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In this paper we preve that all two'peraon variabls threat
games which satisfy seme very general eonditieons, fulfil a certein

saddle point property at an equilibrium peint.



i. lntpoductions- In a gure bergaining problgm betwesn & group of two

participants there ia a set of feasible eutcomes, any one of which
will be the result if it is specified by the unanimous agreawent
of all the participants. In the event that no unanimous agreement
is reached, & given disagresment outcome obtains., Thus, a 2=person
papgaining problem is & pair (H, d) of a Subset H of R2and of a
point d € H. lllzi.s the utility spacg, H is the fgasibla sat, and
d is the gisagpeemgnt point. 1f the agents unanimously agree on &
point x of H, they obtain x. Otherwise, they obtain de. Given a
class of 2=-person bargaining problems, & aolupion is a function F
sssociating with every (H, d) in the class a point F(H,d) € H,
representing the compro@ise raachad by the agents. in some con=
taxts, F(H,d) may alternatively be interpreted as the compromise

recommendad to the agents by some impartial arbitrator.

1n this paper we consider two parsaon games in which binding
agreements are possibls, but in which each player has coneiderable
scope for action in the absence of an agraement, and in which the
decision of esch player affects both of them. Nash (1953) dealt with
this class of games from several angles. We view the above situation
as in Owsn (1982), which combines arbitratien with e non-co=-oparative
game. Supposs each of the two players has a strategy set, Si for
pleyer i, that is Compact and Convex, and assums that Pi(.1’ az)
is the pay off function for player i in the absence of an agreement.
Thus the game ( §J,2}- s 53P) is a default non-co-operative game

that the tuo players must play if they cannot agreg. Thera is noc



threat point as such. Suppose further that H g IR2 consists of all
pay off points that the two players cen reach by means of binding
agreements. H would naturally contain as a subsat all those points
attainable in the default game. Such g;maa are called yariable
threat games, Then ( {j,{} s Sy F {(Hy,P(.))y defines the
associat ed non-co=operative game which combines both the default

non=co~opsrative game as wall as the two-person bargaining problem,

A gerious objection can be :aised to Nash's bargaining schems,
and it is that it does not take threats into account. Soma analysis
of threats is in order if we are to correct this weakness. UWuite
generally, a threat is effective if it is believable, and if it
tends to improve the position of the threatener vig—a-vis the person
being threatened. Thus a threat to kill someona is genarally mors
efPactivs than a threat to become angry, because the position of
the killer is certainly improved vis=a=vis his viction while gstting
angry generally does no such thing. On the othsr hend, a threat to
destroy the éhuls world, whila it may passibly improve tha thrsat-
ner's peosition in regard to others (reducing them all to equality

in nothingness), is not very belisvable and hence not effective.”

In thie paper w: propose a saddle point property that such
equilibrium threat strategies must satisfy, under a set of very

plousible assumptionse.



a Models= The class of games studied in this paper is basad on a pair
(H,d) and by the rule that the players will attain any single payoff point
in H that they jointly egree on. 1In the absence of am agreament, they

attain 'd'.

pefinition it~ The pair r = (H,d) is s two-person fixed threat bargain=
ing game if H § Bz is compact, sonvex with nonampty interior, d & H, and

H containe etlasst one elsment U, such that U 3> d.

The requirsment that H has nonempty interior, precludes the possibility
that H is merasly a negatively sloped line segrent. In the latter case our

subsequent concept, that of a soclution is not well definad.

We make the following blanket assumptiom on Hi

-

Assumption 1% If x, y €H, X ¢ yy y Sx, then tx + (1-t)y belong to

int. (H) vt € (0,1).

Note that Assumption 1 is strictly weeker than assuming that H is strictly
convaxe. We could without any further damaga require Assumption 1 to hold
only for all x&H for which thera does not exist u belonging to H with

4y > X end  u, > X, wvhere u = (u1. uz) and x = (x,'. xz).
Definition 2s= The get of Lwo=-parson fixed thgest bargaining gamgs is
denoted We

Pefinition 33~ A solution to (Hyd) & W is a point F (H,d) € H. A solu-

tion is defined ¥ (H,d) & W.

Given (H,d) € W, its Nash (1950) Solution outcome N (H,d) ie the point

where the product (X1-d1)(x2-d2) is maximized for X = (x1. xz) & H, with



"Z d, its Egalitarian (Kalai(1977)) Solution outcome is ths point E (H,d)
which is maximal along the ray x,=d, = X, = d,; its Kalai-Smorodinsky(1975)
Splutiun outcome K{H,d) is the maximal point of H on the smgment connecting

d to M{H,d),where for each i, Hi(H.d) 2 X i xi/x E€H} x> d} .
]

Suppose each of the two players hae a strategy set, Si for plaeysr i, that
is compact and convex, &nd assume that 91(31,32) is the pay=-off for playar
i §{n the absence of an agreement. Thus the game ( %,2} s S4P) i8 a
default non~co-operative game that ths two players must play if they cannot

agree. There is no threat point as such.

