fmenmms INDIAN INSTITUTE OF MANAGEMENT
LI VAL AHMEDABAD © INDIA

Research and Publications

A Note on Estimationg Variance of Finite
Population Distribution Function

Sumanta Adhya
Tathagata Banerjee
Gaurangadeb Chattopadhyay

W.P. No. 2015-08-02
August 2015

The main objective of the working paper series of the IIMA is to help faculty members,
research staff and doctoral students to speedily share their research findings with professional
colleagues and test their research findings at the pre-publication stage. IIMA is committed to

maintain academic freedom. The opinion(s), view(s) and conclusion(s) expressed in the

working paper are those of the authors and not that of IIMA.

:‘.“@E’.r* ," <IN
fAenfaRMonf@aprsi:
JC JC JVAC

AHMEDABAD

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD-380 015
INDIA

W.P. No. 2015-08-02 Page No. 1



— " INDIAN INSTITUTE OF MANAGEMENT
LI IVIE AHMEDABAD ¢ INDIA

Research and Publications

A note on estimationg variance of finite population distribution function

SUMANTA ADHYA
Department of Statistics, West Bengal State University, Barasat, Kolkata 700126, India

sumanta.adhya@gmail.com

TATHAGATA BANERJEE
Production and Quantitative methods, Indian Institute of Management, Vastrapur,
Ahemedabad 380015, India
tathagata@iimahd.ernet.in

GAURANGADEB CHATTOPADHYAY
Department of Statistics, University of Calcutta, Kolkata 700035, India

gaurch@yahoo.co.in

SUMMARY

Estimating finite population distribution function is an important problem to the survey
samplers since it summarizes almost all the relevant information of interest about the finite
population. Moreover due to its nonlinearity estimation of variance of estimators of
distribution function remains an active area of research since Chambers et al., 1992. Both
analytic and resampling-based variance estimators are developed earlier. Here we poropse
a bootstrap hybrid variance estimator of model-based semi-patametric estimator of finite
population distribution function estimator. We prove its consistency and also show that its

numerical performances are superior to analytical estimator.

Some key words: Model-based, Semi-parametric regression, P-splines, Analytical variance

estimator, Bootstrap.
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1. INTRODUCTION

Consider a finite population U of N distinct elements. Suppose a probability sample S of
size n is taken from the population using an ignorable sampling design (Opsomer, 2009).

Values of a survey variable y are observed for sample units. Then the finite population

distribution function (hereafter FPDF) of survey variable y is defined by

F@® =N Iy, <t), (1)
where I(y;, <t) =1, if y, <tand 0, otherwise. Now, if apart from values of y -variable the
values x,,...,.x, Of a vector-valued auxiliary variables x be known then following

groundbreaking paper of Chambers & Dunstan (1986) a model-based predictive estimator
(Valliant, 2009) of FPDF using a non-/semi-parametric regression model in the
superpopulation (Dorfman & Hall, 1993) is more efficient; since it incorporates all the unit
level information on the auxiliary variables through a regression robust to parametric
model misspecification.
The regression model in the superpopulation is given by
y,=m(x;)+e,1€U,

where m(.) is an unknown but smooth function and e, ’s , the error terms, are independently
and identically distributed random variables following an absolutely continuous
distribution function G(.) with mean zero and finite variance o’. Here we consider P-
splines (Eilers & Marx, 1996; Ruppert et al., 2003) to model m(.). To this end, we

approximate m(.) by truncated polynomial basis function

HOGB) = o+ BX ot BX + D By (X=1)]
where B =(B,,...0..«), ) =t"I{t>0)and x,’s (x, <..<x,)are fixed knots. In
practice degree of spline ris low ((<3), x, ={(k+2)/(k +2)}-th sample quantile of X

and K =min(35,n/4) (Wand, 2003). The regression coefficientfis obtained by

minimizing penalized least square criterion

> Ly - ux BY + 8y SR
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for fixed 5(>0). The quantity o controls the amount of smoothing in x(.;.) and its data-

adaptive estimate & is obtained by using linear mixed model representaion of P-splines

