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Abstract

We present a model of technological evolution due to interaction between multiple
countries and the resultant effects on the corresponding macro variables. The world
consists of a set of economies where some countries are leaders and some are followers in
the technology ladder. All of them potentially gain from technological breakthroughs.
Applying Lotka-Volterra (LV) equations to model evolution of the technology fron-
tier, we show that the way technology diffuses creates repercussions in the partner
economies. This process captures the spill-over effects on major macro variables seen
in the current highly globalized world due to trickle-down effects of technology.

1 Introduction

Economies are perfect examples of complex systems which give rise to patterns out of inter-
action between smaller economic entities. Traditionally econophysics literature has mostly
been concerned about studies of a specific set of empirical regularities. A part of the litera-
ture focuses on the empirical validation of those regularities and the other part concerns the
theoretical origin of the same. The inverse cubic law of stock prices, Zipf’s law of income and
wealth distributions, scaling behavior of volatility of economic entities like firms or countries
with respect to their sizes are examples of the first stream of the literature (see Ref. [1] for
statistical description of the stock markets and see Ref. [2] for a general introduction to the
econophysics literature). Generally it has been difficult to establish empirical regularities
in an useful sense because the moment one finds a generally recognizable empirical regular-
ity, people start working on the basis of it undoing the premise in the meantime. This is
especially true of the stock market although as has been mentioned before, some features
like the inverse cubic law are extremely robust. If one considers macroeconomic scenarios,
regularities are scarce. Apart from the size distributions of certain variables (like firm-size),
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there do not exist many other robust and stable features. It is also difficult to extract the
effects of such distributions on the economy at the macro level 1.

In this paper, we ask how one can model the complex interdependence of macro variables
across the countries. The countries in the modern globalized world have nonlinear depen-
dence on each other. This becomes apparent from the growth predictions of countries, which
are extremely susceptible to the economic situation in the rest of the world. It is also clear
that the regime of linear cause-effect relationship is often not a good approximation, be it
for a set interdependent of banks or countries embedded in a network of trade and capi-
tal or technology flow. After the last economic crisis, the attention has been shifted away
from interaction between well behaved homogeneous economic entities. Different sources of
heterogeneity manifested via distribution of connectivity or size have been seen to play im-
portant roles in shaping up macro scenario. Spill-over effects and the question of correlation
has been framed in multiple formats, especially in the network literature (see for example,
Ref. [4–11]).

In order to model such interdependence of macro variables, we rely on a technique bor-
rowed from the literature on theoretical ecology (Ref. [12–14]). The famous Lotka-Volterra
system (LV henceforth) has been used for long to model predator-prey relationship among
different species. This type of model have been used extensively for modeling stock market
behavior. Ref. [15] (as well as Ref. [16,17]) applied it to model interaction of heterogeneous
agents. Ref. [18] studies the concept of dynamical stability in a large system of heterogeneous
agents placed on random networks (see also Ref. [19]). In the present context, we model
technological evolution assuming that some countries are predators and some countries are
preys. The prey countries spend resources to develop newer technology whereas the preda-
tors use the same without spending resources diminishing the advantage of usage which hurts
relative productivity of the prey countries. An interesting feature of this kind of models is
that the prey population always leads the predator population (Ref. [20]). This is auto-
matically translated in the economic context as when a big technology boom occurs in the
leading countries, the followers borrow them subsequently enabling them to gain advantage.
But they run with a lag always because of the dependency on the leading countries.

The theoretical argument has been forwarded by Ref. [21] where it is argued that the
equilibrium distribution of technology might be highly asymmetric, resulting in different
levels of technological advancement across countries. The ‘cut-throat’ capitalist economies
would spend resources to become technology leaders and the rest, termed as ‘cuddly’ capi-
talists, would follow their lead. They cannot be on the technology frontier but this loss is
offset by advantage of spending lesser resources on research and development, which leads to
lesser within-economy inequality. The major insight coming from such a formulation is that,
to maximize aggregate welfare (or utility) at the global level it is best to have both types
of countries. If leaders themselves become followers, that will reduce welfare. Similarly for
followers to become leaders, they must sacrifice welfare resulted in by increasing inequal-
ity. Thus an important property of the economic system is that the evolution of competing
countries ensured global maximization of utility without any global coordination between
them.

