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Abstract

The combinatorial bandwidth packing problem (CBPP), arising in a telecommunica-

tion network with limited bandwidth, is defined as: given a set of requests, each with

its potential revenue and consisting of calls with their bandwidth requirements, deciding

(i) a subset of the requests to accept/reject, and (ii) a route for each call in an accepted

request, so as to maximize total revenue earned. However, telecommunication networks

are generally characterized by variability in the call (bits) arrival rates and service times,

resulting in delays in the network. In this paper, we present a non-linear integer program-

ming model for CBPP accounting for such delays. By using simple transformation and

piecewise outer-approximation, we linearize the model, and present an efficient cutting

plane based approach to solve the resulting linear mixed integer program to ε-optimality.

Keywords:OR in telecommunications; Bandwidth packing; Mixed integer programming;

Queuing; Cutting Plane
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An Efficient Solution Approach for Combinatorial

Bandwidth Packing Problem with Queuing Delays

1 Introduction

The recent advent of bandwidth intensive telecommunication services like video conferenc-

ing, social networking, online interactive gaming, interactive television, real-time simulations,

telemedicine, and collaborative software development using global virtual teams makes the ef-

ficient management of the available telecommunication network bandwidth critical. In most of

such applications, users generally schedule their requests in advance (Parker and Ryan, 1993).

In this respect, a critical problem that network administrators commonly face is: given a set of

submitted call requests, each with its potential revenue and its associated bandwidth require-

ment, deciding (i) a subset of the calls to accept/reject, and (ii) a route for each accepted call,

so as to maximize total revenue earned. This is the classical version of what is referred to in

the literature as the bandwidth packing problem (BPP) (Cox et al., 1991; Laguna and Glover,

1993; Anderson et al., 1993; Parker and Ryan, 1993; Park et al., 1996). Several variants of BPP

have been widely studied in the literature. Amiri (2005) presents a version of BPP involving

scheduling of selected calls within given time windows. A multi-hour version of BPP accounting

for the variation in traffic between peak and off-peak hours of the day is studied by (Amiri and

Barkhi, 2000).

The bandwidth requirements of telecommunication calls involving data and video transmis-

sion are usually bursty (variable bit rates). In this respect, sole focus on revenue maximization

in BPP may significantly affect the quality of service to users due to excessive utilization of

existing network resources (bandwidth) (Amiri et al., 1999). This has been addressed in the

literature by extending the classical BPP to account for the delays on links caused due to high

bandwidth utilization. Amiri et al. (1999), Rolland et al. (1999), and Han et al. (2012) ex-

plicitly account for such network delays by incorporating queuing delay terms in their model.

All of these papers model the links on the network as independent M/M/1 queues with the

implicit underlying assumption that bit (of calls) arrivals are Poisson and their service times
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on links have exponential distribution. While Amiri et al. (1999) and Vidyarthi et al. (2014)

discourage such delays in their model by penalizing them in the objective function, Rolland

et al. (1999) and Han et al. (2012) impose an explicit constraint to limit maximum queuing

delays. Bose (2009) presents a two-priority version of BPP, wherein the calls belonging to lower

priority consume less bandwidth but are longer and generate lower revenue compared to those

belonging to higher priority. For this, he models each link as a preemptive priority M/M/1

queue. Amiri (2003) extends the multi-hour BPP, earlier studied by Amiri and Barkhi (2000),

with delay guarantees. Gavish and Hantler (1983) studied BPP with delays due to congestion,

although the acceptance/rejection of calls is not a decision in their problem.

BPP and its variants studied in the literature mostly permit only a single path for each

of the accepted calls, as applicable to video data, which makes the problem NP-hard (Parker

and Ryan, 1993). Solution methods for BPP and its variants reported in the literature can

be broadly classified into two groups: metaheuristics, and decomposition based approaches.