(Speed, 1991; Brumback et al., 1999; Wand 2003; Breidt et al., 2005). To define 5, let d;

and z, be the row vectors (1, Xi,...,X{ ) and (% — &) ey (X —K)S) respectively. The

above semiparametric regression model can be written as a linear mixed model
y,=d'0+z b+e,

where @andb denote the vectors (4, 5,,.... ) and (b,,,,...,b,, )" respectively. The errors

e,’s are assumed to follow indepenpent N (0,52) and the random vector b is independent

and follows multivariate normal with mean 0=(0,..,0)"and varianceo/l,,

I, =diag(L...1). Thené=62/62 where &2and &Z2be maximum likelihood (ML) or
restricted maximum likelilood (REML) estimator based on sample data. The P-spline
estimator S of g is given by

B=(XXs +A)XSYs, @
where 'y, =(y;,i€S)", X denotes the design matrix whose i-th row is giben by

X, =@ X, (X, —x).), 1€S, and penalty matrix A; =diag(0,...,0,4,...,5). With the
W_/ %f_/

M K
above choice of 5 the estimate (1, x,....,(x—zck):)f} provides a smooth fit of regression
function m(x) . Then the semi-parametric model-based estimator of FPDF is obtained as
Fe® =N Iy, <t)+ N D Y StH(X - OV ! (3)
where S(=U —S) s the set of non-sample units.
An immediate estimate of the variance of the prediction error may be directly obtained
from the asymptotic expression of the variance of prs (t) — F (t) by plugging in the

relevant observed quantities. For the expression of analytical variance we define following

unknown quantities:

v(t) = E{e,1 (e, <1)}, G'(t) =aG(t)/ét, min(u,v) =uAv, imn™Y X = u,

limn™X{ X, =X, lim(N —n)’lziegzjegG{(t— XIBAt=X]B}=1,,
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lim(N —n)">" G(t—- X[ B)=1,, im(N-n)*> G'({t-XB) =1,
lim(N —n)*>" X,G'(t— X[ ) =1,, lim(N—n)"> " v(t—X{p) =1, and

lim(N—n)* > G(t— X[ BHL-G(t— X[ B)} =1,
where all above limits are finite expectations with respect to asymptotic density of x
(Chambers et al., 1992; Dorfman & Hall, 1993). Also the limiting sampling fraction is

p €[0,1). Then ignoring terms of order o(n™") the asymptotic variance is

var{F, () - Fy 3= (L= £) {0, - 1) + 25" 27 (udy = 1)1 3+ F Q-1 (4)
We skip the details of the proof. The result can be obtained following similar steps as in the
proof of (2.2) of Chambers et al., 1992.

The problem is to estimate the variance of the prediction error prs(t)—FN (). An
immediate estimate of the variance of the prediction error may be directly obtained from
the asymptotic expression of the variance of prs(t)— F, (t) by plugging in the relevant

observed quantities. But analytical estimators generally have poor numerical performances
compared to resampling-based estimators (Wu & Sitter, 2001; Lombardia et al., 2003;
2004). In our situation we notice the same (cf. Section 3). In Section 2, we propose a
bootstrap hybrid estimator of prediction error. For this we adopt standard approach

(Ruppert et al., 2003; Breidt et al., 2005) by assuming that the smoothing parameter & is

fixed at its observed values. We prove consistency of bootstrap hybrid bootstrap
estimator. In Section 3 we present the results of a simulation study comparing the
performances of the proposed estimator with that of the analytical variance estimator. We
also apply our methodology for a real data set. Finally we give concluding remarks in
Section 4.
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2. HYBRID VARIANCE ESTIMATION
2.1. Methodology

As an alternative to analytical variance estimator, we consider a bootstrap estimator of the
asymptotic variance. In model-based set-up Monte Carlo approximation to the bootstrap
estimate of the asymptotic variance of a predictive estimator requires two-stage sampling
(Lombardia et al., 2003). First, a finite population is generated using the estimated
superpopulation model from the data; next, a bootstrap ample is selected from it. This process
needs to be repeated a sufficiently large number of times for obtaining a good approximation
to the bootstrap variance estimator. The procedure is highly computer intensive. To
circumvent the problem we adopt a hybrid approach (Adhya et al., 2011; 2012) which avoids
generating a finite population at the first stage. Wu and Sitter (2001) use similar hybrid
approach for jackknife variance estimation in finite population settings. We describe it in the

following.

