in Figure 1, Below,
we describe each of the four substeps of the procedure.

Before evaluating a branch i, we check whether the branch can
be fathomed, Let S* be tke incumbent solution (initially S*
=<@> ). If S* i3 non-inferior to the first partial sequence
1 elements, Sl = <1,1+1,...,i+ni ~-1>,
then branch i is fathomedg This can be established by using
Theorem 1. Otherwise, the decision-maker sompares S¥* and st,
If he prefers S* to S1 then branch 1 is fathomed. If these

tests fail, branch i1 nzeds to be evaluated.

of branch ioontaining n

In a manrer similar to step 3.1, it is determined whether 2
level can be fathomed without any evaluation. The first par-~
tial sequence of a level .t of branch 1 is <1,141, 000,140y -%>
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(say ST). If the level cannot be amtomatically fathomed, the
decision-maker is asked o compars S* with 51. If ho prefers
5% to 51, then luvel and all highor lsvels arp fathomoed i

(Theorem 5). Dthorwise, lovel necds to by uvaluatced,.

In ordcr to decteormine a.faasiblo partial seqhando.'thc pagtiaf
scquonces arc gencrat.d according to the scguonco gonoration
proceduru doescribud warlicr, andy chouckud for fuosibility,
Gcnheration of all possible scquoncues in a lovel and tosting
thum for foasibility ruquirus considerablc computational bure
den, Fortunatcly, many of thousu partial socquencos can bo im=
plicitly vnumcratudes In problum statumdnt.(1), fhu constraint
sot is r.prusentod by Ay gb, yj =L or 1.‘ Dencte, ajk as an
glemant of matrix A, For generating partizl eeQuences in a
level containing n elements, an implicit snumeration scheme
is as follows, ' ’

. The first partial saquanéé of a l.ovel with p elements in
branch i is ¢i,1$1,...,i*n=1y. Fix the first two elements of
this partial ssquence (i, i+1) at 1 and test for feasibility
by succeésively fixing at 1 the remaining n=2 elsments, start-
ing from ths onhe with ths lowest coefficient. This can be ace=
complished by rearranging thez constrairits in increasing order
of ajk’s for k»>i+1, so that ajt

for constraint J,. We check whether

is the £ ranked cosfficient

n-2

s L B L AT

holds for any j=1 to m, If ths insquality holds for any one
of the m constraints, then no feasible solution in the level
with i and i™ as ths first two elements can exist, In this

case, incremsnt the sscond element of the partial sequence by
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one and fix it at 1, and repezt the procees to check for in—-
equality until the inegu=lity doss not hold, fote that in a
partial sequanes with n elcecments, the secohd clsmant can be
incremented only up to [=nt2, When the first two slements of
a foasible partisl ssoushce are determined, thesw ars fixsd at
4 2nd the third sloment is incremznt.d and the procses is re=
pe2tid. Similarly, ths next higher olemunt ie coneidered until
the n=1 slements are fixsd, and for ths nth elament the inc=-
quzlity doos not hold. The partial scquences thus obtlined is
the first foasible partial sequshce, All partial sequencaes

prior to this partial scquence ars infuasible,

Various other ideas can be used in this implicit snumerae=
tion, More pouwsrful tests can be devissd for particular con=-
straint sets, Ffor exampls, in many situations it muy be pos-
sible to introducs a surrogata constraint that is redundant
for the problem (1), but is powerful for testing fuasibility
implicitly (e.g. ses Glov.r 9] ).