Within metaheuristics, Tabu Search has been applied by Anderson et al. (1993) and Laguna

and Glover (1993), while Cox et al. (1991) has reported the use of Genetic Algorithm. Within

the decomposition based approaches, Lagrangian relaxation has been a popular choice, reported

by Gavish and Hantler (1983), Rolland et al. (1999), Amiri et al. (1999), Amiri and Barkhi

(2000), Amiri (2003), Amiri (2005), and Amiri and Barkhi (2012). Other decomposition based

approaches reported are Column Generation (Parker and Ryan, 1993; Park et al., 1996; Villa

and Hoffman, 2006), and Dantzig-Wolfe Decomposition (Han et al., 2012). Vidyarthi et al.

(2014) report the use of Cutting Plane based method to deal with non-linearity in the model

arising due to queuing delays.

An interesting generalization of the classical BPP presented byAmiri and Barkhi (2012)

considers the case where each request consists of a set of calls, requiring one-to-many or many-

to-many connections. The resulting problem, referred to as combinatorial bandwidth packing

problem (CBPP), is defined as: given a set of requests, each with its potential revenue and

consisting of calls with their bandwidth requirements, deciding (i) a subset of the requests to

accept/reject, and (ii) a route for each call in an accepted request, so as to maximize total

revenue earned in a telecommunication network with limited bandwidth. The combinatorial

nature of the problem makes BPP, which is NP-hard, even harder to solve.

In this paper, we extend CBPP, as presented by Amiri and Barkhi (2012), to account for
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queuing delays on the links. For this, links in the network are modelled as independent single

server queues with Poission arrivals and exponential service times (M/M/1 queues). This

results in a non-linear integer programming (IP) model. We, therefore, reformulate the model,

using simple transformation and piecewise linear outer-approximation, as a linear mixed integer

program (MIP) with a large number of constraints. We further present an efficient cutting plane

based solution approach, which performs very well in terms of optimality gap and computational

time.

The remainder of the paper is organized as follows. In Section 2, we formally describe the

problem and present its non-linear IP formulation. Section 3 describes an approach to linearize

the model, followed by an exact cutting plane based method to solve the resulting linear MIP.

Computational results are reported in Section 4. Section 5 concludes with possible directions

for future research.

2 Problem Formulation

CBPP assumes a telecommunication network comprising of nodes {i : i ∈ N} or {j : j ∈ N}

with a limited bandwidth Qij (bits per unit time) on every link {(i, j) : (i, j) ∈ E}. Given a set

of requests {b : b ∈ B}, each with its potential revenue rb and consisting of calls {c : c ∈ Cb}

between origin-destination pairs O(b, c) − D(b, c) with bandwidth requirements dbc (bits per

unit time), the objective of CBPP is to select: (i) a subset of these requests; and (ii) a single

path (sequence of links) to route each call of the selected requests, such that the total revenue

generated from the accepted requests is maximized without violating the bandwidth capacities

on the links. For this, let V b = 1 if request b is accepted, 0 otherwise, and Xbc
ij = 1 if call c in

request b is routed through a path that uses a directed link (i, j), 0 otherwise. The notations

used in the problem are summarized below:

Parameters:
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N : Set of nodes in the network indexed by i and j, where i, j ∈ N

E : Set of links (i, j) in the network, where i, j ∈ N

B : Set of requests indexed by b, where b ∈ B

Cb : Set of calls of request b indexed by c, where c ∈ C

O(b, c) : Origin node of call c of request b; O(b, c) ∈ N

D(b, c) : Destination node of call c of request b; D(b, c) ∈ N

dbc : Demand (bits per unit time) of call c of request b

rb : Potential revenue from request b

Qij : Bandwidth capacity (bits per unit time) of link (i, j)

Decision Variables:

V b = 1 if request b is accepted; 0 otherwise.

Xbc
ij =

1 if call c of request b is routed through a path that uses link (i, j)

in the direction from i to j; 0 otherwise.

