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ABSTRACT

The criteria of maximizing expected rewards has been widely used
in Markov decision processes following Howard [2]. Recently zonsidera-
tions related to higher moments of rewards have also been incorporated
by Jaquette [4] and Goldwerger [1]. This paper cpnsiders mean variance
criteria for discouﬁted Markov decision processes. Variability in re-
wards arising both out of variability of rewards during each period and

-due to stochastic nature of transitions is considered.

It is shown that randomized policies need not be considered when
.a function of mean and variance (p-ac) is to be optimized. However an
. example illustrates that policies which will simultaneously minimize
.variances for all states may not exist. We, therefore, provide a dyna-
‘mic pfogramming formulation for optimizing Ug-aoy; for each state?,. An

example is given to illustrate the procedure.



MEAN VARIANCE OPTIMALITY CRITERIA FOR DISCOUNTED

MARKOV DECISION PROCESSES

The criterion used for optimization in Markov decision process
is maximization of expected rewards following the pioneering work of
Howafd [2]. The total rewards are probabilistic in nature both due
to the stochastic nature of process of transition and the possible
variability in rewards during each period. The criteria for optimiza-
tion, therefore, need to be modified to incorporate provision for

risk arising out of the probabilistic nature of total rewards.

Howard and Matheson {[3] use utility functions which are expo-
nential in form (implying constant trisk aversion). The objective is
to maximize certain equivalent reward., They use value iteration te-
chnique to optimize possible time varying processes of finite dura-
tion. A policy iteration procedure is also developed to find a sta-
tiénary policy with highest certain equivalent gain for the infinite

duration time invariant case.

Jaquette [4] uses the criteria of moment optimality. A policy
is moment optimal if it lexicographically maximizes the sequence of
signed moments of total discounted rewardstwith a positive sign if

the moment is odd and negative sign if the moment is even. In other



words,'first all policies with highest expected rewards are found.
From this set, a subset is formed which minimizes second moment.

This procedure is repeated for successive higher moments until either
only one policy remains or the subset of policies have all identical
higher moments. He discusses both discrete [5] and continuous [6]
time case. A policy iteration procedure is used for optimization.

He also extends his results for small interest rates [7]. It is how-

ever assumed that rewards in each period are certain.

It follows that in lexicographic moment optimality criterié, if
there is a unique policy which optimizes the expected rewards then
considerations related to higher moments are ignored. This may often
be the case. We need to, therefore, consider criteria for optimiza-
tion which incorporate considerations related to higher moments in

addition to the expected rewards.

Goidwerger [1] considers the case of discrete time finite state
discounted Markov decision process where the rewards during each
- periods are probabilistic. He gives a dynamic programming formula-
tiqn for optimizing mean-variability criteria, namely, mean/standard
deviation of rewards. An expféssion for variance of reward is deve-
loped for this purpose. However, in computing variance it is assumed
that for a given horizon T, the reward during period t and future

period t+s (s = 1,...,T-t) are independently distributed. In a



Markov deéision prbcess, the rewards depend upon the realization of
the process. The rewards during t+s depend upon the state occupancy
at period t. The rewards during period t also depend upon the state
occupied at period t. Therefore, the rewards during period t and
period t+s.are not independent. Indeed, we need to consider varia-
bility of total discounted rewards even -.when the rewards during

each period are certain and depend orly upon state of the protess and

decision made.

In SectioA I1 of this paper, we derive an expression for vari-
ance of reward when the above assumptibn of independenée is not made.
The criterion used for optimization is a function of mean u and ¢
standard deviation ¢ of total discounted rewards. More specifically
the functional form p-ac is used where a is a specified Constant.

It is shown in Section III that randomized policies need not be con-
sidered. However, an example shows that there may not exist policies
which will simultaneously minimize variances for all states. Sec-
tion IV, therefore, gives a dynamic programming formulation to opti-
mize u;-ac; for each state 7. The computational procedure is illus-
trated by a numerical example in Section V. Section VI is a summary

and conclusion of the paper.