Once s feasible partial ssquenhce is obtained, we detsrmine
whethur the level can be fathomed., The element immediztely to
the loft of the right moet elemont of this fezsible partial
seqQuence is incremented by cne, and the initialized partial
seluance is compared with the feasible partial segquencws, If
the fcosible partial sequence ie found to be non-infsricor,
then it is comparsd with the partizl ssquance y=nNeratsd by in=
crementing the next left clemsnt by one and initializing, If
the feasible partial sequence is non-~inferior to all n=2 par=-
tial sequence so geherated, then the lsvel is fathomed (Theo-
rem 6,6), Otherwise, starting frum the initialized partial
seguence to which the fuasible partial sequence is not non=

inferior, further partial sequesnces are gensratad (step 3.3).
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Whan a feasible partizl ssguence is again found, it is compare
with the previuvus feusible partiel szguence and une of the
twou is dropped, But, nuw the survisor is cumparucd with the
initialized fs2sible seducnces generzted from tho sccond
feasible particl ssquence, The procuse is Tepeatud until the
level is fathomed, and tha best fuzzible partizl sequence in
the level is obtsinsd. This partizl seguencs is compared with
the incumbunt and ths incumobent is upd=ted. As shown in the
flow giagram {Figure 1), the next level or next branch (if

all leveles are onumerated) is cuneideorod,

Proof of Convergence

We hzve to show thot the generatiun of partial sequences is nun=
N
redundant, and that the prucedurs terminates only when all 2 solutions

have bean enumerated.

Non=redundant

We know that any two branches cz2nnot have 2 cummon partial sequance
(Definition 2}, " de alsu know thst any twe levels in a branch cannot
have a comm.n partizl sequence (Definition 3), Uithin a level the
same partial scguence is not generated twice (sequence gencraticn). If
a fzasible sulutiun is ubtoined in 2 level and it is fothomed, than the
next level is counsidered, Therefourc partial sequences are nun—redundant,
But if the level cannct be fathumed, then the partial segquencss arsg gen-
rated again starting from a higher partial sequencs (sume element of
the feasible partial sequance is incramented and the partial sequence
is initialized) and hence the partial ssQuance cannct bs repeated,

Thus, the bprucedure is non~redundant,

Completsy ZN Enumeration

In steps 3.2, 3.3, and 3.4 of our prucedure all levels of a branch

are svaluated., By Thecram 3 all feasible partial sequences in branch

,
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i are thus gvaluated, Infuasible partial sequences are implicitly snum=
eratsd, In stup 3,1, 511 brinchss i=1 tou N are 1svaluated and henca by
Theorem 1, all 2N-1 partial éequanbae arg enumerated, But, wa start
with the <@» partizl scquence, and hsnce all 2N partial scquehces ale
snumsTated,

4, Numezical Exgmg;g

In this section we solve  numeric3l example using the pro-
pused procedurc. The sxample has been devisad tu cemunstrate all of the

features uf the procedure.

Exampla Chuuse a subsut of pfujects satisfying the constraintss

20yq + 20y2 + 10y3 + 30y4 + 10yg + 10yg + 10y; + 10yg £ 60
50yq + 50y + 30y3 + 20y, + 30y + 10yg + 20y7 + 10yg £ 150
oY -+ s = 1
6 = yq = U
yj =0 or 1 for 211 j=1 tu 8.
Step 1 Supoues, Y1 is must preferred, y» secund most preferred ang su

cn until yg is lsast preferred.
5 = (1’21o0118)

Stegz* n1=5, n2=5, n3=5, ﬂ4=4, n5=4’ H6=U, l‘t'?-"-'D, 08=D

Step 3 Branch 1

Level 1 First -artial sequence €1,2,3,4,5%

Step 3,3 Is thers a feasible partial sequeznce with 1,2 — No
Is ther. a feasible partial sequence with 1,3 — Yas
Is there =2 feasible partial ecqusnce with 1,3,4 — No
Is thers a feasible sartial scquence with 1,3,5 — Nu

Is there a2 feasible pzrtial sedquence with 1,3,6 = Yss

3
notscd that the first cunstraint is viclated 1f y, is alsu fixed at
1. Thus, unly five variables including Yz can be fixec at 1 with-

#For example, tu obtain n_’ fix Y3, ¥s, Y&, Y7 anc yg at 15 it is

out viclating any constraint, hence ng = S,
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Is there a fuasible nartial sequence with 1,3,5,7 =Yes

Is thers a feasibleg partial sequence with 1,3,5,7,8-Yes
Step 3.4 Compare €1,3,6,7,8» with «1,4,5,6,73,

Supnose decisiuvn=-maker prefers <1,3,6,7,8%, then leve

is fathomed S* = ¢1,3,5,7,8>.