1However, in recent times there has been a major advancement in understanding the effects of fat tails
on the aggregate volatility of the economy. See for example Ref. [3].
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From the aforementioned work, the idea of leaders and followers interacting on the tech-
nology frontier is borrowed and we show that coupled with the business cycle literature, it
generates time-series with certain properties that closely resemble the real data. Interest-
ingly, Ref. [22] studied diffusion of technology at the micro-level and showed that innovation
and imitation are important in the mechanics of knowledge diffusion. Here we do not pro-
vide any microeconomic argument about what causes the diffusion. Instead we opt for a
description of the process at the macro level which is in line with the micro evidence. The
individual time-series properties of both the leader and the follower show substantial au-
tocorrelation with alternating signs even with relatively large lags. This feature has been
studied by multiple papers in the business cycle literature. Ref. [23] studied a two-sector
model with sector-specific increasing returns to scale which is able to mimic such a behavior.
Ref. [24] shows that a labor adjustment cost in an otherwise standard real business cycle
model generates positive autocorrelation after several lags. In general, a problem has been
that this sort of models require implausible parameter values to match data well. Thus there
is little consensus about the correct specification of such models. The model that we study in
the following has no internal propagation mechanism. Rather it inherits all the properties of
the exogenous shocks which means output series essentially mimics the shock process. The
optimization mechanism does not impose any extra properties on the output series. The
usefulness of the LV type specification is that it readily captures many of the time-series
properties of real data and hence, the response of the macro variables show similar behavior,
in turn.

In recent times, questions related to growth of countries (or other economic entities
like, firms for example) received prominence in the econophysics literature. Ref. [25] argues
that wealth of a country is directly related to the competitiveness of the same. Ref. [26]
argues that level of wealth is also related to asymmetric effects of price changes on volatility
(see also Ref. [27–29]). Ref. [30] studied decomposition of macroeconomic volatility in G-7
countries and Ref. [31] studied other time-series properties including persistence of a similar
set of variables. To complement such analysis, we need a general framework to address the
interdependence in a business cycle model.

2 The model

Below I describe a two-country model by combining the real business cycle literature and
the species competition literature to elucidate how we can generate a complex structure of
cross-correlation and autocorrelation in the macroeconomic variables at the aggregate level.
The small scale real business cycle (popularly known as the rbc models) type of models
are extremely useful to neatly explain the comovements between the major variables. The
LV equations are used to model evolution of the technology frontier which is formed by
continuous innovation, copy and disposition of technology by the competing countries. For
simplicity, one can imagine measuring technology by the number of blue-prints. A bigger set
of blue-prints are useful as it raises productivity of labor. The interaction arises because some
countries are predators and some countries are prey in this scenario. A predator might feed
on higher number of blue-prints generated by the prey and by dissolving the use of the same
blue-prints, they become obsolete. Thus the predator follows the prey on the technology
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frontier.
Let us denote these two economies by L (leader) and F (follower). Time is discrete and

goes till infinity. The underlying structure of L and F are identical. Both admits an unit
mass of households that provide labor and lends capital to produce output which they either
consume or save and invest. There are many expositions of such models available. See for
example, Ref. [32] for a continuous time formulation or Ref. [33] for a discrete time formu-
lation. We follow the latter as a discrete-time formulation is more suitable for finding the
time-series behavior. Following literature, we assume that there is only one good produced
in each economy. In general, in these models there are a number of agents who provide labor
to produce output, earn wage in return and consume goods. Usually they are considered to
be maximizing their objective function (utility) defined over consumption. There are firms
that buy labor input (and pay wage to the workers) and combine it with physical capital
to produce output. They are also maximizing their own objective function (profit). Finally,
capital is produced by the savings (income-consumption) of the workers. This closes the
whole model. In the next section, we describe the idea mathematically.

