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SUMMARY 

Estimating finite population distribution function is an important problem to the survey 

samplers since it summarizes almost all the relevant information of interest about the finite 

population. Moreover due to its nonlinearity estimation of variance of estimators of 

distribution function remains an active area of research since Chambers et al., 1992. Both 

analytic and resampling-based variance estimators are developed earlier. Here we poropse 

a bootstrap hybrid variance estimator of model-based semi-patametric estimator of finite 

population distribution function estimator. We prove its consistency and also show that its 

numerical performances are superior to analytical estimator. 

Some key words: Model-based, Semi-parametric regression, P-splines, Analytical variance 

estimator, Bootstrap. 

 

 



 

   

 

IIMA    INDIA 
Research and Publications 

W.P.  No.  2015-08-02 Page No. 3 

1.  INTRODUCTION 

    Consider a finite population U of N distinct elements. Suppose a probability sample S of 

size n  is taken from the population using an ignorable sampling design (Opsomer, 2009). 

Values of a survey variable y are observed for sample units. Then the finite population 

distribution function (hereafter FPDF) of survey variable y is defined by 

                                                    ,                                                (1) 

where ,1)(  tyI i  if tyi  and 0, otherwise. Now, if apart from values of y -variable the 

values N,...,xx1 of a vector-valued auxiliary variables x be known then following 

groundbreaking paper of Chambers & Dunstan (1986) a model-based predictive estimator 

(Valliant, 2009) of FPDF using a non-/semi-parametric regression model in the 

superpopulation (Dorfman & Hall, 1993) is more efficient; since it incorporates all the unit 

level information on the auxiliary variables through a regression robust to parametric 

model misspecification.  

     The regression model in the superpopulation is given by 

iii exmy  )( , Ui , 

where (.)m is an unknown but smooth function and ie ’s , the error terms, are independently 

and identically distributed random variables following an absolutely continuous 

distribution function G(.) with mean zero and finite variance . Here we consider P-

splines (Eilers & Marx, 1996; Ruppert et al., 2003) to model (.)m . To this end, we 

approximate (.)m by truncated polynomial basis function 

   
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r xxxx
110 )(...);(  β , 

where T

Kr ),...,( 1  β , )0()(  tItt rr and k ’s )...( 1 K  are fixed knots. In 

practice degree of spline r is low ( )3( , )}2/()1{(  kkk -th sample quantile of x  

and )4/,35min( nK   (Wand, 2003). The regression coefficient β is obtained by 

minimizing penalized least square criterion 
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for fixed )0( . The quantity  controls the amount of smoothing in (.;.) and its data-

adaptive estimate ̂ is obtained by using linear mixed model representaion of P-splines 

(Speed, 1991; Brumback et al., 1999; Wand 2003; Breidt et al., 2005). To define ̂ , let id

and iz  be the row vectors  and  respectively. The 

above semiparametric regression model can be written as a linear mixed model  

                                                         i

T

i

T

ii ey  bzθd ,  

where θ and b denote the vectors respectively. The errors

ie ’s are assumed to follow indepenpent ),0( 2

eN  and the random vector b  is independent 

and follows multivariate normal with mean T)0,...,0(0 and variance Kb I
2 ,

)1,...,1(diagK I . Then
22 ˆ/ˆˆ
be    where 2ˆ

e and 2ˆ
b be maximum likelihood (ML) or 

restricted maximum likelilood (REML) estimator based on sample data. The P-spline 

estimator β̂ of β is given by 

                                                 S

T

SS

T

S yXAXXβ
1

ˆ )(ˆ 


,                                                 (2) 

where T

iS Siy ),( y , SX denotes the design matrix whose i -th row is giben by 

))(,....,,1( r

Kiii xx  X , Si , and penalty matrix ),...,,0,...,0(

1


Krr

diag



 A . With the 

above choice of ̂  the estimate β̂))(,....,,1( r

kxx  provides a smooth fit of regression 

function )(xm . Then the semi-parametric model-based estimator of FPDF is obtained as 

              ]}ˆ)({)([)(ˆ 11    

 
Si Sj

T

jiiS ips tyIntyINtF βXX ,                 (3) 

where )( SUS  is the set of non-sample units.  

