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Diptesh Ghosh

Abstract

A loop layout is a common layout used in flexible manufacturing. In such a layout, a set of
stations or facilities are to be arranged in a closed loop so that the total cost of flow between
each pair of facilities is minimized. The most common mathematical programming formulation
of the problem is based on a quadratic assignment formulation. In this paper, we modify that
formulation taking advantage of the structure of the problem.

Keywords: Flexible manufacturing, facility layout, bi-directional closed loop layout.

1 Introduction

The cost of material handling is one of the main contributors to the cost of operations in flexible
manufacturing, often varying between 15 to 70% of the total cost (see, e.g., Kim and Kim, 2000).
This cost depends on the efficiency with which a set of facilities (machines, stations, etc.) are
assigned to candidate positions, so that a material handling agent can transfer work in progress
from one facility to another. The candidate positions are arranged in a variety of ways, leading to
different layout designs.

The most common is the loop layout (see Figure 1), in which the candidate positions are arranged
around a closed loop. This layout is often seen when there is a radial arm which handles the inter-
station flow. The radial arm can either rotate in one direction, leading to a uni-directional loop
layout, or in both directions, leading to a bi-directional loop layout. The next most common layout

Figure 1: Loop layouts: Unidirectional (left) and Bi-directional (right)

is a linear layout (see Figure 2), in which positions are arranged in a line. This is common when the
inter-station flow is being handled on a straight conveyor belt. There are two variants of this layout,
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Figure 2: Linear layouts: Single row (left) and Double row (right)

the single row facility layout, in which the positions are on one side of the belt, and the double row
layout, in which the positions are on both sides of the belt. A third layout is called the semi-circular
layout (see Figure 3). This is a variant of the loop layout, where the positions are arranged in a
semi-circle rather than a complete loop.

Figure 3: Semi-circular layout

The loop layout problem is one of assigning facilities to positions such that the total cost of
material transfer among facilities is minimized. The total cost of flow between a pair of facilities is
taken as the product of the amount of flow between them and the distance between the facilities,
given their positions. Formally stated the problem is the following:

The Loop Layout Problem

Given A set of N facilities, labeled 1 through N , N positions on the circumference of a circle,
and the flow fij between facilities i and j for all facility pairs {i, j}.

Required An assignment of facilities to positions such that the total cost of sending flow among
all pairs of facilities is minimized.

The loop layout problem is called uni-directional or bi-directional depending on how the distance
between two facilities is computed. Suppose the facilities are at positions k and l. If the distance
between the positions is computed by traversing the circumference of the cycle only in the clockwise
direction (or, only in the counter-clockwise direction), the problem is called the uni-directional
loop layout problem. However, if the distance between the two positions is the smaller among two
distances, one when traveling clockwise from k to l, and the other when traveling counter-clockwise
from k to l, then the problem is called a bi-directional loop layout problem.

Several mathematical programming formulations of layout problems have been presented in the
literature, although the number of formulations of the linear layout problem (both single row an
double row layouts) is more than that for loop layout problems, especially in recent times. We refer
an interested reader to Anjos et al. (2005), Amaral (2008), Amaral (2009), Amaral and Letchford
(2012), Hungerländer and Rendl (2011), etc.

Afentakis (1989) first proposed a discrete formulation for the loop layout problem. Subsequently,
Kaku and Rachamadugu (1992), Kiran et al. (1992), Kiran and Karabati (1993),Bozer and Rim
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(1996), Altinel and Öncan (2005), and Öncan and Altinel (2008) have mostly modeled the uni-
directional version problem as a quadratic assignment problem. Sharp and Liu (1990) and Kiran
and Karabati (1993) have proposed alternative mixed integer programming models for the problem.
Saravanan and Ganesh Kumar (2013) provides an up to date review of the literature on loop layout
problems.

In this paper, we provide a formulation of a special case of the bi-directional loop layout problem
called the equidistant bi-directional loop layout problem (EBLLP). In this problem, each position is
at equal distances from its neighboring positions. Our formulation makes use of the various symmetry
conditions in the EBLLP. In Section 3, we provide an example explaining our formulation. The last
section is a summary of the contribution of the paper.