2.1 Households and firms

The utility function in the j-th country (j ∈ {L, F}) is given by the standard form

U j =
∞∑
t=0

βt
(
lncjt + αln(1− ljt )

)
, (1)

where cjt and ljt are consumption and labor in period t respectively. Maximum amount
of labor per unit of time is normalized to 1 for simplicity. The parameter β denotes the
subjective discount rate over time. The other parameter α controls the relative weight
assigned to leisure with respect to consumption. The production function has a standard
functional form with a stochastic technology shock,

yjt = zjt (k
j
t )
θ(ljt )

1−θ, (2)

which basically says that output yjt is produced by combining capital kjt , labor ljt and a tech-
nology variable zjt . The productivity shocks are captured by the term zjt which is stochastic.
Both the utility and production functions have the simplest forms. One can work with
more complicated forms, but with little value addition. Capital accumulation is done by
investment in the usual way,

kjt+1 = (1− δ)kjt + ijt , (3)

where δ is the rate of depreciation and it is the investment. Finally, we have a resource
constraint that output is either consumed or invested,

cjt + ijt ≤ yjt . (4)

The evolution of zjt in the production function (Eqn. 2) is of particular importance to us.
In the standard description of this type of models, zjt is usually assumed to represent a
technological shock process independent of the rest of the economy. Here, we assume that
the technology evolves jointly across countries. This is where the LV type interacting specie
model comes in, as we describe below.
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Figure 1: Evolution of a canonical LV model. The upper-left panel shows technology evolu-
tion in both countries. The lower-right panel shows the locus of the solution. On the right
column three insets show the same trajectory under a functional transformation following
Eqn. 7 with three different values of the tuning parameter, κ = −10, -20 and -100.

2.2 Evolution of the technology frontier

The technology frontier is represented in continuous time by the generic model of species-
competition viz.,

Z ′ = G(Z), (5)

where Z is a vector {ZL, ZF} and G is the interaction matrix. The evolution of ZL (or
ZF ) represents the evolution of the state of technology over time of the leading (following)
economy. This is a continuous process. However, the households and firms see a snapshot
of it in certain times and respond to that level of technology, which we denote by {zL, zF}.

We impose a specific structure on the interaction matrix G assuming that the underlying
technology evolves as follows:

dZL

dt
= µ1Z

L − µ2Z
LZF ,

dZF

dt
= −µ3Z

L + µ4Z
LZF (6)

where µ{1,...,4} are parameters. This basic structure admits analytical solution but for our
purpose, we will focus on a stochastic sequence (and an algebraic transformation thereof)
of the time-path generated by the model. We assume that the agents sample it at random
intervals (see App. 5.3.3 for details). The discrete sequence that they observe is denoted by
{Sτ} = {ZL(τ), ZF (τ)} where τ = 1, 2, 3, . . . This process is discrete as we require by our
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discrete time formulation of the economy, but has high variance. To have a well-behaved
process with tunable variance, we make one transformation to describe the shock process as

zj(t) =
1

1 + e−κSj(t)
j ∈ {L, F}, (7)

where κ is a constant controlling the spread of the technology variables {zj()t} for j ∈ {L, F}.
Such a transformation reduces volatility of the process making it a suitable candidate for
studying the behavior close to the steady state of the model (which is dictated by Eqn.
8 below). Fig. 1 shows the evolution of a canonical LV model. The insets show that
the high variance process can be mapped into a process with much lower variance by the
transformation considered with an appropriate value of the tuning parameter κ. The leader
is termed prey and the follower is termed predator in the literature of theoretical ecology.
Here the metaphor works as the technological booms and busts in the leading economy is
followed by the other economy with a lag. Thus essentially we model a ‘trickle-down’ version
of technological evolution. We elaborate on the macroeconomic interpretation of this feature
of the model in Sec. 3.1. For simulation purpose, we have assumed that µj=1 for j ≤ 4
(initial value pair is 4,3). Fig. 4 shows the cross-correlation and the autocorrelation structure
of the technology path followed by the predator and prey countries.