Section II: Variance of Rewards
We assume that a Markov process can be in one of the state 1

in a finite set of states numbered 1,...,S. The process makes a



transition at discrete constant time intervals. Let P, denote the

J
. probability of transition from state 7 to state j. Let Rij denote the
associated probability distribution of rewards, and let the yields

associated with the transition be denoted by xij'

The expected reward and the variance are assumed to be finite

and are given by,

2 _ 2 2
S;; - ° fxideij(x) - Wy

The future rewards are discounted by a factor g. The total re-
wards when there are n periods left to go and current state is { is a
. . 2 :
stochastic variate denoted by yi(n). Let “i(“) and °i(n) respectively

be the mean and variance of yi(“)‘ We assume yi(O) = 0 for all .

°

If the process makes a transition from state i to state j then,

y;(m) = Xz * Byj(n-l), n=1,2,.. eeeo(1)

Using conditional expectation,

111: (n) = mijmij + szijuj (n-l) seve (2)

From equation (1) above, we can see that the variance in xi(n)
is due to
1. the variance in rewards sz; during gach period, and
2. the stochastic nature of transition from i to J.

Both of these need to be considered in computation of the variance.



Using the expression for unconditional variance Varv(Y) in terms
of conditional variance {Parzen [9]}} , if E(Y) < «, then
Var (Y) = E{ Var (Y/transition from ¢ to j)} +
Var{ E(Y/transition from 7 to j)} veeo(3)
In other words, the variance is equal to the mean of the condi-

tional variance plus the variance of the conditional mean.

Using equations (1) and (3), letting n = 1, and conditioning on

transitions from ¢ to j, we get

u%(l) = E (sgj) + Var (mij
. 2 2 2
= TSy v PRighiy m (Rggmyg)

For sake of brevity, let V,(x) denote the variance of x with
7.

respect to the probability density function p; Then, similarly,

for any n,
2 - - -
oi(n) = E[Var{xij+ Byﬁ(n 1)}] +.Var[E{rij+ eyﬁ(n 1)}]
- 2 2.2 )
= E{sij + B oJ(n-l)} f Vi{mij+ Buj(n 1)}
o) = Zp s? +8%p o%(n-1) + V.im .+ Bu (n-D} ....(4)
1 1J 1J 1 d ) J

It can be shown that 1lim c%(n) = Uﬁ exists for 0 € B < 1 using
o

a corresponding matrix notation
\ -1
o2 = [1-8%°077(Q1
ijgzj + Vi(mij+8uj(n-1)}
Alternatively, we could have computed Variance of yi(n) by first

where Qi = Ip

computing its second moment using conditional expectations.
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E[E{xij + Byj(n-l)} ]

Ely3(n))
‘ 2 2 2
BIE(GG ) + BE(S(n-13) + 28m, u (n-D)]

]

ZPiJE(X§j) + BzzpijE{yg(n;l)} + zszpijmijuj[n'l)

The above expression relates successive second moments of re-
wards and is an adaptation of expression used by Jaquette [4] to provide
for variance in each’ period rewards. For sake of convenience, we would

use equations (2) and (4) to find mean and variance of rewards.

It i$ worth noting that if xij are normally distributed for all
1,J, then the rewards associated with any realization would be sum of
these rewards and would also be normally distributed. However, with
each specific realization, a probability is associated. Therefore, the
probability distribution of yi(n) would be a mixture of normal distri-

butions.
Section III: Optimization using Mean Variance Criteria

We‘now assume that in each state i, a finite number of alter-
natives k (k = 1,...,Ki) are available. Superscript k wili be used
to denote dependence of parameters on decision k. We will use the
maximization criteria ui-ad% to incorporate the risk following
Markowitz [8]. It provides for differential weightage to be given to

standard deviation of rewards as compared to expected rewards.



First we will show that randomized policies need not be con-
sidered. An example is given which ‘illustrates that there may not exist
a policy which will simultaneously maximize ui-aoi for all states 7.

We, therefore, need to redefine the optimization criteria so as to maxi-

mize Wy -ao, for each state <.

Prop.l: Randomized policies need not be considered where criterion used

for maximization is ui-aoi.

