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Abstract

In this paper we propose a general model of multi-criteria decision making and prove that
an equilibrated state exists under natural assumptions. As an application of this theor /, we

prove the existence of budget constrained Pareto efficient allocations using methods developed

in the paper,



1. Introduction:

In a recent paper, Polterovich [1990], proves the existence of equilibrated states for group

_decision making problems. In thzt paper, each agent was being evaluated by an external expert,

through one criteria. The natural question that now arises is if a similar theory with more than
one criteria for each agent, admits of a similar existence result.

In this paper, we propose a theory of group decision making with more than one criteria

for each agent, and show that under natural assumptions an equilibrated state does exist for each

such problem. We close the paper with an application and some concluding remarks.

2, The Model:

As in Polterovich [1990], we assume that Z(SR') is a set of feasible states. Let I be a
finite index set of agents and for each k e I, U,: Z - R be a continuous utility function for agent
k € I, which represents his preferences over alternative feasible states.

A state z e Z is called Pareto optimal if there does not exist z’' € Z with U, (z') = U, (2)

V k e I with at least one strict inequality. We say that a state z ¢ Z is weakly Pareto optimal if

there does not exist z' ¢ Z with U, (z') > U, (z) ¥ k ¢ 1.
We assume that Z is a convex subset of E..
A function f: Z — R is said to be strictly quasi-concave if V z, z' ¢ Z with z  z', f(tz
+ (1-6z') > min. {f(z), f(z')} ¥ t € (0,1).
A function f: Z - R is said to be semi-strictly quasi-concave if V z, 2’ € Z with f(z) #
f(z'), f(tz + (1-t)z') > min. {f(z), f(z')} V t € (0,1).
iel

"
Let A= {P eR,/Xp = 1}‘ The following proposition is significant to what

follows:



Proposition 1:
(a) If z* solves

X p, U (@) ~ max
kel

stzeZ
for some p = (P € A, then 2* is weakly Pareto optimal. If p, > O V k ¢ I, then z* 1s Pareto
optimal.
() IfU,: Z - Ris strictly quasi-concave V k € I and z* solves
Ip U, -~ max
st.zeZ
for some p = (P € A, then z* is Pareto optimal.
Proof:
(@  The proof is obvious.
()  Suppose z* solves the problem in (b) and suppose 3 2’ € Z such that z' # z* and
u(z') = w(z¥) Vkel Then for te (0,1), tz’ + (1-t)z* € Z and u,(tz' + (1-t)z*) > u(z*) v
k € I, contradicting that z* solves the above problem. Hence z* must be Pareto optimal and in
fact a unique solution to the problem in (b).
Q.E.D.
Foreach k e I, let g,: Z — R’ be a continuous criteria function for agent k. Thus g =
@) Z > (RY" is a criteria function for the group with r > 1.
Definition: A state z e Z is said to be equilibrated if (a) z is Pareto optimal; (b) g,(z) < 0

Vkel



3. Existence of Equilibrated Statcs:

In order to prove our basic existence theorem we make the following simplifying
assumptions:
A.l: Vvkel U: Z- Ris strictly quasi-concave.

.2: 7 is a compact, convex subset of R'.

>

A3 X max{gﬂ(z)} < 0VzeZ which are Pareto optimal.
kel j

A.4: Ifzmaximizes X py Ug(z’) subjecttoz’ e Z where X Py = 1, then gj(z)
k’elN k) K/elN (k)

> 0 for some j € {1, ..., 1}.

We now prove our main theorem:

Theorem 1: Under assumptions A.1, A.2, A.3 and A.4, there exists an equilibrated state.

Proof: For each p € A, let z(p) be the unique solution to

Xp, Uy(2) ~ max VIKRAM SARABHA! LIBRARY
ket wDIAN INSTITUIE OF MANAGEMENI

st.z € Z LASTRAPUR. AHMEDABAL-380058

The function z: A — Z thus defined is continuous. Consider the function f: A = A,

P, + max(g, @), ... g/ z()), 0)
1+ I max (g, @), - & ) 0)

kel

fk(p)z kel

and f = (f),,. Clearly f is a continuous function from A to A. Thus, by Brouwer’s fixed point

theorem, there exists p* € A such that f(p*) = p*.



Case 1: p* = 0. Then
max (g, @(P*), - g @), 0) = 0
ie. g, (™) < 0.

But if p,* = 0, then z(p*) solves
¥y pk', U,/(z) ~ max

kel (k)
subject to z € Z.

Further X p; = 1.
k/elN (k)

Thus by A.4, there exists j € {1, ..., r} such that gi(z(p*)) > 0, which is a contradiction.

Hence p,* = 0 is inadmissable.

Case 2: p* = 1. Thenp.* =0V k’ el {k} which is inadmissable. Hence p,* = 1 is also

tnadmissable.

Case3: 0 <p*<lvkel

- pe T max{g,, (), .. g p*) 0}

kel
= max {g:,(z(p*)), o & @), 0} Vkel

 max {gapo)) = max{g) Gpw). .. &) eow) O]
kel
- e (BEG@D)

- — max {g; 2@*), - & (), 0}.
] Px



Summing over ‘k’ we get
0 > ¥ max {g,f (z(p*))} Liax {g:(z(p*)), oy B 2(D¥)), 0} Viel(l,..,r}
kel j§

ie. glzp*) <OVkel Vjell..,r.

This proves the theorem.
Q.E.D.
If we relax our assumption on preferences and modify it to read as:

A.5: Vvkel U: Z- R is semi-strictly quasi-concave;

Theorem 2: Under assumptions A.2, A.3, A.4 and A.S, there exists an equilibrated state.