2.3 Solving the model

We can easily find out the first order conditions by solving the dynamic programing problem
of maximizing utility subject to the budget constraint (see Ref. [33] and the references
therein). The whole system of equations that captures the evolution of the economy subject
to technology shocks are described as follows,

1

Cj
t

= βEt

(
1

Cj
t+1

(rjt+1 + 1− δ)

)
,

αCj
t = (1− θ)(1− Ljt)

Y j
t

Ljt
,

Cj
t +Kj

t+1 = Y j
t + (1− δ)Kj

t ,

Y j
t = zjt (K

j
t )
θ(Ljt)

1−θ,

rjt = θ

(
Y j
t

Kj
t

)
. (8)

Note that we have replaced the agent specific variables by aggregate variables as within
country heterogeneity is irrelevant in the present context. The equations are respectively (1)
Euler equations (showing trade-off between consumption today and tomorrow), consumption-
leisure trade-off (should I consume more or enjoy leisure today?), aggregate resource con-
straint (all production is either consumed or invested), production function (outputs are
produced by combining labor and capital) and the interest rate. Wage rate can also be
pinned down from the same. See App. 5.3.3 for a detailed algorithm to solve the model in
conjunction with the LV mechanism and find the time-series generated by it.
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Figure 2: Time series properties of the model. Upper-Left panel: scatter-plot of output
deviations of the leader and the follower. Upper-right panel: scatter-plot of consumption
deviations of the leader and the follower. Due to consumption smoothing over time, this
graph shows more dispersion than the corresponding graph for output. Lower-left panel:
autocorrelation structure of output. Lower-right panel: same for consumption. Again, the
longer persistence is due to the consumption smoothing motive.

3 Behavior of the macro variables

The benefit of using this sort of models is that they allow us to tie the major aggregate vari-
ables neatly and study their time series property when subjected to exogenous productivity
shocks. However, the drawback is that there is no internal mechanism built into the model
which generates interesting time series behavior. In other words, all variables are driven
solely by the exogenous shocks and the properties of those shocks are transmitted to these
variables. There are other more elaborate models that deals with these kinds of issues (see
Ref. [33] for a short review) which we do not pursue here.

Figure 2 plots the response of the model for the tuning parameter κ = −100. The
upper-left quadrant plots the scatter plot of business cycle fluctuations of the leader and the
follower country. This property is directly inherited from the structure of the technology
evolution (see the lower-right inset of Fig. 1). The upper-right panel shows the scatter plot
of consumption response to the technology shocks. Note that the consumption pattern is
very different from that of output. This is because of consumption-smoothing property of
the agents in the economy. Capital formation provides a channel to smooth the consumption
stream and hence, it does not respond moderately to technology shocks. The lower-left panel
shows the autocorrelation structure of the GDP of the leading economy. The follower also
shows a similar behavior. It is interesting to see the similarity of the autocorrelation behavior
of the actual real world countries (Fig. 3). Given that the data set (Ref. [34]) contains
yearly data for 54 years only, some spurious correlation might be present at large values
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Figure 3: Autocorrelation structure of the business cycle component of per-capita output in
a sample of countries. It is noteworthy that all of the countries have non-linear dependence
on their past values, developed and emerging countries alike.

of lags. However, this finding is in line with the cross-correlation properties documented
in for example, Ref. [35]. The lower-right panel shows the autocorrelation function of the
consumption stream. Note that it is far more persistent than the GDP series because the
agents respond less to fluctuations and smooth consumption over time.

An important factor would be the effects of the tuning parameter κ on the dynamics
of the model. In Fig. 4, we show three cases of the dynamics of the models for different
values of κ. The cross-correlation structure remains qualitatively similar for the range of
values considered and it also clearly demonstrates the spill-over effects as we see that even
with substantial lags, the two time-series (for the leader and the follower) have non-trivial
correlations. The autocorrelation structure also has parallels with the actual data (Fig. 3).
The pattern of autocorrelations with alternating signs indicate non-linear dependence of the
present value of the variable considered on its past.

3.1 Lag-lead structure of booms and busts

Ref. [35] is a comprehensive study of the lag-lead structure of the countries in the European
Union. The model naturally generates a lag-lead structure in real activities. The aggregate
variables like GDP, consumption, investment as well as the prices like real wage rate, rental
rate follows the upturn and downturn in sync. Since the LV mechanism induces a lagged
correlation structure in the evolution of technology, that property is inherited by all other
variables. So a boom (bust) in the leading economy will be followed by a boom (bust) in
the follower. Note that even though the economies are in sync with each other at a certain
lag, individually they follow stochastic paths as the state of technology hits the economy at
random intervals.
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Figure 4: Correlation structure of the technology path for different values of κ which controls
the standard deviation of the stochastic process. Left column: Cross-correlation between the
leader and the follower. Middle column: autocorrelation for the leader. Right column: same
for the follower. In three rows, we show three cases, viz. κ = −1,−10,−100. The basic
cross-correlation and the autocorrelation pattern remains qualitatively similar for technology
processes with different standard deviation. The cross-correlation patterns clearly shows
the lagging effect of spill-overs of booms and busts from the leader to the follower. The
autocorrelation pattern shows alternating signs at different lags as in detrended per capita
output series.
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4 Summary

