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Abstract 

The multi-mode resource constrained project scheduling problem (MM RCPSP) is a 

NP-hard problem representing a generalization of the well-studied RCPSP. Depth-first 

tree search approach by Sprecher & Drexl (1998) is the best known exact solution tree 

search procedure for this problem. In this paper we present two exact solution single-

processor approaches: a breadth-first approach and a best-first monotone heuristic. The 

comparison with depth-first and CPLEX show promising results on small problem sets. 

We report extension of the breadth-first approach to yield exact multi-objective 

solutions for the PSPLIB (Project Scheduling Problem Library, Kolisch & Sprecher, 

1997) problem sets which is the first of its kind. 
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project scheduling, regular measures, exact multi objective solutions, breadth-first tree 

search, best-first monotone heuristic. 



 

 

 

                                                                  

 

 

IIMA    INDIA 
Research and Publications 

 

W.P.  No.  2014-10-04 Page No. 3 

1 Introduction 

 

The RCPSP is a well-studied problem with a large number of approaches developed for 

solving it, which can be classified as – heuristic, metaheuristic, and exact solution 

approaches. The depth-first branch and bound approach by Sprecher & Drexl (1998) is 

known to be the fastest tree search exact solution approach. No approach exists which 

yields exact solutions to concurrent multiple objectives (i.e. exact multi objective 

solution). 
 

In this paper we present exact algorithms for optimally scheduling partially ordered 

multi-mode activities under resource constraints, known as the Multi-mode Resource 

Constrained Project Scheduling Problem (MM RCPSP). We consider, both, renewable 

and non-renewable resources and develop single processor breadth-first and best-first 

algorithms for exact solutions to a single objective. We also extend our breadth-first 

tree-search approach, which yields multiple exact optimal solutions for a single 

objective, to yield the exact multi objective optimal solution. 
 

2 LITERATURE REVIEW 

While small projects and shop floor scheduling problem instances may be solved using 

available exact approaches, large problem instances, being complex for the human mind 

to comprehend or computer to solve, are dependent on heuristics. The pursuit of one or 

more of several desirable objectives, simultaneously, enhances the complexity of the 

problem further. 

 

2.1 Inexact (Heuristic and Metaheuristic) Approaches 

 

Several heuristic and metaheuristic approaches have been presented in literature to 

solve large scheduling problems. However, these approaches do not guarantee the yield 

of an optimal solution. Usually, these approaches deploy one or more checking 

procedures for termination of the algorithm, such as, acceptable limit on minimum 

percentage improvement from previously found best solution, run time bounds, and/or 

the number of iterations limit. In these approaches, it is possible that in multiple runs of 

the same algorithm using same termination criteria, and on the same problem instance 

and computing machine, an inferior or superior result is obtained. This clearly 

establishes the need for improved exact algorithms for finding the exact solutions to 

such problems. However, the research approaches pursuing inexact or approximate 

solutions are many times more than that for exact solutions. Our research attempts to 

cover this gap. 

 

Heuristic approaches for MM-RCPSP have been presented by Berman (1964), 

Leachman (1980), and Leachman, Dincerler, and Kim (1990). Talbot (1982) presented 

an integer programming model for MM-RCPSP with an optimal approach for solving 

small problems and a heuristic to solve large instances of the problem. A study of three 
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enumeration based approaches by Patterson (1984) reveals that “each procedure was 

found to be generally superior on a specific class of problems”. Drexl and Gruenewald 

(1993) studied a problem with renewable, non-renewable, and doubly constrained 

resources involving a time-resource trade off, in which activities can be performed in 

discrete modes and propose a stochastic scheduling heuristic procedure which performs 

better than available routines. 
 

Metaheuristic approaches have been most widely deployed to solve the MM-RCPSP in 

the literature. Genetic algorithm (GA) approaches have been applied by Mori and Tseng 

(1997), Reddy, Kumanan and Krishnaiah (2001), Ulusoy and Sahin (1998) and Ulusoy, 

Funda and Sahin (2001), Hartmann (2001), Alcaraz, Maroto and Ruiz (2002; 2003a; 

2003b), and more recently by Peteghem and Van Houcke (2008). Józefowska, Mika, 

Rózycki, Waligóra, and Weglarz (1999; 2001), and Bouleimen and Lecocq (2003) have 

applied the Simulated Annealing (SA) approach to solve this problem. De Reyck, 

Demeulemeester, and Herroelen (1998), De Reyck and Herroelen (1999), and Mika, 

Waligóra, Weglarz, (2008) have used Tabu search; Chyu, Chen and Lin (2005) and 

Shan, Hong and Juan, (2007) have applied Ant Colony (AC) approaches; and Shan, Wu 

and Peng (2007) have used Particle Swarm (PS) optimization to solve the MM-RCPSP. 

 

Metaheuristic approaches are able to tackle problems of large size and appear to be very 

promising for further research too. Typically they terminate when the improvement in 

the objective reaches a pre-determined threshold or a limit on specified time and/or 

number of iterations has been reached. However, they do not guarantee an optimal 

solution even at the expense of phenomenal computational processing power, memory 

and time. For large problems, applying the same algorithm to the same problem 

instance for the same duration may also not yield the same objective function value in 

each run. Much research effort is needed to improve available techniques to yield 

optimal solutions to even the smallest real life problem instances. 

 

Schirmer (1996) established that the MM-RCPSP is NP-complete and requires at least 

exponential time in its binary formulation. Kolisch and Sprecher (1997) point out that 

exact methods can only solve small problem instances and heuristic approaches may 

fail to generate feasible solutions, if one exists, for highly resource constrained 

problems. They also prove that the MM-RCPSP feasibility problem itself is NP-

complete, while Alcaraz, Maroto, and Ruiz (2003a) established that the optimization 

problem is NP-hard. Kolisch, Sprecher, and Drexl (1995) have observed that as “the 

number of variables and constraints grows rapidly”, MILP approaches are of limited 

effectiveness. Thus, the solution to problems of sizes as are encountered in real life has 

remained elusive, and in particular, the pursuit of exact algorithms appears to have been 

ignored. 

