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ABSTRACT 

 
In this paper, we survey 82 papers related to revenue management and dynamic pricing of 

electricity and lists future research avenues in this field. Dynamic pricing has the potential to 

modify electric load profiles by charging different prices at different demand levels and hence 

can act as an effective demand side management tool.  There are different forms of dynamic 

prices that can be offered to different markets and customers.  Forecasting of demand, and 

demand price relationship play an important role in determining prices and helps in scheduling 

load in dynamic pricing environments. Consumers‘ willingness-to-pay for electricity services is 

also necessary in setting price limits. Elasticity of demand is an indication of the demand 

response to changing prices. Market segmentation can enhance the effects of such pricing 

schemes. Appropriate scheduling of electrical load enhances the consumer response to dynamic 

tariffs.  
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Introduction  

Electricity markets generally offer a flat tariff structure to consumers. Implementation of 

dynamic pricing of electricity is mostly restricted to block pricing in which the per unit rate of 

electricity increases or sometimes decreases after the consumption of a certain amount (block) of 

electricity. Electricity prices typically do not experience the full effects of market forces and 

hence do not reflect the true costs of generation and distribution. Peaks in load profiles are a 

result of unregulated demand, and huge capacity addition is required to meet peak load. This 

peak-load capacity stays idle during off-peak periods resulting in a loss of opportunity cost and 

system efficiency. Although flat rates offer uncertainty-free electricity bills to customers, it may 

require costly capacity additions, most of which are environmentally harmful. Dynamic tariff 

structures have the potential to flatten demand profiles and thus help power suppliers to reduce 

expenditure on capacity addition and efficiently plan electricity generation and distribution. 

Dynamic tariffs also provide each consumer with an opportunity to reduce his/her electricity bill 

at a constant consumption level just by shifting load. Knowledge about the demand-price 

relationship for electricity, consumers‘ willingness-to-pay for electricity, and demand forecasts 

are necessary for suppliers to plan their supply and tariff structures. Effective scheduling of 

electrical load can help consumers to reduce their electricity bills by increasing consumption 

when prices are low and reducing consumption when prices are high. Demand patterns and 

elasticity of demand vary from consumer to consumer and thus segmentation of the electricity 

market can prove to be helpful. Suppliers can offer suitable pricing schemes in properly 

segmented markets to boost their revenue. Supporting technologies can further bridge the 

demand-supply gaps in electricity markets. Published literature review on the multiple aspects of 

dynamic pricing of electricity is not available. We try to address this gap by surveying 82 

published works in this field. 

This paper is organized as follows. Review of studies on experiments using dynamic pricing in 

electricity is followed by discussions on works on various issues relating to dynamic prices in 

electricity. These include retail electricity pricing, wholesale market pricing, forecasting of price 
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and demand, elasticity of demand, customers‘ willingness-to-pay for electricity, the effect of 

enabling technologies, electricity market segmentation and consumption scheduling. Thereafter, 

future avenues of research in this field are discussed followed by a conclusion. A list of 

references used in this survey paper is provided in the end. While we have looked into several 

publications in open literature, we do not claim the survey to be an exhaustive literature search.   
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Experimentations with Dynamic Pricing in Electricity 

Dynamic tariffs are implemented in the electricity sector at different geographical locations 

through pilot projects. These experiments highlight a number of interesting insights about the 

nature of consumers regarding their response to electricity price signals. It is evident from most 

of these experiments that the price and income elasticity of demand for residential electricity is 

low, but other lifestyle and behavioral factors can significantly impact the same. A list of some 

research works based on such experiments and their important deductions are presented below.  

Reference Summary of Research Works 

Faruqui & 

Sergici, 2014 

The authors observe a large variation of demand response in data from 163 pricing 

treatments in 34 projects across 7 countries in an international database ‗Arcturus‘. 

They also find that the demand response depends on ratio of the peak and off-peak 

prices. The response curves are nonlinear. Consistent results show that dynamic 

pricing can modify load profiles. 

Faruqui et 

al., 2009 

Based on various experimental studies, the authors note that sampling should 

consider an estimate of net benefit of implementation, cost of experimentation, 

good probability of making the right decision, and internal and external validity of 

collected data. They propose the Gold standard of experimental design which 

includes control group and treatment group/s and pre and post data. They propose 

simple, revenue neutral and cost reflecting rate design, short peak period, strong 

price signal, and opportunity for significant bill saving. 