We have presented a model of technology evolution by applying the LV type nonlinear
interaction model that generates endogenous fluctuations. When coupled with a business
cycle framework, we show that this mechanism provides a way to capture cross-correlation
among countries. In particular, the lagged correlation structure between the leader in the
technology frontier and the follower is easily pinned down and shown with help of simulation.
As such, the multi-species competition models provide a way to think about countries in the
current world competing against each other along with different institutions making them
differently able to create or absorb innovations (Ref. [21]).

For the analysis of individual countries, we see that they have an autocorrelation structure
close to what is found in real data. Instead of a monotonic decay, it fluctuates a lot before
converging to zero. This feature has been found and addressed before in the business cycle
literature (Ref. [23], [24]). The present work provides a complementary view on the problem.

A direct mapping between how actual competition takes place in the real economy and
the LV mechanism has an issue. It appears in this case that the leader is spending resources
to develop a particular technology (or blue-print) for a production process, which is then
made available for free to the follower countries. In reality, many companies producing
the new technologies make huge profits by selling them to other countries. Thus it may
be argued that the potential benefits of being at the forefront outweighs the losses due
to investment and the follower countries remain behind all the time. Thus the advanced
countries are not ’preys’. While this criticism is correct, it is essentially a definitional issue.
The terms ’preys’ and ’predators’ are used for descriptive purposes. Actually, the fact that
less advanced countries remain behind is captured well through the time-series properties
as the model clearly shows how spill-over effects from the leader induce fluctuations in the
followers. Interestingly Ref. [36] considered a mathematical system to describe competitive
interaction between species (as opposed to the predator-prey interaction considered here) and
showed that the number of competing species is large enough, then a vast range of dynamical
behavior is possible in the system including but not limited to endogenous oscillation and
chaos. Although it lies beyond the scope of the present paper, it might provide a plausible
alternative.

Another important factor that lends credibility to the application of the LV model is
that the fluctuations are endogenous. While there are multiple reasons why economies show
fluctuations (e.g. technology shocks, monetary shocks, fiscal shocks, preference shocks etc.),
most of the standard models assume exogenous stochastic process to imitate the data. In
this case, both the fluctuation and the spill-overs are endogenous. In this regards, we should
also mention that there is a stream of literature based on the Goodwin model (Ref. [37], [38])
that shows that endogenous oscillation is possible. The current approach complements that
literature in terms of dynamic behavior. A comparison with the Goodwin model also shows
that those models are not micro-founded and based on certain equalities and identities linking
a number of macro variables. Also this class of models cannot be compared with data
easily. The present paper embeds the dynamical system into a clearly micro-founded set up
with completely rational agents optimizing over infinite future. Thus we avoid the criticism
routinely leveled against Goodwin type models that the assumptions regarding the agents’
behavior are ad-hoc. Still we retain the dynamical features and show that standard tools
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can be applied and the model can be taken to actual data.
The LV system of equations have been used to study multiple features of stock markets

(Ref. [17]). Here, we show that it can be used to model technology diffusion in a manner
consistent with data. Further explorations would be useful in terms of calibration and
potentially to predict downturns of the economies following the leaders due to spill-over
effects.

5 Appendix

Here we present a detailed discussion on data sources, de-trending techniques and an algo-
rithm to solve the model.

5.1 Data

To find out the business cycle component of output, we use an HP filter. A standard practice
is to decompose GDP per capita into two parts, business cycle and the trend component.
The second component is discarded as we do not focus on long-run behavior of the economy.
The data is obtained from Ref. [34] database that is freely available in the web. For each
country, the database contains data on GDP per capita at yearly frequency, the earliest year
being 1960. In principle, one can also use quarterly data without any major quantitative
and/or qualitative changes in the results.