2.2 Exact Approaches 

Developing a mode alternative, similar to Demeulemeester and Heroelen’s (1992) delay 

alternative, and applying a B&B procedure with search tree reduction scheme, 

Sprecher, Hartmann, and Drexl (1997) and Sprecher and Drexl (1998) presented 



 

 

 

                                                                  

 

 

IIMA    INDIA 
Research and Publications 

 

W.P.  No.  2014-10-04 Page No. 5 

algorithms for obtaining an exact solution to the MM-RCPSP. Hartmann and Drexl 

(1998) compare three B&B approaches for the MM-RCPSP and conclude that the 

precedence tree guided enumeration scheme performs the best. A B&B depth-first 

procedure for obtaining optimal solution and its truncated version are presented by 

Sprecher and Drexl (1998) for obtaining exact solutions and tested on a large number of 

problem instances. This approach remains the best exact approach till date. They also 

discuss the impact of variation of several project characteristics on solution time and 

quality. 

 

Erenguc, Ahn and Conway (2001) presented an integer programming model and an 

exact solution B&B procedure adopting branching rules, minimal resource conflict sets, 

and node fathoming rules for improving efficiency. Heilmann (2001, 2003) has 

presented another exact B&B approach for small instances and a priority rule based 

heuristic approach for larger instances of the MM-RCPSP. Sabzehparvar and Seyed-

Hosseini (2008) studied the problem in a mode dependent time lag environment and 

presented an exact algorithm. They relate the problem to a bin-packing problem and 

present its mixed-integer programming formulation. They also presented a geometric 

formulation of the problem and a B&B approach to obtain solutions to the problem 

instances tested. 

 

MM RCPSP, Regular Measures: Sabzehparvar and Seyed-Houseini (2008) pointed out 

that the best known depth-first B&B exact algorithm by Sprecher and Drexl (1998) is 

capable of solving only small instances in a reasonable time. 

 

A breadth-first exact solution approach, and corresponding best-first approach was 

presented by Nazareth, Verma, Bhattacharya, and Bagchi (1999) for the single-mode 

case. Extending their work we study these approaches for the multi-mode case. For a 

more detailed review of multi objective approaches we refer the reader to Ballestin and 

Blanco (2011). 
  

3 PROBLEM STATEMENT 

A project has been defined in many research papers and books. We reproduce the 

description provided in Nazareth et. al. (1999) in rest of this section. 
 

A project is a set of activities which are partially ordered by precedence relationships. 

An activity can be performed in finite number of modes, where each mode is unique 

and has a corresponding non-negative duration. An activity is ready to be processed 

only when all its predecessor activities are completed and the number of units of the 

various resource types required by it, in the mode that it is to be performed, are free and 

can be allocated to it. Once started, an activity is not interrupted (non-preemptive) and 

runs to its completion. The dummy (start and end) activities consume no resources and 

take no time. For each of its modes, an activity uses different types of resources, such as 

manpower and machinery, in different amounts, which are specified in advance. A mode 

specifies an activity's resource requirements of each resource type and its duration in 
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that mode. A resource is an essential facilitator for an activity to be performed. It may 

be durable (renewable) or consumable (non-renewable). The resources are allocated 

exclusively to a single activity for its entire duration in the selected mode. A resource 

may also be doubly constrained, i.e. it has an overall limit of availability for the whole 

project, as well as, time period wise limit of consumption for each time period. The 

availability of each resource type is known in advance. After completion of an activity, 

renewable resources may be assigned to another activity, whereas, the amounts of non-

renewable and doubly constrained resources decrease by the respective amounts of each 

of these resources consumed in completion of the activity in its assigned mode, and 

only the residual amounts can be used further. 
 

Scheduling is the process of selecting the mode and committing resources to the 

realization of each activity, while meeting the precedence and resource restrictions, to 

optimize a given objective. The aim is to assign modes and start times to all activities so 

that the desired objective (for example, makespan, flowtime, maximum tardiness, 

number of tardy jobs, etc.) is optimized. 
 

The objective to be optimized may be regular or non-regular. Regular measures are 

those measures for which no performance improvements will occur with delay in start 

of the activities, for example, minimizing completion time or minimizing tardiness. 

Non-regular measures are those measures for which the performance may improve with 

delay in start of the activities, for example, in objectives like minimizing the earliness-

tardiness in just in time (JIT) and maximizing net present value (NPV). 

 

In the case of non-regular measures (NPV), every mode of each activity has an 

associated cash flow (either inflow or outflow) at the start of the activity, for each unit 

time of its duration in the selected mode, and at the end of the activity. The objective in 

this case is to schedule all activities such that the NPV of their cash flows, at the given 

rate of interest per period, is maximized. 

3.1 Definitions of Terms 

Extending from  Nazareth, et al.(1999), we now define the terms we use in the studied 

problem model. 

 

Project: A project consists of N activities a1, a2,..., ai,..., aN. Activity ai has j 

modes ai1, ai2,..., aim,..., aij. Activity i in mode j, aij, has a duration of pij units, 

which includes the set-up time, processing time and set-down time. We use the 

Activity-on-Node (AON) convention when discussing an algorithm, though 

Activity-on-Arc (AOA) convention can be used without loss of generality. The 

dummy start activity a1 and dummy end activity aN have only one mode each. 

 

Precedence Constraints: Activity ai (i = 1,..., N) can start only when all its 

predecessor activities have finished. Pi is the set of predecessors of ai. 

Predecessors of an activity are usually determined by technological 

considerations of the project. An activity ap is said to be a predecessor of ai, 
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when ai can not start until ap has finished. This is represented as ap<ai, where the 

symbol '<' defines the 'precedes' relationship. Similarly as is said to be a 

successor of activity ai if as cannot begin until ai has finished, i.e. ai<as. Si 

represents the set of successors of activity ai. 

 

Renewable Resource Types: M types of renewable resources are available for 

the project's completion. Rj (j = 1,..., M) denotes the total availability in number 

of units of resource type j. Activity i in mode j, aij, requires rijm units of the m
th

 

renewable resource. 

 

Non-renewable Resource Types: K types of non-renewable resources are 

assumed to be available. Lk (k = 1 to K) denotes the total availability in number 

of units of non-renewable resource type k. Activity i in mode j, aij, requires lijk 

units of the k
th

 non-renewable resource. Note that on completion of an activity, 

the non-renewable resources allocated to it are consumed and only residual 

amounts of these resources are available for further allocations. 

 

Resource Constraints: The renewable resource constraints emphasize that the 

total units of renewable resource type j used by all the activities in progress at 

any instant of time should not exceed the total availability of that renewable 

resource, Rj. The non-renewable resource constraints imply that the total number 

of units of non-renewable resource type k consumed by the activities completed 

and allocated to the activities in progress should not exceed the total availability 

of that non-renewable resource, Lk. 