Proof: To prove Theorem 2, we make use of the following theorem due to Cellina [1969]:

Theorem: Let K be a compact set (say in some Euclidean space), T a compact convex set of
R, and Q: K —»— T be a nonempty valued, convex valued correspondence such that the graph
[ o = {(x,y) e KxT/yeQ(x)} is compact. Then given ¢ > 0 there is a continuous function
h: K- Tsuchthat [, e € B,, ( rQ) where B,, ( [-Q) is the open set of all points in K x T within
2¢ of rQ.

For p e A, then z(p) = {z €Z/ E_:IUk(z) > l):]Uk(z') vz'e z}. The

€ e

correspondence z: A —— Z thus defined is nonempty valued (since each U,, k € I is continuous
and Z is compact), convex valued (since each U,, k e I is semi-strictly quasi-concave and Z is

convex) and has a closed graph in Z. Thus by Cellina’s theorem, ¥ ¢ > 0, there exists a

continuous function z: A - Z such that [, € B,, ([,). Define f© A - A as follows:



f€ = (ff )m’ where

Py + max(gy ZS(P)), ..., £ @), 0)
1+ T max (g, @) - & @), 0)
k

‘el

kel

£ =

f* is continuous. Hence by Brouwer’s fixed point theorem, there exists p‘ e A such that

f(p) = p'. Let {¢};n be a decreasing sequence of positive reals such that lim €; = 0. Sinf:e

jro

{p ej}jeN c A, and A is compact, there exists a subsequence of {p § }j (N Converging to a point

p*eA. Since {z%} converges uniformlytoz: A—>»Zand £5(p9) = p% V j, we must have

pe + max(gy @), ..., g @), 0)

1+ Y max (g:,(z), s 8 (D), 0)
k'EI kel

p*€

| z € z(p*)

From here on the proof runs exactly as the proof of Theorem 1, to establish the existence

of an equilibrated point (by Proposition 1(2)), since p,* > 0 V ¢ L.

Q.E.D.

4. An Application: Existence of a Budget Constrained Pareto Efficient Allocation:

In this section we apply Theorem 2, to show that a budget constrained Pareto efficient
allocation in the sense of Balasko [1979], Keiding [1981], Svensson [1984] exists in the
framework of a distribution economy as studied by Malinvaud [1972), Lahiri [1993].

We consider an economy consisting of a finite number of consumers, indexed by

members of a set I. The consumption set of each consumer i ¢ I, is the non-negative orthant of



7
Euclidean, n-space: Rf;. Each consumer i ¢ I, has a fixed positive initial endowment of income
w, > 0. The aggregate initial endowment of resources in the economy is w ¢ R}, = {x ¢ R}
l/ x, >0 Vj-e {1, ..., n}}.

The preferences of each consumer i e I over vectors of consumption goods are defined
by a utility function uy;: R} — R. We assume that for each i € I, u ; is continuous, increasing
(i.e. x, y e R}, x > y = u(x) > uyy)) and semi-strictly quasi-concave.

An allocation is a vector x = (x') e(R2)" . An allocation x is said to be feasible if

Yxl = o

iel

Let p e R2, be a vector of strictly positive commodity prices, such that p o = Xw;.
iel

Definition: An allocation (x) e (R1)"" is said to be a budget constrained Pareto efficient
allocation (BCPE allocation) if

(i)  x is feasible and Pareto optimal.

(i) p-xi=wViel

We now prove that a BCPE allocation exists.

Theorem 3: A BCPE allocation exists for the distribution economy defined above.
Proof: Let Z be the set of all feasible atlocations and for each i e I define g;: Z — R as follows:

g((x)ig) = w; - px! , (x)4 €Z.

It is easy to verify that g is continuous and verifies A.3 and A.4, Z is compact-convex

(and hence verifies A.2) and the utility function of each agent satisfies A.5. Thus by Theorem



8

2, a weakly equilibrated state exists. Let this state be (X),, € Z. Further w;-p«x* < OVie
I, implies p-x' = w;. Hence (x%),, is a BCPE allocation.

Q.E.D.

5. Conclusion:

We have thus managed, to extend Polterovich’s definition of an equilibrated state to truly
"multi-criteria optimization problems”. These are multi-criteria problems, not simply because
there is more than one agent with a utility function assigned to each, but because there are one
or more external criteria which an equilibrated state needs to satisfy for each agent. As the
application in section 4 shows, assumption A.4 is really a mild-regularity assumption saying that
if an agent is ignored then the resulting state cannot be an equilibrated state.

We have also chosen to avoid the needless technical complexity of having criteria
correspondences. The reasons are twofold: since we consider a vector of criteria we . are
admitting indirectly more than one, but a finite number of indices which the expert has to
process for each agent; most applications that Polterovich [1990] as well as we do consider, can
be dealt with criteria functions. However, our method though different from the one cited

above, can be easily modified to accommodate criteria correspondences.



Appendix

In this section we provide an alternative (equivalent) proof

of Theorem 2. using Kakutani‘é fixed point theorem.

Theorem A :- Under assumptions A.2, A.3, A.4 and A.5. there
exists an equilibrated state.
Progof :- Define the correspondence z: g4 ->->Z as in the proof of
Theorem 2, in section 3. Now define the correspondence
f:4YZ ->->a4 xZ as8 follows :

Py +max(g‘k (z),...,g'k(z).o)

f(p,z)= xz(p)
4B, max(g (o (2)y .08 T (2),0) / KEI

f is well defined, non-empty valued, convex-valued and has a
closed graph. Hence by Kakutani's fixed point there exists
(p' ,z' )EaxZ, such that (p' .z')Ef(p ' ,z'). From here on the
proof proceeds as in the proof of Thercem 1, once it is observed

that z' Ez(p' ), to establish the existence of an equilibrated

state.
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