Throughtout this Section we assme that ¢ is fixed at its estimated value S . Notice that,
Fos® = Fu® =nN=3 > Y <t+ (X =X )T A=-NTD 0y, <t)
and from the conditional independence argument given S, we have
var{F, (t) - Fy (O} =var[n "N > DMy St =X))T A
+var{N Y"1y, <t} =V (8) +V4 (6), say.
A natural estimator of the second termV, (8) = N D G- X! pHA-G(t—- X[ B} is
Vg =NZY G(t— X[ HL-G(t- X A}, (5)
where G(t) = nflzs I (& <t)is empirical cumulative distribution function of e, ’s based on
residuals é =y, —Xfﬁ', i €S . The estimator \/A§ of V_is expected to exhibit negligible

bias in finite samples since the model-based inference is preferred when sampling fraction

n/Nis small (Wu & Sitter, 2001). We estimateV, (3) by bootstrapping from the sampled

dataS, ={ys,Xs}, X = (X;,i € S)". The usual bootstrap estimator is given by

Veg =varg NN S My, <t+(X[ -X))' BN (6)
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where B*is the penalized least square estimate based on bootstrap sample data
S, ={y:,x.} for a suitably chosen smoothing parameter &5 and varg(.) denotes the
variance with respect to the bootstrap distribution given the sample data S, . Using analogy
with the choice of &, we take 5" as 6" = 0.2/ 5,2, where o and o,2are the estimates of
sZand s} based on the bootstrap sample data S . In practice the Monte Carlo

approximation to \/ASYB based on B bootstrap samples S, ,b=1,..., B, is given by

B_lZ::l(ub —0),

where u, =n*N7Y LT MY StH(X =X)L, and Yi, Xq,07. 85 (= £ (6))

are the values of y,, X,,5 and g for the b -th bootstrap sample and T = B’lZ:zlub . Thus,

A

from (5) and (6) the hybrid bootstrap estimate is V,; =V 5 +V; .
2.2. Consistency

We now prove the weak consistency of the proposed hybrid estimator \7pS assuming 5

and & as known fixed quantity. We consider a sequence of populations of sizes N, and

sample sizes n, such that n, - and f, =n, /N — p<[01), as v —oo. For notational

convenience, we suppress the index v below. For theoretical development, throughout we
assume X to be continuous and its asymptotic density for the sample and non-sample design

points are h (.)and h(.) respectively (Chambers et al., 1992). That s,

Nty 1% <x) > L hg (u)du and (N =n) "> 1(x <x) > [ ho(u)duas n—o.

For simple random sampling, since the inclusion probabilities of all the units are equal, we

have hg(x)=h (x)for allx (Dorfman and Hall, 1993) and then N’lzul(xiSX)a

X
LO h(u)du. Now we assume regularity conditions:
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Condition 1. (e;,x;)’s are independent and identically distributed with e, and x, are

independent, G"(t) = 0°G(t)/ot?is continuous in t and the density of X is a continuous and

bounded function.

Condition 2. Sampling design does not involve the auxiliary variable X .
For simplicity, we consider simple random sampling design in (iii) to prove consistency.
Consistency of complex sampling designs, e.g., stratified sampling and probability
proportional to size sampling is not considered. For our case the density of Xis the

asymptotic density h(.).

Condition 3. limn™3" x" = [x*"h(x)dx = O(1).
Next for any g, F(t: ) = [ [G{t— X[ B, + (X, — X,)T BH(x)h(x,)dx,dx, , which entails
F(t; 8,) =jG(t—XTﬁo)h(x)dx for true parameter value f,, where X[ =(X,,...,

(X, —x¢)"), 1=12, and X' =@ X,..,(X—x,)"). Note that F(t,f)is a distribution
function. Further we assume that

Condition 4. The partial derivative oF(t,8)/op =(F{, B)/0p,,....0F (t, B)/ 0B, .« ) IS
not equal to the null vector at the true parameter value £, .

Now we state the following theorems. Proof is outlined in the Appendix.