 

Integrality Condition: The values of parameters such as an activity's duration 

(processing time) in a mode (pij), resource availabilities (Rj and Lk) and resource 

requirements (rijm and lijk) are non-negative integers. 

 

Non-preemption Constraint: Once an activity starts it proceeds until its 

completion, i.e., no activity can be pre-empted. If si denotes the start time and fi 

the finish time of activity i in mode j, aij, then si + pij = fi. 

 

A project has two dummy activities, a unique dummy start activity a1 and a unique 

dummy finish activity aN. These activities have a single mode. The duration of these 

activities is zero and they do not consume any renewable or non-renewable resources. 

In symbols, p1 = pN = 0, r1j = rNj = 0 for all renewable resources j = 1,..., M, and l1k = lNk 

= 0, for all non-renewable resources k = 1,..., K. 
 

Every non-dummy activity has at least one predecessor and at least one successor, i.e., 

a1 Є Pi (i = 2,..., N) and aN Є Pi (i = 1,..., N-1). In other words, the dummy start activity, 

a1, is a predecessor to all other activities. Further, the dummy end activity, aN, is a 

successor to all activities. Note that these may not be direct predecessors or successors 

to all activities. 
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For any activity, if its direct predecessors have completed, all indirect predecessors 

must have completed, thus, only direct predecessors of an activity need to be listed 

when needed. 
 

The project starts at time t = 0, i.e. s1 = 0. An activity is said to be scheduled when it is 

assigned a mode and a start time, and renewable and non-renewable resources needed in 

its selected mode are available and allocated to it. A schedule for the project is an 

assignment of a mode and a start time to each activity of the project. The time when last 

activity of the project, aN, finishes represents the makespan of the project, T = fN. A 

feasible schedule is a schedule that satisfies the given precedence and resource 

constraints. An optimum schedule is a feasible schedule that optimizes the given 

objective function. The scheduling problem is to determine an optimum schedule, given 

the resource availabilities Rj (j =1,..., M), Lk (k = 1,..., K), processing times of all 

activities in each of their modes pij, predecessor sets of all activities Pi, and renewable 

and non-renewable resource requirements rijk, lijl, for all resources, for each activity, in 

each of its modes. 

3.2 Mathematical Formulation 

 The MM-RCPSP can be mathematically formulated as follows: 

 

Min fN (finish time of the dummy end activity) (1) 

such that 

fi – fj ≥ pim, 1 ≤ j < i ≤ N, j Є Pi (processing time constraints) (2) 

∑𝑀
𝑗=1 𝑟𝑖𝑚𝑗≤ Rj, 1 ≤ j ≤ M, 0 ≤ t ≤ fN (renewable resource usage constraints) (3) 

∑𝐿
𝑘=1 𝑙𝑖𝑚𝑘≤ Lk, 1 ≤ k ≤ L, 0 ≤ t ≤ fN (non-renewable resource usage constraints).

 (4

) 

i, j, k, m, L, M, R > 0 (non-negativity constraints) (5) 

i, j, k, m, L, M, R Є I (Integrality constraints) (6) 

 

Peteghem and Vanhoucke (2010) have presented a conceptual mathematical 

formulation of the problem, while Sabzehparvar and Seyed-Hosseini (2008) have 

pointed out that “The most efficient method for solving this problem known so far is the 

algorithm of Sprecher and Drexl...” referring to the depth-first branch and bound 

algorithm for MM-RCPSP with which we compare our algorithms. They also present an 

efficient MILP formulation, as well as a geometric formulation of the problem and 

present an algorithm for the version with minimal and maximal time lags. We refer the 

interested reader to these for the complete integer linear formulation of the problem. 
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1 PRE-PROCESSING RULES 

The pre-processing rules adopted before a problem instance can be processed are: (a) 

the removal of infeasible modes (checked for renewable and non-renewable resources), 

and (b) the removal of inefficient or inferior modes. Sprecher, Kolisch, and Drexl 

(1995) have explained these pre-processing rules in great detail. We provide a 

description of the pre-processing below. 

 

Infeasible Modes: A mode m of an activity i is renewable resource infeasible with 

respect to the renewable resource r, if the units of r required by i in mode m are greater 

than the available units of resource r. Such a mode is excluded from consideration in 

generating the schedules. 

 

A mode m of an activity i is non-renewable resource infeasible on account of a non-

renewable resource n, if the sum of the minimum amounts of n required by all other 

activities together, in those of their modes which consume least units of n, and the units 

of n needed by i in mode m, is greater than the availability of the resource n. Such a 

mode of an activity, if deployed, will leave inadequate residual of the non-renewable 

resource n for the project to be completed, and hence, is an infeasible mode of that 

activity. 
 

Inferior Modes: A mode m of an activity i is inferior to another mode of i, say mode l, if 

the duration of i in mode m is same or greater than the duration in mode l, and for none 

of the renewable, as well as, non-renewable resources, the units needed by i in mode m 

are less than corresponding resource units needed in mode l. That is, while the duration 

is same or greater, all the resource requirements are also same or greater. Such modes, 

identified as inferior modes, may be removed from consideration. It is possible that 

when an abundant non-renewable resource is removed from consideration (explained in 

the next section), one mode of an activity becomes inferior to another mode, as it 

completes in (same or) greater duration, while it also consumes (same or) more amounts 

of all remaining resources, but less amount of only the non-renewable resource now 

eliminated from consideration due to its abundance. Such an inferior mode can be 

removed from consideration. At any stage of pre-processing, if identical modes are 

revealed, only one needs to be retained to reduce computational requirements. 
 

Redundant Non-renewable Resources: A non-renewable resource n, is said to be 

redundant if the sum of the largest quantities of n needed by all activities, in their 

modes consuming largest amounts of n, is less than the total availability of n. Such a 

resource is available in abundance and hence may be removed from consideration to 

save computational effort. 
 

It is noteworthy, as pointed out by Sprecher, Kolisch, and Drexl (1995), that during pre-

processing, a mode of an activity may become inferior or identical to another mode. 

Such modes would need removal from consideration, and on their removal, it is further 

possible that yet another non-renewable resource is rendered abundant. Hence, a 

carefully implemented repeated check of the whole problem instance is necessary. The 
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structure of pre-processing rules for renewable resources and non-renewable resources 

is explained in pseudo codes below. 