2 A Mathematical Model for the EBLLP

Let the indices l and k denote positions from 1 through N , and indices i and j denote facilities from
1 through N occupying positions. xpq, 1 ≤ p, q ≤ N are decision variables that obtain a value of 1 if
facility q occupies position p and 0 otherwise. The term dkl denotes the distance between positions
k and l, (l > k) and is calculated as

dkl =
2πr

N
×min{(l − k), (N + k − l)}

where r is the radius of the circle on which the facilities are arranged.

A mathematical programming formulation of the circular ordering problem is given below.

MODEL1: Minimize Z =

N−1∑
k=1

N∑
l=k+1

N∑
i=1

N∑
j=1,j 6=i

dklfijxkixlj

Subject to

N∑
i=1

xki = 1 for 1 ≤ k ≤ N (1)

N∑
k=1

xki = 1 for 1 ≤ i ≤ N (2)

xki ∈ {0, 1} for 1 ≤ k, i ≤ N.

Here z is the total “communication” cost incurred by the solution. Constraint set (2) ensures that
each position has one facility assigned to it, while constraint set (1) ensures that each facility occupies
only one position in the layout.

In the circular ordering problem, fij = fji for 1 ≤ i, j,≤ N . So

N∑
i=1

N∑
j=1,j 6=i

fijxkixlj = 2×
N−1∑
i=1

N∑
j=i+1

fijxkixlj .

Also, without loss of generality, we can specify that facility 1 occupies position 1 in the layout. If
this is specified, x11 = 1, so that

∑N
k=2 xk1 =

∑N
i=2 x1i = 0. The model can then be re-written as
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follows.

MODEL2: Minimize Z =

N∑
l=2

N∑
j=2

d1lf1jxlj + 2

N−1∑
k=2

N∑
l=k+1

N−1∑
i=2

N∑
j=i+1

dklfijxkixlj

Subject to

N∑
i=2

xki = 1 for 2 ≤ k ≤ N (3)

N∑
k=2

xki = 1 for 2 ≤ i ≤ N (4)

xki ∈ {0, 1} for 2 ≤ k, i ≤ N.

Constraint set (3) can next be used to modify the model and reduce the number of variables.
For each k, 2 ≤ k ≤ N ,

xkN = 1−
N−1∑
i=2

xki. (5)

So, this removes N − 1 variables from the formulation. However, the constraints that xkN ∈ {0, 1}
gets modified to constraints of the form

N−1∑
i=2

xki ≤ 1 for each k = 2, . . . , N. (6)

In a similar fashion, from constraint set (4) we see that for each i, 2 ≤ i ≤ N ,

xNi = 1−
N−1∑
k=2

xki, (7)

and the restriction on xNi to be binary yields constraints of the form

N−1∑
k=2

xki ≤ 1 for each i = 2, . . . , N. (8)

Also, since at most one among x52 through x5(n−1) can acquire a value of 1 in any feasible solution,
we have

N−1∑
k=2

N−1∑
i=2

xk1 ≥ N − 3. (9)

The objective function in MODEL2 can be written as Z = Z1+2Zr where Z1 =
∑N

l=2

∑N
j=2 d1lf1jxlj

is the cost of communication between facility 1 (located at position 1) with the other facilities, and

2Zr = 2
∑N−1

k=2

∑N
l=k+1

∑N−1
i=2

∑N
j=i+1 dklfijxkixlj is the cost of communication between all facilities

except facility 1.
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Now Z1 =

N∑
l=2

N∑
j=2

d1lf1jxlj

=

N∑
l=2

d1l

{
N−1∑
j=2

f1jxlj + f1NxlN

}

=

N∑
l=2

d1l

{
f1N +

N−1∑
j=2

(f1j − f1N )xlj

}
(using eqn (5))