     An immediate estimate of the variance of the prediction error
 
may be directly obtained 

from the asymptotic expression of the variance of )()(ˆ tFtF Nps  by plugging in the 

relevant observed quantities. For the expression of analytical variance we define following 

unknown quantities: 

)}({)( 11 teIeEt  , ttGtG  /)()( , vuvu ),min( , μX 
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2

1 )()lim( IXtGnN
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1 )(')lim( IβXX  
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ii tGnN , 5

1 )()lim( ItnN
S

T
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βX , and

6

1 )}(1){()lim( ItGtGnN
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T

i

T

i  
βXβX ,  

where all above limits are finite expectations with respect to asymptotic density of x  

(Chambers et al., 1992; Dorfman & Hall, 1993). Also the limiting sampling fraction is 

)1,0[ . Then ignoring terms of order )( 1no  the asymptotic variance is 

6

1

543

12

21

11 )1(})(2){()1()}()(ˆvar{ IffnIIIIfntFtF T

Nps  
IΣμ  .       (4) 

We skip the details of the proof. The result can be obtained following similar steps as in the 

proof of (2.2) of Chambers et al., 1992. 

    The problem is to estimate the variance of the prediction error )()(ˆ tFtF Nps  . An 

immediate estimate of the variance of the prediction error
 
may be directly obtained from 

the asymptotic expression of the variance of )()(ˆ tFtF Nps  by plugging in the relevant 

observed quantities. But analytical estimators generally have poor numerical performances 

compared to resampling-based estimators (Wu & Sitter, 2001; Lombardia et al., 2003; 

2004). In our situation we notice the same (cf. Section 3). In Section 2, we propose a 

bootstrap hybrid estimator of prediction error. For this we adopt standard approach 

(Ruppert et al., 2003; Breidt et al., 2005) by assuming that the smoothing parameter   is 

fixed at its observed value ̂ . We prove consistency of bootstrap hybrid bootstrap 

estimator. In Section 3 we present the results of a simulation study comparing the 

performances of the proposed estimator with that of the analytical variance estimator. We 

also apply our methodology for a real data set. Finally we give concluding remarks in 

Section 4.  
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2.  HYBRID VARIANCE ESTIMATION 

2.1.  Methodology 

    As an alternative to analytical variance estimator, we consider a bootstrap estimator of the 

asymptotic variance. In model-based set-up Monte Carlo approximation to the bootstrap 

estimate of the asymptotic variance of a predictive estimator requires two-stage sampling 

(Lombardia et al., 2003). First, a finite population is generated using the estimated 

superpopulation model from the data; next, a bootstrap ample is selected from it. This process 

needs to be repeated a sufficiently large number of times for obtaining a good approximation 

to the bootstrap variance estimator. The procedure is highly computer intensive. To 

circumvent the problem we adopt a hybrid approach (Adhya et al., 2011; 2012) which avoids 

generating a finite population at the first stage. Wu and Sitter (2001) use similar hybrid 

approach for jackknife variance estimation in finite population settings. We describe it in the 

following. 

Throughtout this Section we assme that  is fixed at its estimated value ̂ . Notice that,  

   

 



S iSi Sj

T

jiiNps tyINXXtyINntFtF )(}ˆ)({)()(ˆ 111   

and from the conditional independence argument given S , we have 

    
}]ˆ)({var[)}()(ˆvar{ 11
β

T

jiiSi SjNps XXtyINntFtF    


 

                                         })(var{ 1  

S i tyIN  ),ˆ()ˆ( 
SS VV  say.                                                                                                                               

A natural estimator of the second term )}(1{)()ˆ( 2
βXβX

T

iS

T

iS
tGtGNV     is 

                                    