Dafinitien 4:- r e (N,S5,P,H) ies a variable thr:at two=person co=-oper=
ative gams whare {N,S,P) is a two=parson noneco=operative game that is played
if no agreament is reached and the compact, convex set H is the cow=pparat ive

attainable pay-off set. H contains iP(s) e__]RZ/s & 5'3- .

The arbitration game proceeds by having the two playars simultaneously choose
strategies for the default game, 51 € 51, which are used to determine 8
threat point, P(s). The arbitrated cutcome to the gem‘is the bargaining
solution F(H,P(e)). Thus, the players are not interssted in the payoffs
Pi(a) for their own sakesj they care about the effect on the final ocutcome
that is due to their choiéas of Si. Poutentially, any pokbt on the Parato

optimal frontier of H could be an arbitrated cutcoms. We shall now define

an aguilib;;um threst strategye.

Definition S5i= 8* & S5 is called an gquilibpium threat strategy for the

apiablg threat gamg (N, S, P, H) gquipped with the splution



e

F it F.(H,P(a*))2 F (HP(s,,88)) ¥ s, €5 andF,(H,P(s%)) > Fy(HsP(agys, ) 0

82 & 529

A _General Propsrty of Equilibpium Threat Stratecies

In this section we will establish & genaral property of equilibrium threat
strategiss for veriable threat games. Let us imposa the following thres

conditions on F}

Condition 11~ F (H,d) » d ¥ (H,d) € W

Condition 28~ Let (H,d) €W and u € H with u £ F(H,d)s Then either

F1(H,d) > L|1 or FZ(H,d) > u,.

Condition 3t=- Let (H,d) and (H,d')®& W with df = d, and 'd}': dj Por § £ 1.
Then, rj(n,d')g rjgn,a). If in adaitien d3 > dj, then FJ(H,d')'? FJ(H,::I).

We also need to introduce an anxilliary concept, that of a fiber (see Brito,

Buoncristiani and Intriligator (1977)).

Opfinition 6% The set Ti(H.d; F3u), i = 1,2, is the set of all threat
points d', lsading to a mon-conflict allocastion atleast as beneficial to

player i as the Parsto optimal allocstion u,

T,(H,d3F5u) = {d'/d' € Hy Fi(Hed') > “1} (i = 152)e

- ~N
These sets are nestad in the following senses if uia-ui, then

T (H 03F50) £ T (HpdsF3l).



Dafinition 78~ The intersection of T1(H,d;F;u) and TZ(H,d;F;u) is the

set of all threst points leading to ths non-conflict allocation ue

“(H,d;F;u) = T1(H,d;F;u) 0O TZ(H,d;F;u) called the u=FiLRRe
Since it will not ceuse ambiguity the fiber will be denoted by

T (HidsF(H,a)) or simply Y[ (H,F(H,e)).

Condition 41- Let (Hyd) € W and u be a wmaisdy Pareto - optimal
point of He Then " (H,d3F,u) is a convex set containing mora than

ons peint. Such fibers are called Nash fibera.

Under the above conditions we can prova the following theocrem.

Lheorem 13- ‘1[ (Hyd3F3u) is a positively slopad straightline. If

d $.d', then']T (H,d3F(H,d)) n'ﬂ'(u,d';r(a,d')) = B

Proofs-  1f for d & d'y W (H,dsF(H,d)) o T (Hd' ;7 (H,d"))

# B, then the solution is not well defined. This tekes care of the

sacond aasertion.

Now, supposé Tr (H,d3F(H,d) ) Jcontains three non-colinear points.
Let Uys U, and uy be any such three points in He. Consider the
triangle formed by U u2 and Uss and the projection of thes ver-
tices ontoc the axess Clearly atlsast two such projections intersect

two differsnt sides of the triangle. But this would violate Con=

dition 3. Hence l‘ (H,dsF(H,d)) is a stralght line ¥ d.



Now suppose that for some d '“' (H,d3F(Hed)) is negatively sloped. This
would once again contradict Condition 3 in a very obvious waye. This

proves the theorem.
Q .E. D.

Let us further impose the condition.

Condition 51= F(Hy*) 3 H® =P 1 is continuous uhere

H® = ‘iue,l-l/3 uE H | withu»u}

As a consequence of this condition we cbtain,

Ihesges 23~ The Nash filer T (H,d;F(Hyd)) is an interval with both

endpoints lying on the boundary of H.

Proofs~ Lst A C H, denote the et of Pareto optimal points of H.

Clearly F(H, ®) is a functien from H® into AR.

Let L'd, ’3] = “ kH,d;FtH,d)), where eithsr dord does not belong
to the boundary of He The fact that 'Tr (H,d;F(H,d)) is a closed interval

follows from the continuity of H.