=

N∑
l=2

d1lf1N +

N∑
l=2

d1l

N−1∑
j=2

(f1j − f1N )xlj

=

N∑
l=2

d1lf1N +

N−1∑
l=2

d1l

N−1∑
j=2

(f1j − f1N )xlj + d1N

N−1∑
j=2

(f1j − f1N )xNj

=

N∑
l=2

d1lf1N +

N−1∑
l=2

d1l

N−1∑
j=2

(f1j − f1N )xlj +

d1N

N−1∑
j=2

(f1j − f1N )

(
1−

N−1∑
l=2

xlj

)
(using eqn (7))

=

N∑
l=2

d1lf1N + d1N

N−1∑
j=2

(f1j − f1N ) +

N−1∑
l=2

d1l

N−1∑
j=2

(f1j − f1N )xlj − d1N
N−1∑
j=2

(f1j − f1N )

N−1∑
l=2

xlj

=

N∑
l=2

d1lf1N + d1N

N−1∑
j=2

(f1j − f1N ) +

N−1∑
j=2

N−1∑
l=2

(d1l − d1N )(f1j − f1N )xlj . (10)

Note that d1p = d1(N+1−p) for all i, 2 ≤ i ≤ N/2. So the coefficients of xpj and x(N+1−p)j in the

expansion of
∑N

l=2

∑N
j=2 d1lf1jxlj will be identical for all p, 2 ≤ p ≤ N/2. So when equation (7) is

applied to obtain expression (10) for Z1, the expression will not include terms x2,j , j = 2, . . . , N −1.

Similarly Zr =

N−1∑
k=2

N∑
l=k+1

N−1∑
i=2

N∑
j=i+1

dklfijxkixlj

=

N−1∑
k=2

N∑
l=k+1

dkl

N−1∑
i=2

{
N−1∑
j=i+1

fijxkixlj + fiNxkixlN

}

=

N−1∑
k=2

N∑
l=k+1

dkl

N−1∑
i=2

{
N−1∑
j=i+1

fijxkixlj + fiNxki

(
1−

N−1∑
j=2

xlj

)}
(using eqn (5))

=

N−1∑
k=2

N∑
l=k+1

dkl

N−1∑
i=2

fiNxki +

N−1∑
k=2

N∑
l=k+1

dkl

N−1∑
i=2

N−1∑
j=i+1

(fij − fiN )xkixlj

=

N−1∑
k=2

N−1∑
i=2

N∑
l=k+1

dklfiNxki +

N−1∑
k=2

N−1∑
i=2

N−1∑
j=i+1

{
N−1∑
l=k+1

dkl(fij − fiN )xkixlj +

dkN (fij − fiN )xkixNj

}
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=

N−1∑
k=2

N−1∑
i=2

N∑
l=k+1

dklfiNxki +

N−1∑
k=2

N−1∑
i=2

N−1∑
j=i+1

{
N−1∑
l=k+1

dkl(fij − fiN )xkixlj +

dkN (fij − fiN )xki

(
1−

k∑
l=2

xlj −
N−1∑
l=k+1

xlj

)}
(using eqn (7))

=

N−1∑
k=2

N−1∑
i=2

N∑
l=k+1

fiNdklxki +

N−1∑
k=2

N−1∑
i=2

N−1∑
j=i+1

dkN (fij − fiN )xki +

N−1∑
k=2

N−1∑
i=2

N−1∑
j=i+1

N−1∑
l=k+1

(dkl − dkN )(fij − fiN )xkixlj −

N−1∑
k=2

N−1∑
i=2

N−1∑
j=i+1

k∑
l=2

dkN (fij − fiN )xkixlj . (11)

Using expressions (10) and (11) for Z1 and Zr respectively, the cost function Z for the circular
ordering problem can be written as

Z =Z1 + 2Zr

=

N∑
l=2

d1lf1N +

N−1∑
j=2

d1N (f1j − f1N ) +

N−1∑
j=2

N−1∑
l=2

(d1l − d1N )(f1j − f1N )xlj + 2

N−1∑
k=2

N−1∑
i=2

N∑
l=k+1

fiNdklxki + 2

N−1∑
k=2

N−1∑
i=2

N−1∑
j=i+1

dkN (fij − fiN )xki +

2

N−1∑
k=2

N−1∑
i=2

N−1∑
j=i+1

N−1∑
l=k+1

(dkl − dkN )(fij − fiN )xkixlj − 2

N−1∑
k=2

N−1∑
i=2

N−1∑
j=i+1

k∑
l=2

dkN (fij − fiN )xkixlj .