Using the above notations, an adaptation of the IP formulation for CBPP introduced by

Amiri and Barkhi (2012) can be stated as follows:

max
∑
b∈B

rbV b (1)

s.t.
∑

j:(i,j)∈E

(
Xbc
ij −Xbc

ji

)
=


V b if i = O(b, c);

−V b if i = D(b, c);

0 otherwise

∀i ∈ N, b ∈ B, c ∈ Cb (2)

∑
b∈B

∑
c∈Cb

dbc(Xbc
ij +Xbc

ji ) ≤ Qij ∀(i, j) ∈ E : i < j (3)

V b ∈ {0, 1} ∀b ∈ B (4)

Xbc
ij ∈ {0, 1} ∀(i, j) ∈ E, b ∈ B, c ∈ Cb (5)

The objective function (1) is the total revenue from accepted requests. Constraint set (2) are

the flow conservation equations on each node for each call. Constraint set (3) ensures that the

total demand on each link is less than its available bandwidth. Constraint sets (4) and (5) are

binary restrictions on the variables. As discussed in section 1, the above model may result in
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poor response times due to excessive utilization of link capacities (bandwidth) in presence of

variable call bit rates dbc. To overcome this drawback, instead of maximizing the total revenue,

we determine the optimal trade-off between the revenue and the response time delay due to

excessive bandwidth usage.

To model response time delays in the network, we assume that the arrivals of bits associated

with calls on the network occur according to a Poisson process. Further, the nodes are assumed

to have unlimited buffers to store calls waiting for transmission (due to finite capacities on

links). We also assume that the call lengths (in bits) follow an exponential distribution with

a mean 1/µ. The service rate (in bits per second) of the link (i, j) is proportional to the

capacity of the link Qij. Then, the service time per call on link (i, j) also follows an exponential

distribution with a mean 1/µQij. Under these assumptions, each link can be modelled as a

single server M/M/1 queue. These assumptions are in line with the literature (Gavish and

Hantler, 1983; Amiri et al., 1999; Rolland et al., 1999; Han et al., 2012). Thus, the arrival of

bits on link (i, j), due to superposition of several Poisson processes, follows a Poisson process

with a rate
∑

b∈B
∑

c∈Cb
dbc(Xbc

ij + Xbc
ji ), and the arrival rate of calls on link (i, j) is λij =

µ
∑

b∈B
∑

c∈Cb
dbc(Xbc

ij +Xbc
ji ). The average utilization of link (i, j) is given by:

ρij =
λij
µQij

=

∑
b∈B
∑

c∈Cb
dbc(Xbc

ij +Xbc
ji )

Qij

(6)

Under steady state conditions (ρij < 1) and first-come first-serve (FCFS) queuing discipline,

the mean sojourn time (waiting time in queue + service time) of a call on link (i, j), which is

modelled as an M/M/1 queue, is given by: E[wij] =
ρij

1−ρij . The total network delay (W ) is,

therefore, given by:

W =
∑

(i,j)∈E

ρij
1− ρij

=
∑

(i,j)∈E

∑
b∈B
∑

c∈Cb
dbc(Xbc

ij +Xbc
ji )

Qij −
∑

b∈B
∑

c∈Cb
dbc(Xbc

ij +Xbc
ji )

(7)

Using the above notations, the mathematical model for CBPP with queuing delays can be

stated as:
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[P ] : max Z(X,V) =
∑
b∈B

rbV b −K
∑

(i,j)∈E

∑
b∈B
∑

c∈Cb
dbc
(
Xbc
ij +Xbc

ji

)
Qij −

∑
b∈B
∑

c∈Cb
dbc
(
Xbc
ij +Xbc

ji

) (8)

s.t. (2)− (5)

The objective function (8) is the net revenue (gross revenue - total queuing delay cost) from

the accepted requests. The second term in (8) captures the average queuing delay cost due to

all accepted calls, where K is the queuing delay cost per unit time. The above formulation [P ]

is a non-linear integer program due to the queueing delay term in the objective function. In

the following section, we present an alternate method to solve it, which is efficient and exact.