 

Algorithm Pre-processing 
Renewable resource feasibility check: 

Step 1 (Loop) for each activity do 

Step 2 (Loop)  for each of its mode do 

Step 3 (Loop)   for each renewable resource do 

Step 4      If mode is not renewable resource feasible, delete 

mode 

Step 5    If feasible mode for activity is not found exit with error message 

 
Non-renewable resource feasibility check: 

Step 1 (Loop) for each activity do 

Step 2 (Loop)  for each non-renewable resource do 

Step 3     determine min need of non-renewable resource for all other 

activities 

Step 4 (Loop)   for each of activity's mode do 

Step 5  If mode non-renewable resource feasible with all other activities' 

minimum requirements then retain this mode 

Step 6    if activity has no feasible mode, exit with error 
 

Abundance check for non-renewable resources is similarly implemented. Now, consider 

the example problem instance, Example 1, in Figure 1. R1 and R2 are the two 

renewable resources and NR1 and NR2 are the two non-renewable resources in the 

problem instance. In the figure, the two numeric subscripts to letter 'a', respectively, 

denote the activity number and the activity mode. The maximum availabilities of the 

two renewable resources (R1 and R2) and two non-renewable resources (NR1 and 

NR2) in the problem instance are indicated at the top right in the diagram. The activity 

numbers for the problem instance are denoted inside the circles as in AON convention. 

For each mode of the activity, its duration, renewable resource requirements, and non-

renewable resource requirements are detailed below the circle representing the activity 

according to the given legend. 
 

The activity two in its first mode, a21, needs five units of RR2, whereas, only four units 

are available. Hence, this activity mode combination is infeasible, and therefore, 

removed from consideration. For convenience, and without loss of generality, in its 

place the old second mode of this activity is now treated as its first mode. Further, 

activity four in its second mode, a42, needs seven units of RR2, while only four units are 

available. Hence, it is an infeasible mode and is removed from consideration. After the 

above two reductions in Example 1, the maximum requirement for NR2, considering 

the individual maximum requirements for each activity from their remaining feasible 

Figure 1: Example 1 Problem – Pre-processing Rules 

Figure 2: Partially Reduced Example 1 Project for Pre-processing Rules 
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modes, is reduced to (0 + 6 + 5 + 9 + 7 + 7 + 0 = 34) thirty-four units. As sufficient 

quantity of NR2 is available for performing any activity in any mode (abundant 

resource), we remove NR2 from consideration totally. The partially pre-processed, 

reduced problem instance is presented in Figure 2. 
 

It can be clearly seen from the two modes for activity six, one is inferior as it 

consumes same (or more) duration, and (same or) more amounts of all 

renewable resources and non-renewable resources. Hence, the second mode of 

activity six is removed from consideration, too. After its removal, the maximum 

requirement for NR1 is now reduced to thirty-four units, which is less than its 

availability (thirty-six units). NR1 is now available abundantly, and therefore, it 

is also removed from consideration. Example 1 is a case to illustrate the 

implementation and effect of the pre-processing rules, however, in randomly 

generated problem instances, a situation in which all non-renewable resources 

are completely removed seldom occurs. 

2 SINGLE PROCESSOR BREADTH-FIRST ALGORITHM 

The algorithm is presented now. First the basic algorithm is presented following 

by pruning rules. 

2.1 Algorithm Without Pruning Rules 

The breadth-first algorithm is a tree-search procedure with pruning rules. The nodes in 

the search tree correspond to the partial schedules. A partial schedule is a schedule of a 

subset of the N activities that does not violate any of the given precedence and resource 

constraints. A complete schedule is a partial schedule of all the N activities, and a state 

corresponding to a complete schedule is a solution state. The starting node or root node 

of the search tree corresponds to a state where no activity has been completed and the 

(dummy) start activity, a11, is in progress. Complete information of a state comprises: 

 

cx Current time: The time of creation of state X, represents the earliest time at which the 

processing of an activity in progress was completed in the parent state of X and a 

scheduling decision was made. 
Fx Finished set: The set of activities that have already finished at or before time cx 

without violating any precedence or resource constraints. 

Ax Active set: The set of activities which started at time ≤ cx, either in state X or in 

some ancestor state of X, and have not finished before cx. This is the set of activities in 

progress in state X at time cx. 

dpx Decision point: This represents the earliest time at which the processing of an 

activity in the active set Ax is completed. It becomes the current time (i.e. the decision 

point) for each child state of state X. 
Kx Decision set: The set of activities which are not yet completed at time dpx, but all of 

whose predecessors have completed at some time ≤ dpx. This is the set of candidate 

activities. 
Thus, the root state I, of the search tree is as follows: 
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cI = 0 = current time of root state. 
FI = { } = Set of activities completed at cI, empty set. 
AI = {a11} = Set of activities in progress at time cI, which is only the dummy start 

activity. 

dpI = 0 = the decision point for state I, is the finish time of activity a11. 
NRI = Amounts of non-renewable resources consumed by the completed activities 

(here, zero for each non-renewable resource). 
KI = Set of activities that become ready when activity a11 completes, i.e. the candidate 

activities. 

 

Let the level of a state X in the search tree be the number of activities in the finished 

set, FX. At the time of start of the algorithm, the tree consists of only the root state I at 

the level = 0, where level zero represents the number of activities completed (which is 

zero for level 0, where the root state resides). We are interested in developing the next 

level (level 1), for which we need to expand all of the previous level's state(s), one by 

one. Subsequently, we are interested in generating the states at all levels up to the last 

level and obtain the solution. 

 

States get added by selecting the first parent state, which is a partial solution state, at the 

last completed level, generating all its child states, and proceeding to the next parent 

state. The decision point dpx has to be determined first, followed by the set of candidate 

activities, Kx. A resource satisfying set (RSS) is a subset of candidate activities (the 

decision set), including their assigned modes, that does not cause a resource violation. A 

maximal resource satisfying set (MRS) is such a set of candidate activities, with their 

assigned modes, to which no other candidate activity in any of its modes can be added 

without violating a resource constraint. The concept of RSS and MRS is explained 

below through the problem instance Example 2, shown in Figure 3. 