S

T

i

T

iS
tGtGNV )}ˆ(ˆ1){ˆ(ˆˆ 2

βXβX ,                                 (5) 

where   

S i teIntG )ˆ()(ˆ 1 is empirical cumulative distribution function of ie ’s based on 

residuals βX ˆˆ T

iii ye  , Si . The estimator 
S

V̂ of 
S

V is expected to exhibit negligible 

bias in finite samples since the model-based inference is preferred when sampling fraction 

Nn / is small (Wu & Sitter, 2001). We estimate )ˆ(SV by bootstrapping from the sampled 

data },{ SSn xyS  , T

iS Six ),( x . The usual bootstrap estimator is given by 

                       ]}ˆ)({[varˆ ****11

,   
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jiiBBS tyINnV βXX                            (6)   



 

   

 

IIMA    INDIA 
Research and Publications 

W.P.  No.  2015-08-02 Page No. 7 

where *̂ is the penalized least square estimate based on bootstrap sample data 

},{ ***

SSn xyS   for a suitably chosen smoothing parameter * and (.)varB  denotes the 

variance with respect to the bootstrap distribution given the sample data . Using analogy 

with the choice of ̂ , we take * as 
2*2** /ˆ

be   , where 2*

e and 2*

b are the estimates of 

and  based on the bootstrap sample data *

nS . In practice the Monte Carlo 

approximation to BSV ,
ˆ based on B bootstrap samples *

bS , , is given by 

                                                              

 
B

b b uuB
1

1 )( ,  

 

where   

  *

***11 ˆ)({
bSi Sj b

T

jibibb tyINnu βXX , and 
*** ˆ,, bibiby X , ))ˆ(ˆ(ˆ ***

bbb β

are the values of *,, iiy X and β̂ for the -th bootstrap sample and . Thus, 

from (5) and (6) the hybrid bootstrap estimate is 
SBSps VVV ˆˆˆ

,  . 

2.2.  Consistency 

     We now prove the weak consistency of the proposed hybrid estimator psV̂ assuming ̂

and * as known fixed quantity. We consider a sequence of populations of sizes N  and 

sample sizes n such that 



n 
 
and  Nnf / )1,0[ , as  . For notational 

convenience, we suppress the index   below. For theoretical development, throughout we 

assume to be continuous and its asymptotic density for the sample and non-sample design 

points are (.)Sh and (.)
S

h respectively (Chambers et al., 1992). That is,  

      and as . 

For simple random sampling, since the inclusion probabilities of all the units are equal, we 

have )()( xhxh
SS  for all x  (Dorfman and Hall, 1993) and then

. Now we assume regularity conditions: 

nS

s e

2 s b

2

Bb ,...,1

b  


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b buBu
1

1
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
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x

SS i duuhxxIn )()(1
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     Condition 1. ),( ii xe ’s are independent and identically distributed with ke and kx are 

independent, 22 /)()(" ttGtG  is continuous in t  and the density of is a continuous and 

bounded function. 

     Condition 2. Sampling design does not involve the auxiliary variable . 

For simplicity, we consider simple random sampling design in (iii) to prove consistency. 

Consistency of complex sampling designs, e.g., stratified sampling and probability 

proportional to size sampling is not considered. For our case the density of is the 

asymptotic density (.)h . 

     Condition 3. )1()(lim 441 Odxxhxxn r

S

r

i   . 

Next for any ,
 

, which entails 

  dxxhtGtF T )()();( 00 βXβ  for true parameter value , where ,...,,1( l

T

l xX

))( r

Klx  , 2,1l , and ))(,...,,1( r

K

T xx  X . Note that ),( βtF is a distribution 

function. Further we assume that 

     Condition 4. The partial derivative )/),(,...,/),((/),( Kro tFtFtF   ββββ is 

not equal to the null vector at the true parameter value 0β .  

Now we state the following theorems. Proof is outlined in the Appendix. 

    THEOREM 1. Under conditions 1-4, for fixed and known penalty parameters ̂  and 
*̂

psV̂ is weakly consistent for )}()(ˆvar{ tFtF Nps  . 