It will suffice to show that a policy C which randomizes between
any two policies A and B with probability p and q (= 1-p) respectively
cannot do better than best of A and B. In other words it will suffice

to show that

~

uC - aog < max{u§ - aoé,u? - ao? for all ¢
Z

2 i A i 1 i
: c _ B
But Mg = Pug + qpi
Therefore, it would suffice to show that
A B _ ,4C A _ A B _ B
PUp + quy - agy s PUy - 8PO, *+ QU - aqo,
: C A B
i.e. of * PO+ qo;
: 2B 2A B
Since Pqo;” + pag; 3 ?pqogui ,
2A 2B A By2
po;” + qo;” > (po; + qo)°.

~

Now using equation (3) for conditional expectations,

o2C = pa?A + qo?B + Var (pué + qHP)
1 i i T i
> poih + qo?B
7 7
A By 2
3 (po, + qqi)

C A B
S > .+ qo,
o ? PO, * qo,



which completes the argument that randomized policies need not be

considered.

The variance in any state Z is also affected by the expected
rewards u. for all possible states j to which transition from ¢ can
take place. The variance o;, therefore, may depend upon decisions made
in other states. A question arises as to whether there exist policies

which will simultaneously maximize ws-ad, for all states 7.

The following example shows that there may not exist any such
policy. If a is assumed to take sufficiently large values then consi-
derations relating to u can be ignored. Therefore, it will suffice to

demonstrate the above for variance alone.

Example

Beta = .9

The rewards during each period are assumed to be deterministic.

State Decision Transition probabilities Rewards
. k
1 ' k . pi-
1 1 0.5 0.5 6
: 2 0.9 0.1 4
2 1 > 0.4

0.6 -3

There are only two policies (1,1) and (2,1). The ;orresponding

2

values of y and o“ are given by



. 2 2

Policy "1 uz 01 02
(1.1) 15.5 5.6 102.4 101.5
(2,1) 28.5 15.8 76.3 109.3

The variance of rewards when starting from state 2 is greater for
policy'tz,l) than when policy (1,1) is used. Therefore, policy ti,l)
- minimizes variance when the process is in state 2 and policy (2,15 mini-
mizes vatiance when the process is in state 1. Thus we need to in-
corporaté tonsiderations rélating to decision in state 1 for minimizing

variance when the process is in state 2.
Section IV: A Dynamic Programming Formulation

We assume that ‘the decision in a state i1 will be selected so as
to maximize W, -ag, with respect to that state ¢ and for the remaining
" horizon period. This assumption implies that for an infinite horizon
period, the optimal poliéy discovered may not simultaneously maximize
W;-ad; for all states ¢. In the example of the previous section, there-
fore, policy (2,1) may be considered optimal in the individual state

sense. A dynamic programming formulation is possible with this assumption.

Let fi(n) = max{ug(n)‘l acg(n)} be the ontimal risk adjusted re-

k
turn function when the current state of the process is 1 and n periods
are remaining. Then using equations (2) and (4), and using principles

- of optimality,
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f;(n) = max[zp‘,"7 zj + BZpk.uJ(n-l) - a{EPijsig

1/

for a11 z, : eees (5)

. 622p 02(11 1) + vk{m.. + Bu(n-1)}}

The procedure for solution of the above functional equation is

as follows:
For each h, n = 1,2,...,

1) Find best decision k for each ététe 1+ using equation (5)
2) Compute expected value of rewards using equation (2) and
3) Compute variance of rewards using equation (4)

The following proposition shows that the solution of the above

functional. equations converge.

Prop. 2: kim fi(n) exists where f,(n) are successive solutions to the
>oo i

functional equations 5.

Given any sequence of decisions, it can be shown that lig ui(n)
n

exists. Then using equation (5) it can be shown that

2 2 2
|ui(n+1) - oi(n)l < B89 og(n) - ag(n-l)l +T_

Where lim T, = 0. Therefore lim ag(n)'exists.
7w L 1O T
Since ££(n)= ui(n)-aoi(n), \%12 f{(n) = f, exists.