3 Solution Approach

3.1 Linear Reformulation

To linearize the queueing delay term in (8), we define non-negative auxiliary variables Rij, such

that:

Rij =

∑
b∈B
∑

c∈Cb
dbc(Xbc

ij +Xbc
ji )

Qij −
∑

b∈B
∑

c∈Cb
dbc(Xbc

ij +Xbc
ji )

∀(i, j) ∈ E (9)

This implies,

∑
b∈B

∑
c∈Cb

dbc(Xbc
ij +Xbc

ji ) =
Rij

1 +Rij

Qij ∀(i, j) ∈ E (10)

For a given set of points h ∈ H, the function f(Rij) can be approximated, using Taylor

series approximation, by a set of piecewise linear functions that are tangent to f(Rij) at points

(Rh
ij)h∈H as follows: f(Rij) ≈ f(Rh

ij) + f ′(Rh
ij)(Rij −Rh

ij) = 1
(1+Rh

ij)
2Rij +

(Rh
ij)

2

(1+Rh
ij)

2 . Since f(Rij)

is concave in Rij ∈ [0,∞), it can be expressed as follows:

Rij

1 +Rij

= min
h∈H

{
1

(1 +Rh
ij)

2
Rij +

(Rh
ij)

2

(1 +Rh
ij)

2

}
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This is equivalent to the following set of constraints:

Rij

1 +Rij

≤ 1

(1 +Rh
ij)

2
Rij +

(Rh
ij)

2

(1 +Rh
ij)

2
, ∀(i, j) ∈ E, h ∈ H

Using (10), the above set of constraints can be rewritten as:

∑
b∈B

∑
c∈Cb

dbc(Xbc
ij +Xbc

ji )−
Qij

(1 +Rh
ij)

2
Rij ≤

Qij(R
h
ij)

2

(1 +Rh
ij)

2
∀(i, j) ∈ E, h ∈ H (11)

provided ∃h ∈ H such that (11) holds with equality.

The above substitutions result in the following linear MIP model:

[PL(H)] : max
∑
b∈B

rbV b −K
∑

(i,j)∈E

Rij (12)

s.t. (2)− (5), (11)

Rij ≥ 0 ∀(i, j) ∈ E (13)

For equivalence between [P ] and [PL(H)], there should exist at least one h ∈ H such that

(11) holds with equality. Proposition 1 confirms that there indeed exists one such h ∈ H at

optimality.

Proposition 1: There exists at least one of the constraints (11) in [PL(H)] that will be binding

at optimality.

After rearranging the terms, (11) can be rewritten as:

Rij ≥ (1 +Rh
ij)

2

∑
b∈B
∑

c∈Cb
dbc(Xbc

ij +Xbc
ji )

Qij

− (Rh
ij)

2 (14)

Since Rij appears in the objective function with a negative coefficient, [PL(H)] attains its

optimum value only when Rij is minimized. This implies that ∀(i, j) ∈ E, ∃h ∈ H such that

(14) holds with equality if (1 +Rh
ij)

2
∑

m∈M dbc(Xbc
ij +X

bc
ji )

Qij
− (Rh

ij)
2 ≥ 0, else Rij = 0.
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Further,

0 ≤ (1 +Rh
ij)

2

∑
b∈B
∑

c∈Cb
dbc(Xbc

ij +Xbc
ji )

Qij

− (Rh
ij)

2

= (1 +Rh
ij)

2ρij − (Rh
ij)

2 (using (6))

= (ρij − 1)(Rh
ij)

2 + 2ρijR
h
ij + ρij

⇔ Rh
ij ∈

[
0,
ρij +

√
ρij

1− ρij

]
∀h ∈ H (since ρij ≤ 1 and Rij ≥ 0 using (9))

Thus, to prove that ∃h ∈ H such that (11) holds with equality, we need to show that Rh
ij ∈[

0,
ρij+

√
ρij

1−ρij

]
. Since Rh

ij is an approximation to Rij, we obtain:

0 ≤ Rh
ij ≈ Rij =

λij
µQij − λij

(using (9))

=
ρij

1− ρij

≤
ρij +

√
ρij

1− ρij

This proves that ∀(i, j) ∈ E, ∃h ∈ H such that, at optimality, (11) always holds with equality.