Faruqui et 

al., 2014 

The authors observe that customers‘ response to dynamic prices increases with 

enabling technology. Price responsiveness is higher in hotter climates. Residential 

customers respond better to dynamic prices than commercial and small industrial 

customers. ―Hardship Low Income Customers‖ respond less than others mainly 

because their consumption is low and indispensible, leaving them no opportunity 

to reduce their consumption further. 

Filippini & 

Pachauri, 

2004 

The authors analyze data from 30000 households in India and develop three 

electricity demand functions one each for winter, monsoon, and summer seasons. 

Their work demonstrates that electricity demand is price and income inelastic but 

varies with household, demographic, and geographical variables. 
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Bose & 

Shukla, 1999 

The authors examine the econometric relationship between electricity 

consumption and other variables at a national level in India with more than 9 years 

data. They find that electricity consumption in commercial and large industrial 

sectors is income elastic, while in the residential, agricultural, and small and 

medium industries, it is income inelastic. 

Tiwari, 2000 The author analyzes household survey data from Mumbai in India for short-run 

income and price elasticity. The residential sector, a major contributor to demand, 

comprises mainly lighting and comfort applications. Demand is found to be both 

price and income inelastic and the upper middle class responds the most to price 

signals. 

Zhou & 

Teng, 2013  

The authors find that the price and income elasticity of demand are low for urban 

residential demand in China. They argue that lifestyle and demographic variables 

play a significant role in explaining electricity demand. 

Abreu et al., 

2010 

The authors observe 15 households for 270 days in an interdisciplinary study 

about residential electricity consumption using electronic meters. They emphasize 

the need for knowledge about customer characteristics and behavior. Although the 

sample size is small, the authors find potential for improvement of energy 

efficiency from large consumer appliances. 

 

Issues Related to Dynamic Pricing in Electricity 

There are several issues related to dynamic pricing of electricity that are important in the event of 

a   practical application of the concept. This section includes retail and wholesale pricing, 

demand and price forecasting, demand elasticity, consumers‘ willingness-to-pay, enabling 

technologies, market segmentation, and consumption scheduling.  

Retail Electricity Pricing 

The retail price of electricity commands the demand profile of the retail electricity sector. Any 

demand side management effort involves appropriate designing of price schemes. This section 

describes the various possible pricing schemes and the importance of dynamic tariffs. 
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Electricity Pricing Schemes 

Electricity prices can be broadly categorized into two types - static prices that do not change with 

a change in demand and dynamic prices that change with changing demand situation. (Faruqui & 

Palmer, 2012), (Simshauser & Downer, 2014), (Desai and Dutta, 2013) and (Quillinan, 2011) 

describe various pricing schemes as mentioned below. 

a. Flat tariffs: Price remains static even though power demand changes. Consumers under 

such a scheme don‘t face the changing costs of power supply with a change in aggregate 

demand. Thus, consumers have no financial incentive to reschedule their energy usage. 

They don‘t face any risk of high value electricity bills for any unavoidable or unplanned 

electricity consumption. Hence this scheme is often used as a welfare pricing scheme.  

b. Block Rate tariffs: This scheme differentiates between customers based on the quantity of 

electricity consumption. The scheme consists of multiple tiers characterized by the amount 

of consumption. Inclining rate schemes increase the per-unit rate with increasing 

consumption and declining schemes do the opposite. 

c. Seasonal tariffs: These schemes observe different rates in different seasons to match the 

varying demand levels between seasons. Energy is charged at a higher rate during high 

demand seasons and the price lowers during low demand seasons. 

d. Time-of-use (TOU) tariff: These are pre declared tariffs varying during the different times 

of the day, that is, high during peak hours and low during off-peak hours. Such schemes 

can stay effective for short or long terms. This is also known as time-of-day (TOD) tariff. 

e. Super peak TOU: It is similar to TOU but the peak window is shorter in duration (about 

four hours) so as to give a stronger price signal. 

f. Critical peak pricing (CPP): This is a pricing scheme in which consumers are charged a 

high fixed rate during a few peak hours of the day and a discounted rate during the rest of 

the day. It gives a very strong price signal and enhances the reduction of excessive peak 

load. 
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g. Variable peak pricing (VPP): This is quite similar to CPP with the only difference that the 

peak prices are not fixed, and vary from day to day. The consumers are informed about 

such peak prices beforehand.  

h. Real time pricing (RTP): This is the purest form of dynamic pricing and the scheme with 

the maximum uncertainty or risk involved for the consumers. Here the prices change at 

regular intervals of one hour or less and the consumers are made aware of the prices 

beforehand as per the design of the scheme. The change in prices in small intervals 

increases the efficiency of the pricing scheme in reflecting the actual costs of supply, but 

such schemes require advanced technology to communicate and manage these frequent 

changes.  