Since the terms
∑N

l=2 d1lf1N and d1N
∑N−1

j=2 (f1j − f1N ) are independent of xki values, the circular
ordering problem is the problem of minimizing the following non-linear function subject to the
constraint sets (6) and (8).

Z =

N−1∑
j=2

N−1∑
l=2

(d1l − d1N )(f1j − f1N )xlj + 2

N−1∑
k=2

N−1∑
i=2

N∑
l=k+1

fiNdklxki + 2

N−1∑
k=2

N−1∑
i=2

N−1∑
j=i+1

dkN (fij − fiN )xki +

2

N−1∑
k=2

N−1∑
i=2

N−1∑
j=i+1

N−1∑
l=k+1

(dkl − dkN )(fij − fiN )xkixlj − 2
N−1∑
k=2

N−1∑
i=2

N−1∑
j=i+1

k∑
l=2

dkN (fij − fiN )xkixlj .

(12)

3 An Example

Consider an instance of circular ordering in which we have to order five facilities around a circle.
The frequency of communication between pairs of facilities is given in the table below.

F = [fij ] 1 2 3 4 5

1 - 5 2 7 8
2 5 - 6 4 3
3 2 6 - 9 1
4 7 4 9 - 7
5 8 3 1 7 -
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Without loss of generality, we assume that the radius of the circle is 5/2π units so that the distance
between consecutive positions is 1 unit. We also assume that facility 1 is located at position 1 (as
specified in MODEL2).

In this example, the term Z1 when evaluated without making use of equations (5) and (7) is
given by

Z1 = 5x22 + 2x23 + 7x24 + ‘ 8x25 +

10x32 + 4x33 + 14x34 + 16x35 +

10x42 + 4x43 + 14x44 + 16x45 +

5x52 + 2x53 + 7x54 + 8x55.

From (5) x25 = 1− (x22 + x23 + x24); x35 = 1− (x32 + x33 + x34); x45 = 1− (x42 + x43 + x44); and
x55 = 1− (x52 + x53 + x54). Substituting these terms,

Z1 = 48− 3x22 − 6x23 − x24 − 6x32 − 12x33 − 2x34 − 6x42 − 12x43 − 2x44 − 3x52 − 6x53 − x54.

Next from (7) x52 = 1−(x22 +x32 +x42); x53 = 1−(x23 +x33 +x43); and x54 = 1−(x24 +x34 +x44).
Substituting these terms,

Z1 = 38− 3x32 − 6x33 − x34 − 3x42 − 6x43 − x44; (13)

corresponding to expression (10).

The term Zr when evaluated without making use of equations (5) and (7) is given by

Zr =6x22x33 + 4x22x34 + 3x22x35 + 9x23x34 + 1x23x35 + 7x24x35 +

12x22x43 + 8x22x44 + 6x22x45 + 18x23x44 + 2x23x45 + 14x24x45 +

12x22x53 + 8x22x54 + 6x22x55 + 18x23x54 + 2x23x55 + 14x24x55 +

6x32x43 + 4x32x44 + 3x32x45 + 9x33x44 + 1x33x45 + 7x34x45 +

12x32x53 + 8x32x54 + 6x32x55 + 18x33x54 + 2x33x55 + 14x34x55 +

6x42x53 + 4x42x54 + 3x42x55 + 9x43x54 + 1x43x55 + 7x44x55.