3.2 Bounds and Exact Approach

For any given subset of points {Rh
ij}h∈Hq⊆H , [PL(Hq)] is the relaxation of the full problem

[PL(H)]. Hence, v(PL(Hq)) ≥ v(PL(H)), where v(•) represents the optimal objective function

value of the maximization problem (•). Thus, v(PL(Hq)) provides an upper bound to [PL(H)],

given by:

UB = v(PL(Hq)) =
∑
b∈B

rbV bq −K
∑

(i,j)∈E

Rq
ij (15)

For any given subset of points {Rh
ij}h∈Hq⊆H , the part of the solution (Xq,Yq) to [PL(Hq)]

is also a feasible solution to [P ], and hence the objective function (8) evaluated at the solution
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(Xq,Vq), gives a lower bound to [PN ]. Hence, a lower bound to [PN ] is given by:

LB =Z(Xq,Vq) =
∑
b∈B

rbV bq −K
∑

(i,j)∈E

∑
b∈B
∑

c∈Cb
dbc(Xbcq

ij +Xmq
ji )

Qij −
∑

b∈B
∑

c∈Cb
dbc(Xbcq

ij +Xbcq
ji )

(16)

The model [PL(H)] consists of a large number of constraints (11). However, not all of them

need to be generated a priori. The algorithm starts with an initial subset of carefully selected

points, Hq ⊂ H. The resulting model [PL(Hq)] is solved and the upper bound (UBq) and

the lower bound (LBq) are computed using equations (17) and (18) respectively. If the upper

bound (UBq) equals the best known lower bound (LBq) within accepted tolerance (ε) at any

given iteration q, then (Xq,Vq) is an optimal solution to [P ] and the algorithm is terminated.

Otherwise, a new set of candidate points Rhnew
ij is generated using the current solution (Xq) as

follows:

Rhnew
ij =

∑
b∈B
∑

c∈Cb
dbc(Xbcq

ij +Xbcq
ji )

Qij −
∑

b∈B
∑

c∈Cb
dbc(Xbcq

ij +Xbcq
ji )

This generated set of “cuts /constraints” eliminates the best solution found so far and improve

the upper bound on the remaining solutions. This new set of points is appended to (Rh
ij)Hq⊂H

and the procedure is repeated until the gap between the current upper bound and the best

lower bound is within the tolerance limits. The algorithm is outlined below:

Algorithm 1 Solution Algorithm for [PL(H)]

1: q ← 1;UBq−1 ← +∞;LBq−1 ← −∞;
2: Choose an initial set of points {Rh

ij}h∈Hq to approximate Rij/(1 +Rij) ∀(i, j) ∈ E .
3: while (UBq−1 − LBq−1)/UBq−1 > ε do
4: Solve [PL(Hq)] to obtain (Xq,Yq).
5: Update the upper bound: UBq ← v(PL(Hq)).
6: Update the lower bound: LBq ← max{LBq−1, Z(Xq,Yq)}.
7: Compute new points: Rhnew

ij =
∑

b∈B

∑
c∈Cb

dbc(Xbcq
ij +Xbcq

ji )

Qij−
∑

b∈B

∑
c∈Cb

dbc(Xbcq
ij +Xbcq

ji )
∀(i, j) ∈ E

8: Hq+1 ← Hq ∪ {hnew}
9: q ← q + 1

10: end while

The initial set H1 in the Algorithm 1 can be empty. However, our preliminary computa-

tional experiments show that starting with a set of carefully selected cuts H1 helps in faster
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convergence of the algorithm.

4 Computational Results

We conduct computational experiments to evaluate the performance of the proposed exact so-

lution procedure. The solution procedure is coded in Visual C++, while [PL(Hq)] at every

iteration q is solved using IBM ILOG CPLEX 12.4. The experiments are conducted on a ma-

chine with the following specifications: Intel Core i5-3230M, 2.60 GHz CPU; 4.00 GB RAM;

Windows 64-bit Operating System. The computational performance of proposed solution ap-

proach on problems with varying sizes are presented below.