The diagram below shows the relative risk-reward positions of the schemes described above 

from the consumers‘ point of view. 

 
Fig. 1 - Risk-Reward mapping of dynamic tariff types. Image source: (Faruqui et al. 2012).  

 



 
 

  
 

 
 

 
 

W.P.  No.  2015-08-03 Page No. 9 

There can be various hybrid schemes by combining the basic schemes described earlier, based on 

situational requirements. Peak time rebates (PTR) also fulfill the objective of flattening the 

demand profile. These rebates are just the opposite of CPP schemes - they are provided for 

consuming below a certain pre-determined level during peak hours, and can be redeemed at a 

later time.  

Pricing in Retail Electricity 

Pricing in competitive markets generally depends on customers‘ perceived value and producers‘ 

supply cost and tends to be dynamic in nature. However, regulated markets generally experience 

flat tariffs that do not reflect the supply costs. (Desai and Dutta, 2013) prove that dynamic 

pricing is more efficient than traditional flat rate tariffs as it utilizes the consumer surplus and 

reduces peak loads. Various processes of developing price are studied which are as follows. 

(Harris, 2006) describes a way of deriving the price of electricity by indexing it against a 

weighted average of present and past wholesale rates. (David & Li, 1993) state that both 

concurrent prices and prices at other times affect the demand response to dynamic tariffs, thus 

demonstrating cross-elasticity of demand. They develop theoretical frameworks that address the 

price formation problem with cross elasticity of demand under certain conditions. (Skantze et al., 

2002) show that delay of information flow between different markets causes price variations. 

Prices are correlated only if the markets are connected by transmission lines which are not 

congested. 

(Stephenson et al., 2001) mention that variations in electricity pricing schemes may depend on 

several factors like thermal storage, combined heat and power generation, auto-producers, 

photovoltaic, net metering, small hydropower plants, dynamic tariffs, renewable energy, green 

tariffs, and consumer characteristics like consumption pattern. (Garamvölgyi & Varga, 2009) 

show that prices can be designed by using artificial intelligence techniques to classify consumers 

based on procurement costs. (Holtschneider & Erlich, 2013) develop mathematical models based 

on neural networks for modeling consumers‘ demand response to varying prices. Their model is 

used to identify an optimal dynamic pricing by Mean-Variance Mapping Optimization method. 
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(Seetharam et al., 2012) develop a real-time self-organizing pricing scheme, called Sepia, to 

compute the unit price of electricity based on consumption history, grid load, and type of 

consumer. This pricing scheme is decentralized and a grid frequency is used for grid load 

measurement in smart meters for determining the subsequent unit price of electricity. (McDonald 

& Lo, 1990) mention that an appropriate social basis of price designs for retail electricity 

includes welfare considerations for both consumers as well as suppliers. (Li et al., 2003) express 

the price-deriving objective as a non-linear optimization problem leading to welfare, yet 

reflecting the competitive relations among generation companies, utilities, and customers. 

Wholesale Market Pricing 

Electricity is traded in a wholesale market for industrial customers and electricity retailers. The 

market price for a future time frame is discovered through a bidding process in the bulk 

electricity markets. (Kirschen et al., 2000) illustrate a method of determining market price 

through bidding. The lowest bid price is set by the supplier based on its costs of supplying a 

quantity of electricity for a future time period. Then a pool of bid prices is accepted from bulk 

buyers. The selection of the bids is done from the highest priced one, in the order of decreasing 

prices, till the cumulative demand matches the supply. The last accepted bid price from the pool 

of selected bids sets the market price. However, the key price design decisions can depend on 

factors like contract pricing or compulsory pool pricing, one-sided or two-sided bids, firmness of 

bids or offers, simple or complex bids, price determination timing with respect to actual delivery, 

capacity payments, geographically-differentiated pricing and price capping. 

(David and Wen, 2000) conduct a review of literature to discuss bidding by individual 

participants for individual profit maximization. They also discuss the role of regulators in 

limiting possible market abuse by some participants. The survey reveals that oligopoly exists in 

the market, instead of perfect competition, due to the several characteristics of the electricity 

market that restrict the number of suppliers. Different methods and ideas are used to model bid 

prices as follows. (Li et al., 1999) represent electricity trade as a two level optimization process. 