Level 2
Stop 3.2 Compare <€1,3,8,7,8% with 1,2,3,4>,

Supnuse cecisi.n=-m=ker prefors €1,2,3,43, then levsl 2

cannut be fathumed.

Step 3.3 Is there 2 feasible sclutiun with 1,2 - Yes
Is there a fe2sible sclution with 1,2,3 - Ygs
Is there a feasible sulution with 1,2,3,4 — No
Is there a feasible eulutiun with 1,2,3,5 - o
Is there a feasible sclutiun with 1,2,3,6 - Ng
Is there a fessible sclutiun with 1,2,3,7 - Nu
Is there a feasibls sclutiun with 1,2,3,8 — Yes
Sten 3.4 Cumpare <1,2,3,8 . with €1,2,4,5,
Suppose decicsiuvn=maker nrefers <1,2,4,5», then generate
further partial sequences starting frum <1,2,4,5>,
Step 3,3 Is there a2 feasible solution with 1,;2,4 , - No
Is there a feasible suvluticn with 1,2,5 - No
Is ther. a f‘eésibla solution with 1,2,6 =2 Yes
Is there 2 feasible sulution with 1,2,6,7 — Yesg-
Step 3.4 Cumpare €1,2,6,7> with ‘1,2,3,85 (comparisun of tuwu

feasible sclutions),
Suppose decisicn-maker prefers €1,2,3,8%, then, tu fathor
level 2,
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Compare €1,2,3,8% with €1,2,7,8,

€1,2,3,8% is nun-inferiur tc <1,2,7,8> (slument by wle-
mant comparable as in Theoursm 1).

Cumnare €1,2,3,8% with £1,3,4,5 .,

Sunnose cdecisicn-maker nrefers £1,2,3,8% , then level 2 is
fathomed, ) ’

Tu fetermina incumbant S* cumpara €1,3,5,7,8> with
<1,2,3,8%,

Sunause decisicn=maoker orefers €1,2,3,8% , thon 5* = .
$1912,3,8% . e

Level 3
D 3.2 Cumpam (1,2,3,8) with ‘1’2’3) »

<1,2,3,8> is prefaerred (wbec)

Level 3 and subsequent levels arc fathomed (Thecrem 5),

Branch 2
Step 3,1 "~ Compare €1,2,3,8> with €2,3,4,5,6» .

Supnose decisiun~maker prefers ¢2,3,4,5,6%, then, branch
2 cannot be fathomed.

Stsp 3.3 , 1s thure a feasible scvlution with 2,3 -~ Yes
Is thers a feasible solution with 2,3,4 - No
Is there a feocible sclution with 2,3,5 - Yes
Is thers a fecasible solution with 2,3,5,6 - Yes
Is there a feasible sclutiun with 2,3,5,6,7 — Yes

Stan 3,4 Cumnare €2,3,5,6,7> with €2,3,5,7,8> (clusment by slement

" comnarable)

CumpaTe €2,3,5,6,7 with €2,3,5,7,87 (slement by alement
cumnarabla) )

Compare €2,3,5,6,7% with ¢ 2,4,5,6,7> (slement by 2lsment

cumparable)
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Leval 1 is fathomaa,
To update S* comnars €1,2,3,8% with £2,3,5,6,72 ,
Suppuss cecision-maker prefers €2,3,5,56,7) , then, 5* =

3 <2,315’6’7> v

‘ Level 2
Sten 3,2 Compars €2,3,5,6,7Y with¢« 2,3,4,5%

Supruse cetisiun=maker prefers ¢2,35,5,6,7% 4, then levsl

an¢ subssquent levels are fathomed,

Branch 3
Step 3.1 Compars €2,3,5,6,7> with 43,4,5,6,7>

Branch 3 is fathumed autumatically,
Branches 4,5,6,7 and B8 are alsu automatically fathumed.