In the implementation of the algorithm, we start with an initial set of cuts, generated at

points h ∈ H1, for the function f(Rij) =
Rij

1+Rij
. These cuts are generated based on the piece-

wise linear approximation by f̂(Rij) of the function f(Rij) such that the approximation error

measured by f̂(Rij)−f(Rij) is at most 0.001 (see Elhedhli (2005)). This is in part motivated by

our initial computational results, which show that the option of starting with a carefully chosen

initial set of cuts improves the performance of the solution approach substantially. Hence, in

all the test problems, we use 32 cuts which corresponds to a maximum approximation error

(f̂(Rij)− f(Rij)) of 0.001.

The computational results are reported for a set of test instances generated using the scheme

proposed by Amiri and Barkhi (2012), and references therein. The links are generated such

that each node has a degree equal to 2, 3, or 4 with probability of 0.6, 0.3, and 0.1, respectively

and the network is connected. This results in the number of links varying between 30 and 160.

Each link in the network is randomly assigned a capacity (Qij) equal to 960, 1920, 5000, or

10,800 with equal probabilities. The number of calls per request b is generated randomly from

the uniform distribution between 2 and 10; as such the minimum and maximum numbers of

calls per request are 2 and 20, respectively. The bandwidth requirement for each call c of a

request b is generated randomly from the uniform distribution between 20 and 40.

Table 1 shows the computational results for various network sizes with the number of nodes

|N | varying from 10 to 100 in steps of 10 while the number of available requests, |B| is set to

500. Table 2 presents the results for the number of available requests set to 1000 and 1500.

The queuing delay cost per unit time (K) is selected from the set {1, 10, 50, 100, to 500}.
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A total of 90 instances are solved. The algorithm is terminated once the Gap (%), computed

as
Upper Bound - Lower Bound

Lower Bound
× 100%, falls below 0.1 or CPU time exceeds 3600 seconds.

The table reports the gross revenue (GR), delay costs (DC) expressed as percentage of gross

revenue, average and maximum utilization (Util.) of the links, Gap (%), number of iterations

(Iter.), and computational time (CPU(s)). The upper and lower bounds at every iteration are

computed using (15) and (16) respectively. The observations from our experimental results are

as follows:

• Results in Table 1 indicate that 24 out of 50 instances are solved with an optimality

gap ranging from 0 to 0.09% in less than one hour of CPU time, whereas the optimality

gap for the 21 instances that are terminated after one hour of CPU time is in the range

0.031% - 4.328%. The remaining 5 instances failed due to insufficient memory. Similarly,

results in Table 2 indicate that 15 out of 40 instances are solved within an optimality gap

ranging from 0.001% to 0.048% in less than one hour of CPU time, whereas 17 instances

were terminated after one hour of CPU time, resulting in solutions within a gap ranging

from 0.035% to 1.166%. The remaining 8 instances failed due to insufficient memory.

• The computation times highlight the efficiency of our proposed solution approach for

different values of parameters, whereas the number of iterations imply that only a very

few of the constraints in (11) are required. As the number of nodes (|N |), the number of

calls (|C|), and the number of requests (|B|) increase, the problem becomes difficult to

solve, requiring more CPU time.

• Results in Tables 1 and 2 also show the effects of changes in the number of submitted

requests (B). For a given problem size (|N |), we vary the number of submitted requests

from 500 to 1,000 to 1,500. As the delay cost per unit time K increases, we observe fewer

requests are accepted and fewer calls are routed through the network accompanied by

reduction in the average link utilization. However, this observation cannot be generalized

since with increase in K, reduction in average link utilization is also possible by accepting

more requests/calls with lower bandwidth requirements.
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Table 1: Computational Results for Instances with 500 Requests

|N | |B| |C| K |Bs| |Cs| Gross Delay Cost (DC) Avg. Max. Gap Iter. CPU(s)
Revenue (GR) (% of GR) Util.(%) Util.(%) (%)