A priority list method through a ―Centralized Economic Dispatch‖ (CED) is used in the top level. 
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The lower level has sub-problems of decentralized bidding. Here, hourly bid curves are 

developed for the CED by using self-unit scheduling based on parametric dynamic 

programming. Both the levels focus on revenue maximization rather than on cost minimization. 

(Zhang et al., 2000) develop bidding and self-scheduling models using probability distributions 

and Lagrangian relaxation respectively. (Weber and Overbye, 1999) use a two-level optimization 

problem to determine the optimal power flow considering social welfare. They determine a Nash 

equilibrium along with a market price with all participants trying for individual profit 

maximization.  

(Krause and Andersson, 2006) use agent-based simulators to demonstrate different congestion 

management schemes such as market splitting, locational marginal pricing, and flow-based 

market coupling. The welfare aspects of different pricing schemes are analyzed in these methods 

to arrive at suitable market power allocations. (Zhao et al., 2010) explain that the ‗bid cost 

minimization‘ technique, generally used in the wholesale market, actually provides a much 

higher cost than the minimum bid cost. The authors use game theoretic approaches and propose 

that ‗payment cost minimization‘ is a better technique from the consumer welfare point of view 

as it directly minimizes the payment made by consumers. (Zhao et al., 2008) further introduce 

transmission constraints in the problem, making it complicated but more realistic. (Han et al., 

2010) use CPLEX‘s MIP for this problem to find low efficiencies. They overcome this problem 

by ‗objective switching method‘ in which the feasible region is reduced by performance cuts to 

minimize infeasibilities and improve efficiency. 

Forecasting 

Forecasting is an integral part of revenue management. Designing of dynamic prices requires 

forecasts of future demand and scheduling consumption requires forecasts of future prices. 

Forecasting thus provides a platform for planning for the future in case of dynamic tariffs for all 

concerned parties. This section describes works on price and demand forecasting in the 

electricity sector. 
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Price Forecasting 

Retail price forecasts help consumers to preplan their consumption in a dynamic pricing 

environment whereas wholesale price forecasts assist buyers and sellers in planning for bidding 

strategies. (Nogales et al., 2002) develop forecasting models based on dynamic regression and 

transfer function approaches. The authors use data from Spain and California with high levels of 

accuracy. However, (Contreras et al., 2003) find reasonable errors with the application of 

ARIMA models on the data from the same markets. (Zareipour et al., 2006) use ARIMA models 

to forecast Ontario‘s hourly prices from publicly available market information with significant 

accuracy, failing only to predict unusually high or low prices. (Mandal et al., 2006) observe 

improved forecasting accuracy by using the artificial neural network computing technique based 

on similar days approach. They identify time factors, demand factors, and historical price factors 

that impact price forecasts. (Catalao et al., 2006) note that neural networks for next day price 

forecasting display sufficient accuracy for supporting bidding strategy decisions. (Kekatos et al., 

2013) examine the Kernel-based day-ahead forecasting method and prove its market worthiness. 

Demand Forecasting 

Electricity suppliers can better plan their supply and generating capacities with appropriate 

demand forecasts. Demand can be forecasted daily, weekly, monthly or annually.  Short-term 

load forecasts from minutes to several hours ahead are required for controlling and scheduling of 

power systems. Long term forecasts help in planning investments, overhauls, and maintenance 

schedules. (Taylor et al., 2006) compare the accuracy of six univariate methods for forecasting 

short-term electricity demand and find that simple and more robust methods (i.e. exponential 

smoothing) outperform more complex alternatives. The complex methods are seasonal ARIMA, 

neural networks, double seasonal exponential smoothening, and principal component analysis 

(PCA). (Taylor, 2003) implements double seasonal Holt-Winters exponential smoothening for 

within-day and within-week seasonality. This method proves to be more effective than ARIMA 

and the standard Holt-Winters method for short-term demand forecasting. They correct the 

residual autocorrelation by using a simple autoregressive model. (Taylor, 2010) incorporates 
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within-year seasonal cycle as an extension of the double seasonal model. This triple seasonal 

model performs better than the double seasonal model and the univariate neural network 

approach. (Wang et al., 2009) demonstrate reduced errors in forecasts done by feeding a single 

order moving average smoothened data to a ɛ-SVR (ɛ -insensitive loss function support vector 

regress) model. 