 

On completion of the (dummy) start activity, a11, the candidate activities eligible for 

scheduling are activities two, three, and four. Note that activity three in mode one, 

{a31}, is infeasible as eight units of renewable resource R1 are needed against four units 

maximum available. Thus, all the feasible RSS are: {a21}, {a21, a32}, {a32}, and {a41}. 

None of these violates the renewable or non-renewable resource availabilities. Amongst 

these, {a21, a32} and {a41} are such RSS with which no other candidate activity can be 

scheduled due to resource limitations. Hence, these are maximal resource satisfying 

sets, i.e. MRS. 
 

On completion of the (dummy) start activity, a11, the candidate activities eligible for 

scheduling are activities two, three, and four. Note that activity three in mode one, 

{a31}, is infeasible as eight units of renewable resource R1 are needed against four units 

maximum available. Thus, all the feasible RSS are: {a21}, {a21, a32}, {a32}, and {a41}. 

None of these violates the renewable or non-renewable resource availabilities. Amongst 

Figure 3: Example 2 Project for Explaining RSS and MRS 
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these, {a21, a32} and {a41} are such RSS with which no other candidate activity can be 

scheduled due to resource limitations. Hence, these are maximal resource satisfying 

sets, i.e. MRS. Note that we cannot consider only the maximal resource satisfying sets 

when non-renewable resources are involved too, as this may lead to the optimal solution 

being missed. For explanation through a problem instance, consider the Example 3 

problem instance shown in Figure 4. When this problem is solved using only the 

maximal resource satisfying sets, a sub-optimal solution is yielded for the problem. The 

solution yielded is shown in Figure 5. 

 

The wrong solution is yielded due to consideration of only the maximal resource 

satisfying sets, whereas, the correct optimal solution is yielded when a sub-maximal 

resource satisfying set (or just resource satisfying set) is considered. The correct 

optimal solution is shown further in Figure 6. 
 

 

The development of only MRS forces the activity six to be performed in its first mode 

leaving insufficient non-renewable resource for activity seven to be scheduled in its 

shorter first mode later. The activity six is not considered in its second mode with 

activity two, as they are resource infeasible together. Further, when activities {a21,a61} 

are in progress, {a61} completes first, hence it is not considered for retraction either. A 

contributing factor to the above dilemma appears to be the large difference in time 

taken for completion in the two different modes of the activity six. 
 

When we consider all of the resource feasible activity mode combinations, as we do in 

our algorithm, the optimal solution (shown in Figure 6) is yielded. 
 

Notice that after completion of activity three in its first mode, the activities two and four 

are in progress in their first modes, i.e. {a21,a41}. This set is not a maximal resource 

satisfying set, in fact, it is only a resource satisfying set (an RSS). Disregarding the 

possible shift within available slack in non-critical path activities (i.e., {a21}, {a51} and 

{a62}), this problem has a unique optimal solution! 

 

Hence, we consider all resource feasible single activity and mode sets with which the 

tree could be expanded; also all two activities and their modes sets; and so on, up to and 

including all candidate activities with their modes, as long as they are resource feasible. 

For each of such an RSS, some of which are also MRS, a child state is developed 

(though some are pruned through the pruning rules described later, while retaining the 

optimality). 

Figure 4: Example 3 Project for Explaining why all RSS need Consideration 

Figure 5: Wrong Solution Yielded when Considering only MRS 

Figure 6: Right Solution Yielded when Considering all RSS 
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In every child state Y of a parent state X: 

cY = dpX, the current time of child state. 
FY = FX augmented by the activities in AX that completed at time dpX; 

AY = the RSS of X that corresponds to this child state. 
 

The starting times of activities in AY are determined as follows. If an activity ai that is in 

AY also belongs to AX, and is in progress in the same mode as in AX, then the starting 

time of ai in state Y is the same as its starting time in state X, else its starting time is cY. 

If activity ai in AX did not complete at dpX and now, does not belong to AY, it is as if it 

was never scheduled, and it is treated as retracted, similar to retraction in the algorithm 

of Demeulemeester and Herroelen (1992). Some problem instances may not be 

optimally solved, if retraction is not considered. We show this with an example later. 
 

The search tree is generated level-by-level, i.e. in a breadth-first order, and all paths 

from the root state to a solution state are essentially of length N, the number of 

activities in the project. At any point, the states at two adjacent levels (one being 

developed further, and one being generated as new level) are needed to be stored. These 

states can be maintained in a linked list, thus, making the algorithm very simple. In 

practice, as more than one activities may complete together in a given state to be 

expanded, more than two adjacent levels may have to be maintained in memory. 

 

The basic breadth-first algorithm, thus, is as follows. 

 

Algorithm Breadth-first 
Preprocessing   remove infeasible modes, redundant resources, and inferior modes 

Step 1 (Initialization)  create the root state I at level 0 in the search tree 

Step 2 (Loop)   for all levels L from 0 to N-1 do 

for each state X at level L do 

Step 3 (Expansion)   determine dpX 
construct KX and all the RSSs 
generate a child node corresponding to each RSS 

Step 4 (Termination)  Traverse the states at level N and output the complete schedule 

associated with the state X with minimum makespan at level N 

 

Two activities, in selected modes, are compatible only if they can be processed 

simultaneously, not taking any other activity into account. This implies that these 

activities must not be related to each other in a successor-predecessor relationship, and 

when processed in their selected modes, they do not violate any resource constraint. 

Note that two activities which can be processed simultaneously, may not be compatible 

in all of their mode combinations with each other due to resource restrictions. 
 

Figure 7: Example 4 Project for Breadth-first Algorithm 
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We present below a small example project, Example 4, solved using the above 

algorithm without any pruning rules. Later, we shall present the same problem instance 

solved again using only the Left Shift rule; using only the One Child Set pruning rule; 

using only the Dominance pruning rule; and finally with all the three pruning rules. 

This shall demonstrate the effectiveness of all pruning rules in obtaining the optimal 

solution while reducing computational effort. Consider the example problem instance 

Example 4 shown in Figure 7. 
 

The project in Example 4 comprises five activities, two renewable resources, and two 

non-renewable resources. The availabilities of all resources are shown in the figure. The 

duration of activities in all of their modes and the corresponding resource requirements 

are shown as per the legend for each activity in all of its modes. 

 

When the algorithm is applied without any pruning rules, a large number of states (a 

total of one hundred and thirty three for Example 4 problem instance) is generated. The 

complete enumeration of all states, level by level in breadth-first order, is given in Table 

1 and is described in detail thereafter. 
 