The optimal stationary policy (as defined in the beginning of

this section) is given by solution to the following functional

equations.
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Let f, = Lim f. (n
Lin £, (n)

. 1 .
) ko k k 2k , 22
Then ‘ £, = mﬁx [zpij(mij + BHJ-) - a{zpij -1:'7- + 8 GJJ

k 172, . .
T Vi (mﬁj +Buj)} / ] for all £ .... (6)
Where if A = Al,...,As is the optimal policy then,

. ‘-vA‘ A, .
Wy = zp239;3 + BEPi?uj , and

A ops A 2 A. A,
o% ) ?At 7 + VA% m.2 + .
i TPpiept v BIp, o i (g v Buy)

Section V: Afi Illustrative Exampie
In this section we illustrate the dynamic programming procedure

using the examplé of Goldwerger. The data for example is as follows:

Discount factor = 0.5

State | Decision Transition probabilities Expected Variance of

' rewards rewards

i k : pk. m%. ' 5?%
1J 17 17

1 1 .5 .5 9 3 5 2

2 .8 .2 4 4 2 1

2 1 4 .6 3 -7 2 3

2 .7 3 1 -19 .5 2

The dynamic programming equations were solved for values of a = 0

+0.2, +1.0, and the résults are given below.

a=0

n nl(n) cf(n) fl(n) uz(n) cg(n) fz(n) k1 k2
1 6.00 12.50 6.00 -3.00 26.60 -3.00 1 1
2 6.75 35,95 6.75 -2.70 58.30 -2.70 1 1
3 7.01 44,03 7.01 -2.46 | 66.98 -2.46 1 1
4 ?.14 46.19 7.14 -2.34 69.17 -2.34 1 1

5 7.20 46.74 7.20 -2.27 69.72 -2.27 1 1
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The optimal policy for a = +0.2 remains same as above and there-
fore, ﬁalue of fl(n} and f,(n) only change. However, when a = +1.00, the
optimal policy changes to (2,1) and the results are given below.

nowmm o fm wm  oi) M)k k

1 4.00 1.80 2.66 -3.00 26.60 - 8.16 2 1
2 5.30  5.45 2.97 -3.10 50.51 -10.21 2 1
3 5.81 8.24 2.94 -2.87 58.12  -10.56 2 1
4 6.04 9.42 2.97 -2.70 61.64  -10.55 2 1
.5 6.15 9.82 3.01 ~2.60 62.33  -10.50 2 1
6 6.20 9.94 3.04 -2.55 62.52 -10.46 2 1
7 6.2 9.98 3.06 -2.53 62.56  -10.44 2 1
s 6.24 9.99 3.08 -2.51 62.58  -10.42 2 1
9 6.24 9.99 3.08 -2.51 62.58  -10.42 2 1
10 | 6.25 9,99 3.09 -2.50 62.58  -10.41 2 1

The above example shows, that the optimal policy will depend upon
the penalty assigned for risk, thus emphasizing the importance of
consideration of variance. When a = +1, the policy selected has lower
variance and lower mean compared to the optimal policy for a = 0. It
should also be noted that the convergence of fi(n) need not necessarily
be monotonic, unlike the case where the optimization criteria considers

only the expected rewards,
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Section VI: Summary and Conclusion

In this paper we have derived an expression for varianpe of total
diScounted rewards when each period rewards are uncertain. The variance
ih total rewards arises from-two'SOurces, variability of rewards during
eéchvperiod and the stochastic nature of the process of transition. So
the risk considerations are important even when each period rewards are

certain.

Goldwerger [1] had assumed independence of rewards during differ-
ent periods and thus ignored the full effect of stochastic nature of
process. The expression derived in this paper does not assume such in-
dependence. The optimality criteria used is u.-as;. By varying a, the
weightage given to variability in rewards for different policies can be

altered.

An example was given which demonstrated that an optimal policy which
will simultaneously maximize this criteria for all states i may not
exist unlike the expected rewards case. This interaction amoné'states
implies that a joint optimality criteria may need to be defined as in
multiple-criteria objective function, An obvious choice for a joint

criteria does not seem to emerge.

We, therefore, have assumed that W, ~ag, would be maximized for

each individual state-i ignoring the Ssimultaneous consideration of
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decisions in other states. A dynamic programming formulation is pro-
vided for this purpose. Only discounted Markov decision process was
considered here. The épproach needs to be extended to the case where

there is no discounting.

The approach suggested in this paper is applicable wherever vari-
ance considerations become important. A few examples are manpower

planning, maintenance-replacement and disease treatment models.
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