(Mirasgedis et al., 2006) incorporate weather influences in the medium-term electricity demand 

forecasts that can range up to 12 months. Meteorological parameters, like relative humidity and 

temperatures that affect the electricity demand are used along with autoregressive model to 

reduce serial correlation for four different climatic scenarios. (Zhou, Ang and Poh, 2006) show 

that the trigonometric grey model (GM) prediction approach, by combining GM(1,1) with 

trigonometric residual modification technique, can improve the forecasting accuracy of GM(1,1). 

(Akay and Atak, 2007) predict Turkish electricity demand using grey prediction with the rolling 

mechanism approach that displays high accuracy with limited data and little computational 

efforts. (Hyndman and Fan, 2010) use semi-parametric additive models that  estimate 

relationships between demand and other independent  variables and then forecast the density of 

demand by simulating a mixture of these variables. (McSharry et al., 2005) provide probabilistic 

forecasts for magnitude and time of future peak demand from simulated weather data, as real 

data is unavailable. (Saravanan et al., 2012) apply multiple linear regression and artificial neural 

networks with principle components for forecasts made in India. They use eleven input variables 

and show that the second method is more effective. 

Elasticity of Electricity Demand 

 A clear idea of the demand-price relationship or elasticity is helpful for effective demand side 

management (DSM). (Borenstein et al., 2002) explain that elasticity of demand can be short-run 

as well as long-run. In Short-run elasticity we describes the price-response from the system with 

its current infrastructure and equipment. In long-run elasticity, we consider the investments that 

can be made in response to higher prices during a longer time span. (Wolak, 2011) observes that 

electricity markets mostly have low elasticity of demand, at least in the short-run. Dealing with 
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low demand elasticity leads to the implementation of large price spikes in spot pricing markets. 

He concludes that consumer response is roughly similar for short hourly peaks and longer 

periods of high price. (Ifland et al., 2012) reveal a steep slope of the demand curve from a study 

of the German electricity market. However, this field test proves that dynamic tariffs can 

increase demand elasticity and demand curves are more elastic during winter and less elastic 

during summer. (Kirschen, 2003) also observes that implementation of dynamic pricing 

definitely increases the elasticity of demand. He further notes that demand curves are steep, and 

shift, depending on the time of day or day of week. (Shaikh & Dharme, 2009) explain the 

seasonal variation of load curve with TOU tariffs in the Indian context.  

(Kirschen et al., 2000) study the short term price response in the electricity market of England 

and Wales. In this case half-hourly prices are announced 13 hours in advance. The authors study 

cross-elasticity of demand along with self-elasticity. Cross elasticity is measured as the rate of 

change of demand for one time period with respect to change in the price of another time period. 

They form a 48 by 48 matrix of elasticity coefficients. They further establish that the consumer 

reaction to a price increase in the short-run is rare unless the price increase is significantly high. 

This low demand response can be because of consumption scheduling that involves some 

relatively cumbersome technology. The authors observe that consumers respond more to short-

term price hikes than to short-term price drops. They develop a non-linear elasticity function 

from this study. However, (Braithwait, 2010) explains that there can be no particular formula for 

determining the amount of demand response, which varies across customer types, events, and 

types of price structures. 

Willingness-To-Pay for Electricity  

Designing any dynamic pricing scheme requires knowledge about the consumer‘s willingness-to-

pay (WTP) for electricity and associated infrastructure. (Devicienti et al., 2005) study a TERI 

report that uses the contingent valuation method to determine the WTP for additional service 

features like reliability of supply. However, a portion of the respondents do not believe in the 

possibility of the improved scenario projected by the hypothetical market used in this process. 



 
 

  
 

 
 

 
 

W.P.  No.  2015-08-03 Page No. 15 

Consumers find it difficult to comprehend electricity consumption in terms of KWh. Thus the 

study phrases consumption in terms of ‗appliance capacity‘ or ‗hours of use‘ of each appliance. 

Stated choice experiments can be helpful in this case. (Twerefou, 2014) uses the contingent 

valuation method in Ghana and discovers that consumers‘ WTP is 1.5 times more than the 

market price of electricity. The author identifies significant factors that influence households‘ 

WTP through an econometric analysis of the data from this study. (Ozbafli and Jenkins, 2013) 

study 350 households in North Cyprus using the choice experiment method. They indicate that 

the electricity industry can experience an annual economic benefit of 16.3 million USD by 

adding 120 MW capacity, since consumers are ready to pay more for uninterrupted power 

supply. 