    In finding the variance we ignore the uncertainty associated with the penalty parameter 

estimate. However, the impact of ignoring the uncertainty in its estimate does not seem to 

be serious. This fact follows from Section 2.2 of Breidt et al., 2005 by bringing an analogy 

of the sample and the corresponding bootstrap sample in our set up with the “finite 

population” and the probability “sample” drawn from it in Breidt et al.’s paper. This 

interpretation immediately implies that bootstrap choice of penalty parameter is consistent 

for penalty parameter obtained from sample data. 

 

x

x

x

β 21212101 )()(})({);( dxdxxhxhtGtF TT

   XXβXβ

0β



 

   

 

IIMA    INDIA 
Research and Publications 

W.P.  No.  2015-08-02 Page No. 9 

3.  NUMERICAL RESULTS 

3.1. Model-based simulation 

   We report the results of a limited simulation study comparing the performance of the 

hybrid bootstrap estimator  to that of analytical estimator  obtained by estimating (4) at 

the quantiles  for and 0.75 for six superpopulation models given in Table 

1. We consider six different choices of  for the superpopulation model exmy  )( , 

where  and e are generated respectively from the )1,0(U  and )1,0(N distributions. The 

chosen population size (N) and the sample size (n) (1000, 100) resulting in sampling 

fraction )( f equal to 0.10. 

   For analytical estimator we require to estimate (4). The estimators is  

                   6

1

543

12

21

11 ˆ)1(}ˆ)ˆˆˆ(ˆˆ2)ˆˆ{()1(ˆ IffnIIIIfnV T

A  
IΣμ  ,  

where μ̂ , Σ̂ and iÎ ’s )4( i and 4Î  are obtained by repacing unknown quantities )(tG , )(tG

and )(t  with their estimates )(ˆ tG ,   

S nin btenbtG /)ˆ(K{)()('̂ 1 }  and 
S ient ˆ)(ˆ 1  

)ˆ( teI i   respectively; (.)K is a kernel function, usually a density function, and nb is the bin 

width. We use two choices of the kernel function (Wu & Sitter; 2001): (i) standard normal 

kernel with 5/1ˆ059.1  nbn  and (ii) standard logistic kernel with nbn /ˆ4  where 

  
S S ii enen 2112 }ˆˆ{)2(̂ . We denote the corresponding variance estimators by

and respectively. The steps are: 

   1. Generate ),...,1,( Nixi   randomly from uniform (0,1) distribution. For each ix

generate ie  independently from distribution. Then ’s are generated using 

’s and ’s. This forms a finite population of size 1000N .  

   2. A  simple ramdom without replacement (SRSWOR) sample of size 100n  is drawn 

from the finite population generated in step1 and then compute the P-spline estimator 

,and estimators of its variance and . We use linear spline model given by 

   
K

k

r

kk xxx
1 110 )();(  β , where the choices of knots ( K ’s) and K  are 

mentioned in Section 1. 

psF̂

xq 50.0,25.0q

m(x)

x

1,
ˆ

AV 2,
ˆ

AV

)01.0,0(N iy

)( ixm i

F̂ps(xq ) 1,
ˆ

AV 2,
ˆ

AV
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   3. Compute the bootstrap hybrid estimator based on 250 bootstrap samples drawn 

from the sample obtained in step 2. 

  4. The steps 1-3 are repeated times. Let r

psF̂ ,  and r

psV̂ denote the values of 

psF̂ ,  and psV̂  respectively at r -th repetition, Rr ,...,1 , 200R .  