10 500 2980 1 72 356 14706 1.7 55.8 98.8 0.009 2 444
10 68 336 14199 5.1 52.2 95.5 0.002 3 143
50 64 314 13335 12.6 47.8 88.9 0.009 2 106

100 59 293 12511 17.4 43.7 83.2 0.002 2 77
500 43 219 9248 42.4 29.9 62.4 0.002 3 78

20 500 2967 1 52 262 10958 1.6 35.8 98.0 0.006 2 3250
10 48 250 10572 6.3 33.7 94.9 0.002 2 198
50 45 231 9743 15.1 30.0 89.2 0.002 3 406

100 42 214 9118 22.4 27.4 84.0 0.002 2 158
500 30 137 5745 50.2 15.5 52.8 0.004 2 126

30 500 2985 1 52 263 11283 1.7 30.9 98.3 0.014 2 2435
10 51 254 10804 5.8 28.3 94.4 0.019 2 2210
50 46 232 10070 16.2 27.8 86.7 0.001 3 2376

100 43 220 9367 23.9 25.2 79.7 0.001 2 464
500 27 129 5651 58.1 13.8 45.6 0.000 4 631

40 500 2962 1 60 289 11477 1.7 32.4 98.5 0.028 1 3590
10 57 276 11043 6.7 30.7 95.5 0.033 2 2708
50 51 254 10187 19.0 27.1 87.0 0.002 2 2924

100 48 228 9253 27.6 23.6 77.2 0.007 2 2253
500 26 105 4517 61.1 9.3 35.2 0.009 3 2926

50 500 3050 1 41 197 7918* 2.1 22.8 97.3 0.204 1 3600*
10 42 193 7568* 9.1 21.5 93.9 0.031 2 3600*
50 35 167 6792 23.6 18.7 84.8 0.060 1 2691

100 Memory
500 Memory

60 500 3000 1 50 232 9281* 2.7 23.3 97.7 0.361 1 3600*
10 Memory
50 43 195 7730* 22.5 18.8 81.3 0.148 1 3600*

100 38 175 6936* 34.2 16.7 69.5 0.203 1 3600*
500 17 61 2205* 74.2 5.3 22.1 1.282 1 3600*

70 500 3026 1 49 223 8862* 2.9 33.2 98.5 0.228 1 3600*
10 47 209 8331 11.1 31.1 92.7 0.050 1 2858
50 40 181 7169 30.6 25.9 78.7 0.090 1 3591

100 33 147 5886* 43.6 20.0 62.2 0.153 1 3600*
500 10 24 959 72.2 2.4 13.4 1.397 1 2755

80 500 3054 1 52 234 8727* 1.6 22.6 97.1 0.324 1 3600*
10 50 223 8444* 9.2 21.3 95.0 0.100 1 3600*
50 44 194 7542* 24.5 17.9 87.6 0.175 1 3600*

100 39 171 6634* 36.3 14.8 79.4 0.246 1 3600*
500 12 40 1594* 74.7 3.5 19.6 1.714 1 3600*

90 500 3057 1 50 257 10211* 2.1 21.4 98.8 0.375 1 3600*
10 49 242 9641* 7.3 20.2 91.0 0.822 1 3600*
50 46 216 8708* 22.5 16.8 81.0 0.195 1 3600*

100 42 189 7777* 34.6 14.3 71.7 0.290 1 3600*
500 13 60 2600* 76.5 4.2 34.2 1.605 1 3600*

100 500 3023 1 52 263 10864* 2.2 26.0 98.7 0.291 1 3600*
10 49 254 10695* 15.1 24.7 98.2 4.328 1 3600*
50 46 227 9400* 27.2 20.8 84.1 0.147 1 3600*