Using equations (5) to eliminate x35, x45, and x55, we have

Zr =15x22 + 5x23 + 35x24 + 9x32 + 3x33 + 21x34 + 3x42 + x43 + 7x44 +

3x22x33 + x22x34 + 8x23x34 + 6x22x43 + 2x22x44 + 16x23x44 + 6x22x53 + 2x22x54 +

16x23x54 + 3x32x43 + x32x44 + 8x33x44 + 6x32x53 + 2x32x54 + 16x33x54 + 3x42x53 +

x42x54 + 8x43x54 − 3x22x32 − 7x24x32 − 7x24x33 − 7x24x34 − 6x22x42 − 2x23x42 −
2x23x43 − 14x24x42 − 14x24x43 − 14x24x44 − 6x22x52 − 2x23x52 − 2x23x53 − 14x24x52 −
14x24x53 − 14x24x54 − 3x32x42 − 7x34x42 − 7x34x43 − 7x34x44 − 6x32x52 − 2x33x52 −
2x33x53 − 14x34x52 − 14x34x53 − 14x34x54 − 3x42x52 − 7x44x52 − 7x44x53 − 7x44x54 −
x23x32 − x23x33 − x33x42 − x33x43 − x43x52 − x43x53.

Next using equations (7) to eliminate x52, x53, and x54, and noting that for any binary variable y,
y2 = y, we get

Zr =23x22 + 19x23 + 7x24 + 17x32 + 17x33 − 7x34 + 7x42 + 8x43 − 7x44 −
x22x33 + 13x22x34 + 6x23x34 + x22x43 + 7x22x44 + 7x23x44 − 2x32x43 + 6x32x44 − x33x44 +

9x22x32 + 5x24x32 − 9x24x33 + 21x24x34 + 3x22x42 − 3x23x42 + x23x43 − x24x42 − 8x24x43 +

7x24x44 + 6x32x42 + 6x34x42 − x34x43 + 14x34x44 − 5x23x32 + 3x23x33 − 2x33x42 + 2x33x43 +

6x44x42 − x44x43 − 2x43x42 − 4x22x23 + 12x22x24 − 2x23x24 − 4x33x32 + 12x34x32 − 2x34x33.
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This corresponds to expression (11).

So the cost function for the instance is given by

Z =Z1 + 2Zr

=38 + 46x22 + 38x23 + 14x24 + 31x32 + 28x33 − 15x34 + 11x42 + 10x43 − 15x44 −
=2x22x33 + 26x22x34 + 12x23x34 + 2x22x43 + 14x22x44 + 14x23x44 − 4x32x43 + 12x32x44 − 2x33x44 +

=18x22x32 + 10x24x32 − 18x24x33 + 42x24x34 + 6x22x42 − 6x23x42 + 2x23x43 − 2x24x42 − 16x24x43 +

=14x24x44 + 12x32x42 + 12x34x42 − 2x34x43 + 28x34x44 − 10x23x32 + 6x23x33 − 4x33x42 + 4x33x43 +

=12x44x42 − 2x44x43 − 4x43x42 − 8x22x23 + 24x22x24 − 4x23x24 − 8x33x32 + 24x34x32 − 4x34x33;

and the solution to the instance will be the minimizer of this function subject to the constraints

4∑
i=2

xki ≤ 1 for each k = 2, . . . , 4;

4∑
k=2

xki ≤ 1 for each i = 2, . . . , 4;

4∑
k=2

4∑
i=2

xk1 ≥ 2;

and the condition that all xij variables are binary variables.

4 Summary

In this paper we formulated a bi-directional loop layout problem with equidistant facilities as a
quadratic programming problem. Using the quadratic assignment problem as a base, we use the
symmetry properties of the problem to simplify the cost function. We also convert the constraints
of the problem from the more restrictive equality constraints to the less restrictive inequality con-
straints. We provide an example of our formulation on a problem with five facilities and five candidate
locations.

The formulation presented here is amenable to the use of preprocessing rules and solution through
branch and bound procedures. These will be interesting directions for further research on this
problem.
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