    For comparing the performances of the variance estimators’ we use the standard criteria 

viz., relative stability (RST) and ratio of standard errors (RSE). For any generic estimator v , 

)(vRST  (Wu & Sitter; 2001) and )(vRSE  (Breidt et al., 2005) are defined as 

2/12/1 /)]([)( MSEvMSEvRST   and 2/1)/()( MSEvvRSE  , where  


R

r rvRvMSE
1

1 ()(

2)v ,  


R

r rvRv
1

1
,  

 
R

r

r

ps qFRMSE
1

21 )ˆ( and rv is the value of  at the r-th 

iteration. On inspection of the Table 2 the following patterns emerge: 

    (i) With regard to RST, hybrid estimate appears to be the most stable although the 

stability depends on the simulation settings viz., super population model considered, the 

quantile at which the FPDF estimated and the sample size. For the analytical estimates 

the choice of kernel does not seem to have any significant impact. 

    (ii) With regard to RSE, it is interesting to notice that the analytical variance estimates 

are always giving overestimates of the true variance. On the other hand, most of the time 

the hybrid estimate is close to the MSE. Like RST, its value also depends on the simulation 

settings considered and choice of the kernel does not seem to be important. 

3.2.  Empirical study 

    To study the performances of eleven estimators of variance estimators in a design-based 

simulation study we consider a fixed finite population of 140 families living in United 

Kingdom. For each family, food expenses (y) and family income (x) (Zhang, 2004) are 

known. Note that the auxiliary information on x  is available for all the population units. 

We repeatedly draw random samples of size 35 from it and estimate the variance estimators 

1,
ˆ

AV , 2,
ˆ

AV  and psV̂ for food expenses. We study the performances of the bootstrap hybrid 

variance estimator along withthe analytical estimators under simple random sampling 

(SRSWOR) in this design-based set-up. The plan of the simulation experiment is exactly 

same as above except step 1. Here repeated sampling is performed from a fixed finite 

psV̂

R = 500
r

A

r

A VV 2,1,
ˆ,ˆ

,ˆ
1,AV 2,

ˆ
AV

n

xq
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population. To compare the performances we evaluate RST and RSE of the estimators in 

three quantiles ( 50.0 ,25.0q  and 75.0 ) based on 500R  samples. Results are shown in 

Table 3.  The patterns are very similar to that obtained in model-based simulation studies. 

 

4.  DISCUSSIONS 

    The proposed  hybrid methodology based on bootstrapping is starightforoward and can 

be appliled to any finite population parameter which is either exactly or approximately 

takes form 

U iyHN )(1 , (.)H  being a nonlinear function may depend on auxiliary 

variable. It is interesting to extend our methodology for other nonlinear parameters, viz., 

Gini index, low income proportion etc. (Goga et al., 2013).  

   Since non-sample observations can be considered as missing by design, our methodology 

resembles the bootstrap methodology for missing data when missingness mechanism is 

missing at random (Efron, 1994)., Hence we actually adopt Efron (1994)’s “nonparametric 

bootstrap” and it is advantageously does not depends on the missingness mechanism. So 

from Efron’s argument, resampling from the design sample doesn’t depend on the sampling 

design as long as it is ignorable. This facilitates our hybrid methodology to extend to more 

complex sampling designs, viz., probability proportional to size sampling. We need to 

devbelop the underelying theory in details and study the design effects. Notice that the 

conventional two-stage bootstrap (Lombardia et al., 2003; 2004) is actually the “full-

mechanism bootstrap” (Efron, 1994) and thus operatinally does not provide the estimate 

conditional variance considered in model-based apparoch with non-ignirable designs. 

Obviously, for designs that are not ignorable, two-stage bootstrap has to be executed.  

 

Note: For proofs of the results please contact the authors. 
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Table 1. Choices of the regression function (.)m  

Linear  

Exponential  

Bump  

Jump  

Quadratic  

Cycle  

 

 

Table 2.  Relative stabilities and ratio of standard errors of the three variance estimators 

for six possible population models with population size N=1000 and f=0.10. 
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Table 3.  Relative stabilities (RST) and relative standard errors (RSE) of three variance 

estimators and their attained coverage’s for the confidence intervals based on “Food 

Consumption Data” for three quartiles of FPDF. 

Estimator Quantiles Relative stability Ratio of standard errors 
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