THEOREM 1. Under conditions 1-4, for fixed and known penalty parameters & and &~

V. is weakly consistent for var{F  (t) - F (t)}.

In finding the variance we ignore the uncertainty associated with the penalty parameter
estimate. However, the impact of ignoring the uncertainty in its estimate does not seem to
be serious. This fact follows from Section 2.2 of Breidt et al., 2005 by bringing an analogy
of the sample and the corresponding bootstrap sample in our set up with the “finite
population” and the probability “sample” drawn from it in Breidt et al.’s paper. This
interpretation immediately implies that bootstrap choice of penalty parameter is consistent

for penalty parameter obtained from sample data.
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3. NUMERICAL RESULTS

3.1. Model-based simulation
We report the results of a limited simulation study comparing the performance of the
hybrid bootstrap estimator prs to that of analytical estimator obtained by estimating (4) at
the quantiles x, for q=0.250.50and 0.75 for six superpopulation models given in Table
1. We consider six different choices of m(x) for the superpopulation model y = m(x) +e,
where X and eare generated respectively from theU(0,1) and N(0,1) distributions. The

chosen population size (N) and the sample size (n) (1000, 100) resulting in sampling
fraction ( f)equal to 0.10.
For analytical estimator we require to estimate (4). The estimators is
V,=n*0- )Y, -3 +2a" 7 (ad, -1, }+nt Q- f)I,
where i, Zand [, ’s(i = 4)and I, are obtained by repacing unknown quantitiesG(t) , G'(t)
and v(t) with their estimates G(t), G’ (t) = (nb,) >  K{(& —t)/b, } and v(t)=n")" ¢,
I (& <t) respectively; K(.)is a kernel function, usually a density function, and b, is the bin

width. We use two choices of the kernel function (Wu & Sitter; 2001): (i) standard normal

kernel with b, =1.0596n"°and (ii) standard logistic kernel with b, =4&/n where

67=(n-2)"> {& -n"> &} . We denote the corresponding variance estimators by

\7A,1 and \/AA,2 respectively. The steps are:

1. Generate (X;,i=1...,N) randomly from uniform (0,1) distribution. For each x;
generatee, independently from N(0,0.01) distribution. Then y,’s are generated using
m(x;)’s and &;’s. This forms a finite population of size N =1000.

2. A simple ramdom without replacement (SRSWOR) sample of size n =100 is drawn

from the finite population generated in stepl and then compute the P-spline estimator

13“1” (xq) ,and estimators of its variance \7A,1 and \7A,2 . We use linear spline model given by

ulx; p)=p4, +51X+Z::1ﬂ1+k (x—x,)" , where the choices of knots (x, ’s) and K are

mentioned in Section 1.
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3. Compute the bootstrap hybrid estimator\7ps based on 250 bootstrap samples drawn
from the sample obtained in step 2.

4. The steps 1-3 are repeated R =500 times. LetF;,Vx, .V, , and V, denote the values of

A A

Foe.Van Vs, and V, respectively at r -th repetition, r =1,...,R, R=200.

For comparing the performances of the variance estimators’ we use the standard criteria
viz., relative stability (RST) and ratio of standard errors (RSE). For any generic estimatorv,,
RST(v) (Wu & Sitter; 2001) and RSE(v) (Breidt et al., 2005) are defined as

RST (v) =[MSE(V)]"2 /MSE"? and RSE(v) = (v/MSE)"?, where I\/ISE(V)=R’1ZL(vr

~V)2,v=R*Y " v, ,MSE=R™Y" (FL-q)?and v,is the value of /7 at the r-th

r=t '’
iteration. On inspection of the Table 2 the following patterns emerge:
(i) With regard to RST, hybrid estimate appears to be the most stable although the
stability depends on the simulation settings viz., super population model considered, the

quantile x_at which the FPDF estimated and the sample size. For the analytical estimates

the choice of kernel does not seem to have any significant impact.

(if) With regard to RSE, it is interesting to notice that the analytical variance estimates
are always giving overestimates of the true variance. On the other hand, most of the time
the hybrid estimate is close to the MSE. Like RST, its value also depends on the simulation

settings considered and choice of the kernel does not seem to be important.

3.2. Empirical study
To study the performances of eleven estimators of variance estimators in a design-based
simulation study we consider a fixed finite population of 140 families living in United
Kingdom. For each family, food expenses (y) and family income (x) (Zhang, 2004) are
known. Note that the auxiliary information on X is available for all the population units.

We repeatedly draw random samples of size 35 from it and estimate the variance estimators
\7A,1’ \/AAY2 and \/ApS for food expenses. We study the performances of the bootstrap hybrid
variance estimator along withthe analytical estimators under simple random sampling
(SRSWOR) in this design-based set-up. The plan of the simulation experiment is exactly
same as above except step 1. Here repeated sampling is performed from a fixed finite

L —
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population. To compare the performances we evaluate RST and RSE of the estimators in

three quantiles (q=0.25,0.50 and 0.75) based on R =500 samples. Results are shown in

Table 3. The patterns are very similar to that obtained in model-based simulation studies.