Filtering the data The per-capita GDP data shows two features, (1) it usually grows
over time indicating a positive trend and (2) it shows fluctuations around the trend. Since
we are concerned about the fluctuations, we first de-trend the real data. Suppose we denote
log of income series by {yt}. Then

yt = gt + ct (9)

where gt is the trend component and ct is the cyclical component. Essentially the HP filter
solves for an estimation of gt by optimizing a penalized problem. The penalty parameter
(chosen by the programer) determines the smoothness of the trend. Once that is determined,
the cyclical component is estimated by solving (in vector notation)

{cestt } = {yt} − {gestt }. (10)

There are other filters like BK filter, but the standard practice to de-trend the data is to use
the HP filter. So that is what we use. The results presented do not depend crucially on the
method chosen for de-trending.

5.2 Calibration

The model presented in conjunction with the LV equations is the most basic business cycle
model. For calibration purpose, we have assumed the following parameter values: the dis-
count rate (β) = 0.99, capital intensity in the production function (θ) = 0.36, depreciation
rate (δ) = 0.025 and weight assigned to leisure in the utility function (A) = 1.72. These
values are fairly standard for calibration purpose (Ref. [33]). To solve the model numerically,
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one can use software like Dynare (freely available in internet as an add-on to Matlab) or just
solve and simulate the forward looking set of equations (Eqn. 8). A more technical point is
that while introducing the technology shocks to simulate the time path, we used deviation
from the steady state value to feed into the model so that fluctuations in variables are mea-
sured in terms of deviations from their respective steady states. Therefore, the shocks would
be expressed as

λj(t) = zj(t)− 〈zj(t)〉 for j ∈ {L, F}. (11)

5.3 Solving the model

In this section, we describe the algorithm for solving the model. For a comprehensive dis-
cussion, see Ref. [33]. Mathematically, we first log-linearize Eqn. 8 around the steady state.
Then deviations of all variables from their respective steady state values are linearly related
to each other.

5.3.1 log-linearization

Essentially for any variable xt in a dynamical equation, we substitute it by

xt = x̄ex̃t (12)

where x̃t is the log-deviation,
x̃t = log xt − log x̄. (13)

After substitution, we expand each variable by applying the formula

eθ = 1 + θ where θ → 0. (14)

After cancellation of common terms on both sides, we are left with the reduced form equations
describing the log-deviations of all variables in linear forms.

5.3.2 Solution of the forward-looking system of equations

For each economy in general, we end up with a system of equations of the following form (z
is the state of technology):

A1xt + A2xt−1 + A3yt + A4z̃t = 0,

Et[B1xt+1 +B2xt +B3xt−1 +B4yt+1 +B6yt +B7z̃t+1 +B8zt] = 0,

z̃t+1 = Cz̃t + εt (15)

where xt = K̃t+1, yt = {Ỹ , C̃, H̃, r̃}|t and A1,...4, B1,...8, C are appropriately defined matrices.
The last equation is an AR(1) approximation of the LV process. This system of equations
can be solved in the form

xt = D1xt−1 +D2z̃t,

yt = D3xt−1 +D4z̃t (16)

where D1,...4 are appropriately defined matrices.
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5.3.3 An algorithm to solve the model

Here we provide a step by step algorithm.

1. Simulate a baseline LV system for the leader L and follower F (Eqn. 6). Store the
time-series of technology generated. Let us call it {ZL, ZF}.

2. Sample the time-series with randomly distributed intervals. For the present case, I use
uniform distribution. Let us denote the sampled time-series {SL, SF}.

3. Transform the sampled time-series by Eqn. 7. This forms the series of technology
shocks. The parameter κ controls standard deviation of the series.

4. Solve the basic model to get a set of dynamic equations, viz. Eqn. 8.

5. Log-linearize it around the steady state (see App. 5.3.1 above) and generate Eqn. 16
as in App. 5.3.2.

6. Feed the series of technology shocks constructed above into Eqn. 16. This will generate
time-series of output (Y ), consumption (C) etc. for both the leader and the follower.

After we get the output series {Y L, Y F}, we can study the cross-correlation as well as
autocorrelation properties at various lags.
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