The columns respectively denote: the state number, the level at which the state 

is generated, the parent state's number, the earliest completion time of an 

activity in the state, the set of completed activities, and the set of activities in 

progress (at least one of which is completed at the earliest completion time of 

the state). Column 7 displays all of the resource feasible activity-mode sets (the 

RSS) which give rise to the child states of the current state. 
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Table 1: Breadth-first Search in Example 4 Project without Pruning Rules 

(1) (2) (3) (4) (5) (6) (7) 

State 

X 

Level Parent 

State 

Decision 

Point 

(dpx) 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs(Ax) 

Resource feasible 

RSS 

S1 0 -- 0 -- {a11} {a21}{a22}{a22,a32} 

{a31}{a32} 

S2 1 S1 2 {1} {a21} {a31}{a31,a41} 

{a31,a42}{a32} 

{a32,a42}{a41}{a42} 

S3 1 S1 4 {1} {a22} {a31}{a31,a41} 

{a31,a42}{a32} 

      {a32,a41}{a32,a42} 

{a41}{a42} 

S4 1 S1 4 {1} {a22,a32} {a31}{a31,a41} 

{a31,a42}{a32}{a32,a

41}{a32,a42} 

{a41}{a42} 

S5 1 S1 3 {1} {a31} {a21}{a22} 

S6 1 S1 6 {1} {a32} {a21}{a22} 

S7 2 S2 5 {1,2} {a31} {a41}{a42} 

S8 2 S2 5 {1,2} {a31,a41} {a41}{a42} 

S9 2 S2 5 {1,2} {a31,a42} {a41}{a42} 

S10 2 S2 8 {1,2} {a32} {a42} 

S11 2 S2 8 {1,2} {a32,a42} {a42} 

S12 2 S2 6 {1,2} {a41} {a31} 

S13 2 S2 9 {1,2} {a42} {a31}{a32} 

S14 2 S3 7 {1,2} {a31} {a41}{a42} 

S15 2 S3 7 {1,2} {a31,a41} {a41}{a42} 

S16 2 S3 7 {1,2} {a31,a42} {a41}{a42} 

S17 2 S3 10 {1,2} {a32} {a41}{a42} 

S18 2 S3 8 {1,2} {a32,a41} {a31}{a32} 

S19 2 S3 10 {1,2} {a32,a42} {a41}{a42} 

S20 2 S3 8 {1,2} {a41} {a31}{a32} 

S21 2 S3 11 {1,2} {a42} {a31}{a32} 

S22 2 S4 7 {1,2} {a31} {a41}{a42} 

S23 2 S4 7 {1,2} {a31,a41} {a41}{a42} 

S24 2 S4 7 {1,2} {a31,a42} {a41}{a42} 

S25 2 S4 6 {1,2} {a32} {a41}{a42} 

S26 2 S4 6 {1,2} {a32,a41} {a41}{a42} 

S27 2 S4 6 {1,2} {a32,a42} {a41}{a42} 

S28 2 S4 8 {1,2} {a41} {a31}{a32} 

S29 2 S4 11 {1,2} {a42} {a31}{a32} 
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(1) (2) (3) (4) (5) (6) (7) 

State 

X 

Level Parent 

State 

Decision 

Point 

(dpx) 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs(Ax) 

Resource feasible 

RSS 

S30 2 S5 5 {1,3} {a21} {a41}{a42} 

S31 2 S5 7 {1,3} {a22} {a41}{a42} 

S32 2 S6 8 {1,3} {a21} {a42} 

S33 2 S6 10 {1,3} {a22} {a41}{a42} 

S34 3 S7 9 {1,2,3} {a41} {a51} 

S35 3 S7 12 {1,2,3} {a42} {a51} 

S36 3 S8 6 {1,2,3} {a41} {a51} 

S37 3 S8 12 {1,2,3} {a42} {a51} 

S38 3 S9 9 {1,2,3} {a41} {a51} 

S39 3 S9 9 {1,2,3} {a42} {a51} 

S40 3 S10 15 {1,2,3} {a42} {a51} 

S41 3 S11 9 {1,2,3} {a42} {a51} 

S42 3 S12 9 {1,2,4} {a31} {a51} 

S43 3 S13 12 {1,2,4} {a31} {a51} 

S44 3 S13 15 {1,2,4} {a32} {a51} 

S45 3 S14 11 {1,2,3} {a41} {a51} 

S46 3 S14 14 {1,2,3} {a42} {a51} 

S47 3 S22 11 {1,2,3} {a41} {a51} 

S48 3 S22 14 {1,2,3} {a42} {a51} 

S49 3 S15 8 {1,2,3} {a41} {a51} 

S50 3 S15 14 {1,2,3} {a42} {a51} 

S51 3 S23 8 {1,2,3} {a41} {a51} 

S52 3 S23 14 {1,2,3} {a42} {a51} 

S53 3 S16 11 {1,2,3} {a41} {a51} 

S54 3 S16 11 {1,2,3} {a42} {a51} 

S55 3 S24 11 {1,2,3} {a41} {a51} 

S56 3 S24 11 {1,2,3} {a42} {a51} 

S57 3 S17 14 {1,2,3} {a41} {a51} 

S58 3 S17 17 {1,2,3} {a42} {a51} 

S59 3 S25 10 {1,2,3} {a41} {a51} 

S60 3 S25 13 {1,2,3} {a42} {a51} 

S61 3 S18 11 {1,2,4} {a31} {a51} 

S62 3 S18 10 {1,2,4} {a32} {a51} 

S63 3 S26 8 {1,2,3} {a41} {a51} 

S64 3 S26 13 {1,2,3} {a42} {a51} 

S65 3 S19 14 {1,2,3} {a41} {a51} 

S66 3 S19 11 {1,2,3} {a42} {a51} 
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(1) (2) (3) (4) (5) (6) (7) 

State 

X 

Level Parent 

State 

Decision 

Point 

(dpx) 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs(Ax) 