4. DISCUSSIONS
The proposed hybrid methodology based on bootstrapping is starightforoward and can

be appliled to any finite population parameter which is either exactly or approximately

takes form N‘lzLJ H(y;), H() being a nonlinear function may depend on auxiliary

variable. It is interesting to extend our methodology for other nonlinear parameters, viz.,
Gini index, low income proportion etc. (Goga et al., 2013).

Since non-sample observations can be considered as missing by design, our methodology
resembles the bootstrap methodology for missing data when missingness mechanism is
missing at random (Efron, 1994)., Hence we actually adopt Efron (1994)’s “nonparametric
bootstrap” and it is advantageously does not depends on the missingness mechanism. So
from Efron’s argument, resampling from the design sample doesn’t depend on the sampling
design as long as it is ignorable. This facilitates our hybrid methodology to extend to more
complex sampling designs, viz., probability proportional to size sampling. We need to
devbelop the underelying theory in details and study the design effects. Notice that the
conventional two-stage bootstrap (Lombardia et al., 2003; 2004) is actually the “full-
mechanism bootstrap” (Efron, 1994) and thus operatinally does not provide the estimate
conditional variance considered in model-based apparoch with non-ignirable designs.
Obviously, for designs that are not ignorable, two-stage bootstrap has to be executed.

Note: For proofs of the results please contact the authors.
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Table 1. Choices of the regression function m(.)

Linear m(x) =1+2(x-0.5)
Exponential m(X) = exp(-8x)
Bump m(x) =1+ 2(x-0.5) + exp(-200(x - 0.5)?)
Jump M(X) = (0.35+ 2(x-0.5)) | o6 + 0-651 o5
Quadratic m(x) =1+ 2(x-0.5)*
Cycle m(x) = 2+ Sin(27zx)

Table 2. Relative stabilities and ratio of standard errors of the three variance estimators
for six possible population models with population size N=1000 and f=0.10.

@ Relative stability Ratio of standard errors
g =
VA,l VA,Z Vps VA,l VA,2 Vps

N 0.25 3.1545 3.1543 0.4566 2.0284 2.0283 1.1657
2 0.50 2.5165 2.5164 1.0091 1.8642 1.8641 1.3984
- 0.75 45182 45179 1.1873 2.3373 2.3372 0.9683
g 0.25 1.6887 1.6857 0.2654 1.6323 1.6319 1.0681
S 0.50 0.9085 0.9079 0.2564 1.3679 1.3675 1.0487
2 0.75 0.9491 0.9803 0.3820 1.3416 1.3418 1.0286

0.25
o 0.50 0.8625 0.8609 0.5219 1.3329 1.3325 1.0182
S 0.75 0.5978 0.6006 0.4249 1.2301 1.2303 1.0018
@ ' 0.7156 0.7168 0.6299 1.2765 1.2766 0.9821

0.25
o 0.50 2.4857 2.4911 0.4275 1.8346 1.8359 1.0815
£ 0.75 0.1989 0.2032 0.2033 1.1269 1.1258 1.0059
" ' 0.2204 0.2194 0.5277 0.9943 0.9915 0.7471
= 8'53 0.9259 0.9231 8'3332 1.3799 1.3785 0.9735
= 0.75 0.8024 0.8021 0.3301 1.3268 1.3263 0.9311
& ' 1.0354 1.0364 ' 1.4131 1.4133 0.8805
5 0.25 0.9735 0.9729 0.4196 1.3870 1.3868 1.0104
] 0.50 2.9604 2.9608 0.6904 1.9607 1.9606 1.0838
& 0.75 1.5130 1.5126 0.6148 1.5639 1.5638 1.0206
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Table 3. Relative stabilities (RST) and relative standard errors (RSE) of three variance
estimators and their attained coverage’s for the confidence intervals based on “Food
Consumption Data” for three quartiles of FPDF.

Estimator Quantiles Relative stability Ratio of standard errors

Y 0.25 1.8693 1.6567

Al 0.50 1.2921 1.4898

0.75 0.7815 1.3017

0.25 1.8719 1.6489

vV 0.50 1.2894 1.4875
A2 0.75 0.7821 1.3007

0.25 0.4977 1.0983

v 0.50 0.7052 1.1621

ps 0.75 0.5913 1.1239
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