Since a continuous function maps connected ssts into connected ssts, ue
would require that the continupus image of H® ~ E ?1. ﬁ] ¢ which is a
connected set, be connacted. Howsver A ~ {F(H,d)} consists of two
diesconnected .components. Hencs, we have &8 contradiction. S50, 'a.%e) H
(ie. boundary of H}. This proves the theoram.

deEeDe

B8efore wa proceed with our next theorem lat us axp’lain the Conditions

we have imposed 8o fare Condition 1 imposes individual rationality on



the solution Fe Condition 2 requires Pareto optimality of the solution
and Comdition 3 requir:=s tha solution to be monotone with respect to the
disagresment point (See Thomson (1987))e Condition 4 requires that the
set of threat points which lead to a particular arbitrated sclution be a
convex set. Condition 5 raequires that the solution itself be continuous
with respect to the disagreement point., Theorem 2, which we have provad
above shows that under the above conditions the Nash fib®er wili be &n
interval whose boundaries lie on the boundary of He Note we have not

astablishad that onae of the boundary points of the fiber is F (H,d).
To establish ths theorem we have in mind we also need to assumes

Cendition 6i- ¥ (H,d) € W, FiH,d) is an endpoint of IV (Hyd3F(H,d)).

Pe

Note, that this condition neither implies nor is implied by any of tha
theorems abovee 1N general it is possible that FiH,d, is an endpoint of
".\H,d;FLH,d)) without the latter being a Nash fiber, ltrélso possible
for a Nash fibar to have soma cther endpoint. Nor is the fact that
-TTtH,d;F(H,d)) has F(H,d) as one of its endpoints, sufficient reason

to assert that both its endpeénts lie on the boundary .of H.

Now we are in'a position to assaert a general property of optimal threat
strategiss which has been shoun to hold in the spacifie case uhen F is

the Nash bargaining solution. {5Ses Uuen (1982)).

Thaorem 3%~ Let s* & S be an gquilibrium threat stpatagy for the varizble
threst game (N,S,P,H) equipped with the solution F. Suppose F asastisfies

Conditions 1 to 6« Then,



FZ(HZP(a;. s2)) - P (a2, o)) (H P(as s3)) _253'.812_

F1(va(3:’3;)) f P1(3;, 92) =~ F1(H3P(3:!3;)) - P1(3;135)

1%

F (H,P(I1,B;)) - P2(31,3;)

>/ &(H P(s sz)) - P (s

&
v (51’ 32) (51 x 52)0
Proofs- Since s* &S5 is an equilibrium threat strategy

F (H, P{s* s*)) F (Hy P(s*.s R s, € S and

F {H, P(s*,s*)) F (H, Ps, 8%)) Vs, &5,
1 2 1 |
Supposa-‘rtH,P(s;,az)) 1lies above '“ (H,P(s:,s;)). Consider tha projection
of any point ¢ «'f (H,P(e:, az)) onto the payoff axis of player 2. It
{ * * L - t ] | J—-
intersects "T(H,P(s1, 92)) at a pt. d (d1, dz) whare d1 d1 ahd

d:’z < dz. By monotonicity,

Fz(H,P(s;,s'z') = FZ(H.d’) QFZ(H,d) = FZLH,P(;, 32)) contradicting s* is an
equilibrium threat strategy. Hence T(H,P(a;, 32)) liss on or below
W (H,P(sf", 55)) s, € S,» Bys symmetric argument 'IT(H,P\31,55)) lies

on or above "T(H,Ptsj‘*,s*z')) v s, €S1.

Since P(s;, 52) e (H,Pts;,az)) for s,&5,, for s, # 8%» the slopa of
the line jeining P(s:,sz) to F{H,P(s;,s;)) is greater than or equal to

the slope of tne line joing Pts;‘l’. 9'2') to F{H,P(s;, s;)). This provses



the first inequality. The sscond inequality is established analogously

and this proves tha thegorem,
WdeEoDo

Qur next theorem is e mere restatement of the fact that (N,S,P,H) aquipped

with F is a competitive game if Condition 2 is satisfied.

Lheorem 43~ Let (N,S5,P,H} equipped with F satisfy Condition 2. Then

if 3 € S and s* € 5 spe equilibrium thresat strategies,
F(H,P(s*) = F(H,P(;)).
Proofs= Suppose towards a contradiction, F(H,P(s*)) # F(H,P(;)). Without

loss of generality sssuma that Fz(H,P(s*))'? FZ(H,P(;)). By Condition 2,

F1(H,P(s‘f)) < F'{H,P(;)).

But F (H,P(s%)) F (H,P(s3,3,)) implies, F,(H,P(s$,5,)) 2 F,(H,P(s*)) by

Londition 2.

Howevar, Fz(H,P(a;_, ;1) _4-_ FzﬂH,P(;)).

- . '
o s F2 (H,P(a}) )FZ(H,P(s)) which is a .contradiction. This proves the
theoref.

WebeDe



4.

Gonclusjoni= In the above analysis we have established a general saddle
point property satisfied by all equilibrium threst strateghes in a vari-
able threat game if certain conditions are setisfied. The more well
know bargaining solutions, for instance, those propaosed by Nash(19s0),
Kalai and Smorodinsky{1975), Kalai (1977) and Lahiri(1988) all satisfy
the abovs conditions. The conditions are quite gensral and are

usually satisfied by most bargaining sclutions.
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