100 Memory
500 Memory

* The instance was terminated after 3600 sec of CPU time; “Memory”: This refers to instances that run out of memory.
|N |: Number of nodes; B: Number of submitted requests; M : Number of Calls; ; M : Unit Delay Costs; |Bs|: Number of accepted

requests; |Ms|: Number of accepted calls;
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Table 2: Computational Results for Instances with 1000 and 1500 Requests

|N | |B| |C| K |Bs| |Cs| Gross Delay Cost (DC) Avg. Max. Gap Iter. CPU(s)
Revenue (GR) (% of GR) Util.(%) Util.(%) (%)

10 1000 6132 1 133 645 26598 1 73 99 0.006 2 247
10 130 627 25856 4 70 96 0.003 3 271
50 122 584 24448 10 65 92 0.004 3 249

100 116 557 23446 14 61 87 0.004 3 268
500 95 438 18742 33 45 70 0.006 3 179

20 1000 5993 1 84 366 15222 2 48 98 0.031 1 3512
10 82 352 14669 6 45 95 0.008 2 1728
50 76 320 13474 15 40 88 0.002 3 2069

100 72 303 12702 22 37 84 0.001 3 804
500 49 188 8006 50 20 57 0.009 3 729

30 1000 5980 1 119 610 24774* 1 47 99 0.062 1 3600*
10 117 592 24205* 5 45 97 0.086 1 3600*
50 110 553 22944 12 41 93 0.003 2 3122

100 101 513 21820* 19 38 89 0.082 1 3600*
500 76 357 15523 48 24 65 0.045 2 2355

40 1000 6056 1 Memory
10 Memory
50 Memory

100 75 370 15270* 26 30 81 0.128 1 3600*
500 Memory

50 1000 6036 1 96 467 19563* 2 40 99 0.656 1 3600*
10 90 441 18870* 7 38 94 0.122 1 3600*
50 80 401 17302* 17 33 87 0.171 1 3600*

100 76 367 16039* 26 29 81 0.226 1 3600*
500 45 194 8589* 59 14 49 0.515 1 3600*

60 1000 6058 1 Memory
10 Memory
50 Memory

100 41 169 7229* 32 18 76 0.284 1 3600*
500 Memory

20 1500 9099 1 77 304 11419* 1.3 33 99 0.035 2 3600*
10 77 298 11152 4.6 31 96 0.037 1 3487
50 71 276 10579* 11.9 28 89 0.057 1 3600*

100 65 258 10047 17.4 26 84 0.001 2 2407
500 50 182 7462 41.5 16 61 0.081 2 2578

40 1500 8944 1 60 255 9728* 1.2 26 98 0.401 1 3600*
10 58 243 9230* 4.1 24 90 1.166 1 3600*
50 54 227 8694* 14.0 23 84 0.416 1 3600*

100 50 213 8264* 23.2 21 79 0.161 1 3600*
500 31 120 4997* 55.7 10 48 0.467 1 3600*

* The instance was terminated after 3600 sec of CPU time; “Memory”: This refers to instances that run out of memory.
|N |: Number of nodes; B: Number of submitted requests; C: Number of Calls; ; C: Unit Delay Costs; |Bs|: Number of accepted

requests; |Cs|: Number of accepted calls.
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5 Conclusion

Telecommunication bandwidth is a scarce resource making its judicious use critical in presence

of competing requests by bandwidth intensive video and data services. So, ideally, a network

administrator would like to accept as many requests, each possibly consisting of several one-

to-many or many-to-many calls, as allowed by the limited bandwidth to maximize the revenue

earned. This is referred to as a combinatorial bandwidth packing problem. However, this rev-

enue focus approach is likely to degrade the response time due to excessive bandwidth usage.

So, in this paper, we extended this problem to finding the optimal trade-off between revenue

maximization and response time delays. To this end, we presented a non-linear IP formu-

lation for the problem. By using simple transformation and piecewise outer-approximation,

we linearized the model, and presented an efficient cutting plane based approach to solve the

resulting linear MIP without adding a large number of linearization constraints. Our com-

putational experiments over a wide range of problem instances obtained by varying the size

of the networks, number of requests and calls, and call bandwidth requirements indicate that

the proposed solution method can produce near optimal solutions in reasonable computational

time.
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