Resource feasible 

RSS 

S67 3 S27 10 {1,2,3} {a41} {a51} 

S68 3 S27 11 {1,2,3} {a42} {a51} 

S69 3 S20 11 {1,2,4} {a31} {a51} 

S70 3 S20 14 {1,2,4} {a32} {a51} 

S71 3 S28 11 {1,2,4} {a31} {a51} 

S72 3 S28 14 {1,2,4} {a32} {a51} 

S73 3 S21 14 {1,2,4} {a31} {a51} 

S74 3 S21 17 {1,2,4} {a32} {a51} 

S75 3 S29 14 {1,2,4} {a31} {a51} 

S76 3 S29 17 {1,2,4} {a32} {a51} 

S77 3 S32 15 {1,2,3} {a42} {a51} 

S78 3 S33 14 {1,2,3} {a41} {a51} 

S79 3 S33 17 {1,2,3} {a42} {a51} 

S80 3 S30 9 {1,2,3} {a41} {a51} 

S81 3 S30 12 {1,2,3} {a42} {a51} 

S82 3 S31 11 {1,2,3} {a41} {a51} 

S83 3 S31 14 {1,2,3} {a42} {a51} 

S84 4 S40 15 {1,2,3,4} {a51} -- 

S85 4 S41 9 {1,2,3,4} {a51} -- 

S86 4 S77 15 {1,2,3,4} {a51} -- 

S87 4 S34 9 {1,2,3,4} {a51} -- 

S88 4 S36 6 {1,2,3,4} {a51} -- 

S89 4 S38 9 {1,2,3,4} {a51} -- 

S90 4 S57 14 {1,2,3,4} {a51} -- 

S91 4 S59 10 {1,2,3,4} {a51} -- 

S92 4 S63 8 {1,2,3,4} {a51} -- 

S93 4 S65 14 {1,2,3,4} {a51} -- 

S94 4 S67 10 {1,2,3,4} {a51} -- 

S95 4 S78 14 {1,2,3,4} {a51} -- 

S96 4 S80 9 {1,2,3,4} {a51} -- 

S97 4 S35 12 {1,2,3,4} {a51} -- 

S98 4 S37 12 {1,2,3,4} {a51} -- 

S99 4 S39 9 {1,2,3,4} {a51} -- 

S100 4 S58 17 {1,2,3,4} {a51} -- 

S101 4 S60 13 {1,2,3,4} {a51} -- 

S102 4 S64 13 {1,2,3,4} {a51} -- 

S103 4 S66 11 {1,2,3,4} {a51} -- 
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(1) (2) (3) (4) (5) (6) (7) 

State 

X 

Level Parent 

State 

Decision 

Point 

(dpx) 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs(Ax) 

Resource feasible 

RSS 

S104 4 S68 11 {1,2,3,4} {a51} -- 

S105 4 S79 17 {1,2,3,4} {a51} -- 

S106 4 S81 12 {1,2,3,4} {a51} -- 

S107 4 S45 11 {1,2,3,4} {a51} -- 

S108 4 S47 11 {1,2,3,4} {a51} -- 

S109 4 S49 8 {1,2,3,4} {a51} -- 

S110 4 S51 8 {1,2,3,4} {a51} -- 

S111 4 S53 11 {1,2,3,4} {a51} -- 

S112 4 S55 11 {1,2,3,4} {a51} -- 

S113 4 S82 11 {1,2,3,4} {a51} -- 

S114 4 S46 14 {1,2,3,4} {a51} -- 

S115 4 S48 14 {1,2,3,4} {a51} -- 

S116 4 S50 14 {1,2,3,4} {a51} -- 

S117 4 S52 14 {1,2,3,4} {a51} -- 

S118 4 S54 11 {1,2,3,4} {a51} -- 

S119 4 S56 11 {1,2,3,4} {a51} -- 

S120 4 S83 14 {1,2,3,4} {a51} -- 

S121 4 S42 9 {1,2,3,4} {a51} -- 

S122 4 S43 12 {1,2,3,4} {a51} -- 

S123 4 S61 11 {1,2,3,4} {a51} -- 

S124 4 S69 11 {1,2,3,4} {a51} -- 

S125 4 S71 11 {1,2,3,4} {a51} -- 

S126 4 S44 15 {1,2,3,4} {a51} -- 

S127 4 S62 10 {1,2,3,4} {a51} -- 

S128 4 S70 14 {1,2,3,4} {a51} -- 

S129 4 S72 14 {1,2,3,4} {a51} -- 

S130 4 S73 14 {1,2,3,4} {a51} -- 

S131 4 S75 14 {1,2,3,4} {a51} -- 

S132 4 S74 17 {1,2,3,4} {a51} -- 

S133 4 S76 17 {1,2,3,4} {a51} -- 

Optimal Makespan: 6 (from state S88). 

 

The starting state one (state S1) at level zero shows the (dummy) start activity a11 in 

progress and the next decision point as t = 0 (as the dummy start activity starts and ends 

at t = 0). The candidate activities on completion of the start activity are computed which 

are activities two and three. The resource feasible RSS arising from these candidate 

activities are computed next, which are: {a21}, {a22}, {a22,a32}, {a31}, and {a32}. Each of 

these RSS is developed into a corresponding state (child states of state S1), and these 
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child states are numbered in continuity as states S2, S3, S4, S5, and S6. As a total of 

one activity has so far completed, these child states are appended to the search tree at 

level one. Level zero's processing is now complete and we proceed to level one. 
 

The first state encountered at level one is state S2 in which one activity, a21, is 

completing. Its finish time, and subsequent set of candidate activities are first 

computed. Next, all the feasible RSS are computed, which are {a31}, {a31,a41}, {a31,a42}, 

{a32}, {a32,a42}, {a41}, and {a42}. The RSS {a32,a41} needing twelve units of NR2 is not 

feasible as the amount consumed in activity {a21} is four units leaving a residual of only 

eleven units. The remaining RSS are then developed into child states of S2 and are 

appended at the suitable level of the tree (here, level two, as two activities are now 

finished, namely activities one and two). Each remaining state at level one (here, S3 to 

S6) is processed one by one before moving to the next level. 
 

Once the states at level one are completely processed, we advance to the next level, i.e. 

level two, and start processing of states at that level. The newly generated child states 

appended to the tree at any level are stored in a memory conserving data structure. 

Hence it is not necessary that all states at subsequent levels are processed in the original 

order of their generation (this is evident from the column three, depicting the parent 

state, for level three in Table 1 ). 