(Gerpott and Paukert, 2013) estimate the WTP for smart meters using responses from 453 

German households through online questionnaires. The authors use variance-based ‗Partial Least 

Squares‘ Structural Equation Modeling and find that ‗trust for data protection‘ and ‗intention to 

change usage behavior‘ are the most influential factors for WTP. (An et al., 2002) calculate 

Chinese consumers‘ WTP for shifting from firewood to electricity. They use stated preference 

data from personal interviews to estimate the parameters of a binary logit model from a random 

utility model. The authors calculate the probabilities of adopting electricity at different prices. 

(Oseni, n.d.) explains that the ownership of a backup generator significantly increases the WTP 

for reliable grid supply in Nigeria. The author uses event study methods and discovers that the 

higher cost of backup generation with respect to the stated WTP amount causes this behavior.   

 

Dynamic Price Enabling Technology 

Dynamic pricing enabling technologies help in dealing with price and quantity signals. These 

technologies provide effective communication of the signals to consumers and sometimes also 

provide a suitable automated response from them. Technology helps in speeding up operations 

and enables efficient implementation of dynamic prices. (Ifland et al., 2012) conduct a field test 

in a German village that represents 50% of German living conditions. Consumers respond to 

flexible prices even without the aid of home automation but automation technology is required to 
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increase night-hour consumptions. (Faruqui and Sergici, 2009) examine evidences from 15 

dynamic pricing experiments and reveal that the magnitude of response of retail electricity 

customers to pricing signals depends on factors like ‗extent of price change‘, ‗presence of central 

air conditioning ‘, and ‗availability of enabling technologies‘. (Thimmapuram and Kim, 2013) 

note that consumers overcome technical and market barriers by using Advanced Metering 

Infrastructure (AMI) and smart grid technologies that improve price elasticity. (Kaluvala and 

Forman, 2013) state that smart grid technologies can transfer load  from peak to off-peak and 

reduce overall consumption without reducing the level of comfort. (Quillinan, 2011) elaborates 

that information communication technology (ICT) in a smart grid system increases the electric 

grid‘s efficiency. Applications like ‗appliance control‘, ‗notification‘, ‗information feedback‘, 

and ‗energy management‘ make enabling technologies essential in demand response programs. 

A typical electricity supply curve is nonlinear concave with positive slopes. The benefit of 

demand response measures can be best observed at the steeper parts of the supply curve. 

(Faruqui & Palmer, 2012) analyze the data of 74 dynamic pricing experiments and find that the 

amount of reduction in peak demand increases with the increase of the peak to off-peak price 

ratio, but at a decreasing rate. They derive a logarithmic model and check the variation of 

demand response with several factors like the effects of time period, the length of the peak 

period, the climate, the history of pricing innovation in each market, the pattern of marketing 

dynamic pricing designs and the use of enabling technologies. They find that variation in the 

price ratio and the effect of enabling technologies are responsible for almost half of the variation 

in demand response. (Wang et al., 2011) study several smart grid enabled pricing programs and 

find that technology and greater price differentials enable better demand response. (Roozbehani 

et al., 2012) mention that demand response technologies and distributed generation increase the 

price elasticity of electricity along with the volatility of the system.  

Segmentation of Electricity Markets 

Segmentation of the electricity market helps in differentiating customers based on various 

attributes. Attributes of market segments are helpful in setting the range of prices or the time 
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span for maintaining a certain price in a dynamic pricing environment. This section describes 

works on the basis of electricity market segmentation and focuses on the use of consumption 

level for segmentation. We also discuss low income groups as an important segment. 

Various Bases of Segmentation 

Electricity utilities generally segment their markets based on geographic boundaries. (Moss and 

Cubed, 2008) argue that segmentation schemes for residential customers should typically focus 

on attitudes and motivations. (Yang et al., 2013) refer to four consumer segments based on socio-

demographic variables and attitude towards adoption of green electricity in Denmark. A majority 

of consumers in all segments are ready to pay a higher price for green electricity. The authors 

observe that electricity market segmentation became ineffective because of three reasons - lack 

of comprehensive data, emphasis on technological solutions alone for demand side management, 

and a tendency to stay within the traditional broad industry segments of industrial, commercial, 

and residential customers. (Simkin et al., 2011) mention that a ‗bottom-up‘ analysis of customer 

attitudes, usage patterns, buying behavior and characteristics can be useful to develop segments. 

They develop a directional policy matrix from variables that represent market attractiveness and 

business capability, and prioritize segments. Other factors like consumer service, green 

credentials, innovative tariffs, and guarantee of no price inflation for a certain period also 

characterize energy market segments. (Ifland et al., 2012) develop a lifestyle typology and create 

three market segments based on consumption behavior, attitude towards energy consumption and 

enabling technologies, values, and leisure time activities of consumers.  