Optimal Solutiun =<2,3,5,6,7> ,

The procedure icentified a preferred subset of projecte by sseking
Apairad cumpariscuns (eight in the above example ) between subsats frum th
cdecisicvn=-msker, The cecisiun-maker's ruvelled preferwunces can be chec
ked for counhsistency by vefifying the zssumptiuns (ii) and (iii) of
section 1. Alsu, at terminati.n his choices (paired coumparisons) are
to be shown to him to verify whether hs maintains tha same prefsrences.
In case the decisicn=maker chucses tu revise his previous chuices, the
procedur= should ba repeated. The imnlementation of this procedurz on
an interactive cumputer woulcd greatly facilitate its executicn, The
computer can cdo the cumputations and present to the decisich~maker the
chuices when further cumnutatiung are not possible, The decision~maker
thaen make=z a chuice and informe the cumputer, On the basis of this in-
formatiun further computatiuns are carried out, The orocedure thus nroe

grassee interactively until a nrefsred subset is identified,
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Figure 1

Flowghart of thc; Algorithm for Subgat Selcction with Ordinal Prefezencee

"
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2
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. ( ate
L \S*
Injtializatiun . A
i=p T’
S* = “ﬂ, -i ' Yes
VA
i = i+ " /
L2=0 —— < Is i=N
301 ] \K/
NU /r/ \‘ . Yes
\ Is Bi fathoumac! % O oot NN
2 =2+
! ' No
3.2 - \ /\
Yes ~ : Yass
Is 84 fathumec / —> 15 &=n. - !
* / h i
3.3 ] No £

Generate partial sequences

update S*

No

Is a feasible partial

sequence found

Yes




22

APPENDI X

Hers we shall -emunstrote how binary arithmetic can be ussd to pro-
gram the nroposad nrocacurse on a cumduter., The motivatiun for thie is
in the simplicity of programming while working with binary numbers,
Howegver, four clarity and simrlicity in conce~tual uncerstanmding, we cdid

nut use binary algebra in the main text,

Cunsicder a vectur y whoss jt'h comncnent is 1 if tho jth altornative
frum § is undertzksng ctherwiee it is 0O, y curressonde tou a zartial
ssgquaunce.

. . ; . . . ; 2
Testing for g nun=inferior partial sejuence:d y1 is non=inferior to y
if four each 1 in y thers is a currespunding 41 in the similar nousition

or to the left of thie position in y1. This is icenticzl tou stating
1 .. . .
that y has a better or similar alternative correspoending to each alter-
2
native uncertaken in y , Nots that this cumnariscn cennot be regarded

as one binary number being larger than anothar,

Generatiuvn of seguencedl The partial sequences are gensrated by moving
the right moet 1 to the next right pusition and initializing and repeat—
ing the nrocess, for example, the narticzl sequences in the first level

[
of the first branch with nqg = 3 and N = 5 arg as followss

(t1100) (1 1010), (11001)
(10110), 101 01)
(1 0011)

Testing for fathoming a levels If a feosible partial ssguence y1 is

. 1 .,
found, then similar tu Thsorum 6, the level is fathumed if y is non=
inferior to nartial segushces gQenerated by successively moving the 1 to
the next right nusitioun an¢ initializing, For example, if (1101101)

is fuund feasible, then to fathom the level it should be coumpared with




M101011), 11001171)and 1 072 1110), The 4 sub-

steps uf step 3 are as fulluwss

Sten 3.1

Step 3,2¢
Step 3,3t

Gtop 3,43

A pricr evaluation ofz branch to determine whather the bransh
can be fathomed is cdone by comparing the incumbent with thw
first partizl sequsnce in the brench. Testing for nun-inf.ur-
iur partial swquance has besn doscribed auoua; If branch can=
nut be automatically fathuomed, tho cucisivn=maker stens in to

make 3 choicao.
This is similar tu stop 3.1 abuovs,

Generatiun uf seguences ancd testing for fsasibility is identi-
czl to that described ezarlisr except that in binary represen=
tation the slements are mover to right nusitiun as described

above instsad of incfementing by -ofic,

Tésting fur fathoming a level has becn cescribec abuve.
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