Segmentation Based On Consumption Data 

Segments can be based on consumption data. (Panapakidis et al., 2013) describe segmentation 

based on load patterns - high level and low level. The high level segment includes geographical 

characteristics, voltage level, and type of activity. The low level segment is based on 

demographic characteristics, regulatory status, price management, universal service, fuel labeling 

supply and metering resolution. Clustering algorithms are required for further detailed 
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categorization of segments. (Varga & Czinege, 2007) use discriminant analysis to characterize 

and classify consumers based on their load profiles. (Hyland et al., 2013) use smart meter data 

from Ireland and register the difference in gross margin earned by electricity suppliers from 

different types of consumers. This data is helpful in identifying different possible market 

segments and the characteristics of the most profitable segmentation. 

Low Income Group as a Market Segment 

A low income group can be a market segment where the welfare viewpoint gains priority. These 

groups can be the worst affected in case of improper dynamic pricing implementation. (Wood 

and Faruqui, 2010) observe the effect of different pricing schemes on low income consumers and 

find that Critical Peak Pricing (CPP) is most effective in reducing bill amounts. They propose 

that the percentage of consumers benefiting from the schemes depends on the rate design itself. 

(Faruqui et al., 2012) study practical experiments of CPP and note that low income groups 

reduced their electricity bills more than higher income groups. (Wolak, 2010) also finds that low 

income consumers are more sensitive to price signals than high income ones. However, (Wang et 

al., 2011) state that low income customers have low price responsiveness. This is because they 

have fewer opportunities to reduce consumption due to unavailability of specific home 

appliances in which the energy consumption can be controlled. Governments need to take up the 

primary role in creating the conditions for segmentation both in regulated and deregulated 

markets. (Sharam, 2005) notes that unethical welfare motives or improper administrative and 

regulatory control can bring out the ills of segmentation in electricity markets. He identifies these 

ill-effects as redlining, that is, discrimination of consumers in the market, and residual markets, 

that is, suppliers misusing too much market power, leading to exclusion and exploitation of some 

customers on financial or other bases. 

Consumption Scheduling under Varying Prices 

Proper scheduling of electricity consumption in a dynamic pricing environment can flatten the 

load curve to a large extent. The scheduling problem is addressed in different ways as described 
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below. (Agnetis et al., 2013) identify various types of appliances with varying load types like 

shiftable, thermal, interruptible, and non-manageable, and then schedule their operations.  The 

authors use a Mixed Integer Linear Programming (MILP) model and a heuristic algorithm to 

solve the NP-hard problem. The objective functions are cost minimization and comfort 

maximization through scheduling preferences and climatic control. (Hubert & Grijalva, 2012) 

incorporate electricity storage provisions in the scheduling problem by classifying loads as 

energy storage system, non-interruptible loads, and thermodynamic loads. They use MILP for 

robust optimized consumption scheduling to minimize the impact of stochastic inputs on the 

objective function. The objective function integrates electric, thermodynamic, economic, 

comfort, and environmental parameters.  

(Liu et al., 2012) emphasize the maximum use of renewable resources in a load scheduling 

problem. Their model depends on weather forecasts. They classify appliances based on type of 

energy consumption and assign dynamic priority in the scheduling process. (Dupont et al., 2012) 

state that the renewable energy tariff scheme can be used to increase renewable energy 

consumption during periods of high renewable energy generation. They use integer linear 

programming to optimize this scheduling problem taking into account customer preferences. 

This paper also emphasizes the use of automation in households for consumption scheduling 

over the year. (Hu et al., 2010) incorporate both active and reactive power demand and 

generation in the scheduling problem. The authors use a non-linear load optimization method in 

a real-time pricing environment. The scheduling of consumption is studied for three customer 

groups – industrial, commercial, and residential, and for three load periods – peak load, flat load, 

and off-peak load periods. 

Scheduling in individual homes must be linked to the aggregate demand situation. Thus it is 

necessary to model the individual household scheduling incorporating the aggregate demand. 

(Kishore & Snyder, 2010) point out that shifting the load from peak hours to off-peak hours in 

each household by means of a same price signal can shift the aggregate peak to the previously 

off-peak zone. Thus the authors optimize electricity consumption within a home and across 
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multiple homes. The in-home scheduling model attaches the probabilities of start and stop of 

operation of any appliance in the next time period. It also considers a cost for delay of start of 

operation. The model minimizes the total cost of electricity in a deterministic dynamic pricing 

environment. In the neighborhood-level scheduling model, the authors assume a well 

communicated neighborhood where each household has a minimum guaranteed load at each time 

slot. The neighborhood however has a maximum limit of energy at each time slot. The idea is to 

distribute this available power to all households thereby minimizing total costs. A second delay 

cost is associated in the model to address the delay of starting an appliance after the specified 

maximum delay time. 

(Li et al., 2011) align individual optimality with social optimality by means of a distributed 

algorithm. Each customer has a utility function and provisions for energy storage. This allows 

them to forecast their total individual demand for a future time after maximizing their individual 

benefit. The utility company collects these forecasts from all households and generates a price 

based on its cost function. This price is then published and the individual households reschedule 

their consumption. After several iterations, the consumption schedule of each household and the 

price offered by the utility gets fixed. (Cui et al., 2012) describe how scheduling of household 

loads helps electricity suppliers to maximize their profits and the global controller to maximize 

social welfare. The authors use greedy algorithm for the first model with pre-announced dynamic 

tariffs. They also devise a model for the utilities based on consumers‘ schedules. 

Potential Areas for Future Research 

There are interesting future research challenges that evolve from this study. These are noted in 

this section. 

a) Understanding the customers‘ willingness to adopt dynamic tariffs can be very helpful for 

further progress in this field. Dynamic prices have never been experienced in many 

electricity markets. Such markets can provide interesting research opportunities for 

discovering consumers‘ willingness-to-pay for electricity within a dynamic pricing 
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environment. Results from such studies can help promote the idea to more number of 

customers and suppliers. 

b) The impact of dynamic pricing increases with the increase of elasticity and hence the most 

elastic portion of the demand curve in any electricity market is worth identifying. 

Determination of the demand price relationship for consumers is challenging, especially 

when such efforts are to be made at the individual household level. Factors influencing 

electricity demand change from consumer to consumer. Identification of such factors in 

different markets is necessary for implementing dynamic prices. Experiments to identify 

electricity market segments and suitable pricing schemes for each segment are necessary to 

get more benefits from dynamic pricing. 

c) Academic research on electricity market segmentation in India and many other economies 

is rare. Such efforts can open up avenues for better revenue management in electricity 

markets. Discovery of market segments must be followed by development of suitable 

pricing schemes. Possibilities need to be analyzed to shift from segment based pricing to 

individual customized pricing, thereby enabling the markets to better absorb consumer 

surplus.  

d) Carefully designed retail pricing schemes can appropriately link the wholesale and retail 

markets. Pricing schemes should be researched to form the standard for pricing designs so 

that neither are the customers exploited nor do suppliers experience loss. 

e) Smart grid technology can enable automated scheduling of household loads. Automation is 

possible with the development of scheduling algorithms. Researchers can keep on 

developing more realistic scheduling algorithms with different objectives for different 

customers. On the technological side, the type of enabling technology required in any 

particular market and the technological and financial feasibility study for the same can be 

studied. 

f) The environmental and social impacts of shifting from a flat rate tariff to a dynamic tariff 

scheme are worth studying in order to popularize the idea of dynamic pricing. The 

advantages and disadvantages of introducing dynamic pricing to different classes of society 

must be studied before practical implementation. 
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g) Most of the studies referred to in this paper are based on deregulated markets, although 

regulated markets can also benefit from dynamic prices. This is because dynamic pricing 

can balance the demand-supply gaps. Future work can be done on the application of 

dynamic pricing specifically to regulated markets. Factors affecting variations in load 

profiles need to be identified so as to form segments which are welfare oriented as well as 

profitable.  

Conclusion 

The discussions in this paper reveal the importance of dynamic pricing of electricity and its 

effects on demand response. Experiments show that the elasticity of demand is generally low; 

however, dynamic pricing has the potential to modify load profiles. We describe several 

established pricing schemes, many of which have been tested in pilot projects. We also mention 

works on several forecasting methods and their effectiveness. We study works describing 

methods of measuring willingness-to-pay for better quality of electricity. The development and 

testing of enabling technologies is an ongoing process and there are several studies that reveal 

the usefulness of such technologies. Some studies on electricity market segmentation are studied 

and several bases of segmentation are discovered. Consumption scheduling in households is 

studied and several mathematical models for the same are mentioned. We highlight some future 

research opportunities in this field at the end of our study. This paper can help in drawing the 

attention of policy makers and electricity market players to the benefits of dynamic and 

customized pricing, demand mapping, segmentation for electricity markets and automation 

technologies. 
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