 

All levels are processed, in breadth-first order, till the states at the last level are all 

generated (here level four, as it is enough to just schedule the dummy finish activity 

indicating the completion of the project). Note that even in this very small example 

instance, Example 4, 133 states are generated. Fifty of these, representing complete 

schedules, are at the last level, one (or more) of which is (are) optimal. To find the 

optimal makespan, we traverse the states at the last level and pick up the optimal 

solution(s). The number of states generated reaches millions for instances in even the 

smallest problem set of twelve activities (set j10) in PSPLIB. However, without pruning 

rules, this approach generates far too many states, takes much computational time, and 

needs more memory for even slightly larger problem instances. Hence, the algorithm is 

augmented with suitable pruning rules which are described below. For convenience, we 

continue with the same problem instance, Example 4, and describe the implementation 

of all pruning rules, first one by one, and then all together, to demonstrate their power. 

2.2 Pruning Rules 

Three pruning rules are used to augment the above algorithm to reduce the 

computational effort needed. These pruning rules do not compromise the optimality of 

the solution. The rules are: the Left Shift Rule (LS), the One-Child Set Rule (1C), and 

the Dominance Pruning Rule (DP). The application of all the rules is illustrated through 

the problem instance in Example 4. Theoretical proof of optimality of the solution on 

using these pruning rules are provided later. 
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2.2.1 Left-Shift Rule (LS) 

An activity, in its given mode, which can be started earlier than its assigned start time in 

current state, without violating any resource or precedence constraints and the start 

times of already scheduled activities, is a left shiftable activity. The LS rule is that if an 

RSS, say A, at a decision point dpX, is left shiftable then do not generate any child state 

of X corresponding to this RSS. Left-shift rule is employed by several scheduling 

methods. In breadth-first algorithm for regular measures, it is necessary to check only 

the activities in progress for left shiftability, as left shifting activities which are 

completed before the current decision point, dpX, will not alter the end time (makespan) 

of the solution generated from current sub tree in consideration. This version of the left 

shift rule is the local left shift rule. The global left shift rule would check the left 

shiftability for all time periods (along with completion of predecessor activities) since 

the start time of the project (i.e. t=0) and involves substantial computational effort. The 

application of this rule to the same example, Example 4, solved earlier without any 

pruning rules, is described in Table 2. 

 

 



 

 

 

  

 

 

IIMA    INDIA 
Research and Publications 

 

W.P.  No.  2014-10-04 Page No. 22 

 

Table 2: Breadth-first Search in Example 4 Project with only Left Shift Rule 

(1) (2) (3) (4) (5) (6) (7) 

State 

X 

Level Parent 

State 

Decision 

Point 

(dpx) 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs 

(Ax) 

Resource feasible 

RSS 

S1 0 -- 0 -- {a11} {a21}{a22}{a22,a32} 

{a31}{a32} 

S2 1 S1 2 {1} {a21} {a31}{a31,a41} 

{a31,a42}{a32} 

{a32,a42}{a41}{a42} 

S3 1 S1 4 {1} {a22} {a31}{a31,a41} 

{a31,a42}{a32} 

{a32,a41}{a32,a42} 

{a41}{a42} 

S4 1 S1 4 {1} {a22,a32} {a31}{a31,a41}{a31,a4

2}{a32} 

{a32,a41}{a32,a42} 

{a41}{a42} 

S5 1 S1 3 {1} {a31} {a21}{a22} 

S6 1 S1 6 {1} {a32} {a21}{a22} 

S7 2 S2 5 {1,2} {a31} {a41}{a42} 

S8 2 S2 5 {1,2} {a31,a41} {a41}{a42} 

S9 2 S2 5 {1,2} {a31,a42} {a41}{a42} 

S10 2 S2 8 {1,2} {a32} {a42} 

S11 2 S2 8 {1,2} {a32,a42} {a42} 

S12 2 S2 6 {1,2} {a41} {a31} 

S13 2 S2 9 {1,2} {a42} {a31}{a32} 

S14 2 S3 7 {1,2} {a31} {a41}{a42} 

S15 2 S3 7 {1,2} {a31,a41} {a41}{a42} 

S16 2 S3 7 {1,2} {a31,a42} {a41}{a42} 

S17 2 S3 10 {1,2} {a32} (LS) 

S18 2 S3 8 {1,2} {a32,a41} (LS) 

S19 2 S3 10 {1,2} {a32,a42} (LS) 

S20 2 S3 8 {1,2} {a41} {a31}{a32} 

S21 2 S3 11 {1,2} {a42} {a31}{a32} 

S22 2 S4 7 {1,2} {a31} {a41}{a42} 

S23 2 S4 7 {1,2} {a31,a41} {a41}{a42} 

S24 2 S4 7 {1,2} {a31,a42} {a41}{a42} 

S25 2 S4 6 {1,2} {a32} {a41}{a42} 

S26 2 S4 6 {1,2} {a32,a41} {a41}{a42} 

S27 2 S4 6 {1,2} {a32,a42} {a41}{a42} 

S28 2 S4 8 {1,2} {a41} {a31}{a32} 

S29 2 S4 11 {1,2} {a42} {a31}{a32} 
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(1) (2) (3) (4) (5) (6) (7) 

State 

X 

Level Parent 

State 

Decision 

Point 

(dpx) 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs 

(Ax) 

Resource feasible 

RSS 

S30 2 S5 5 {1,3} {a21} {a41}{a42} 

S31 2 S5 7 {1,3} {a22} {a41}{a42} 

S32 2 S6 8 {1,3} {a21} {a42} 

S33 2 S6 10 {1,3} {a22} (LS) 

...and so on. A completely solved example, with all pruning rules applied, follows later. 

The generation of states for level one by processing states at level zero, is identical to 

the previous explanation. However, while processing states at level one to generate 

states at level two, we find that the schedules in states S17, S18, S19, and S33 contain 

activity (or activities) which are left shiftable. Hence, these states are not processed (in 

practice, these states are not appended to the search tree at all). The remark '(LS)' in the 

remarks column indicates the application of the left shift rule to a state. The schedule 

obtained by developing State 4 will be at least as good as one obtained by developing 

State 17. The comparison of these partial schedules is shown in Figure 8. 

 

In a small example problem instance, the frequency with which such schedules are 

found, demonstrates the utility of this rule's application in reducing the size of the 

search tree and saving computational effort. The total number of states generated thus 

reduces to ninety seven from earlier one hundred and thirty three for this small example 

problem instance. The final solution is not compromised as any partial solution with a 

left shiftable activity will not generate a solution superior to another partial solution 

which contains that activity (in the same mode) already at left and hence finishing 

earlier. We provide the proof of optimality of the solution when the left shift rule is 

applied later. 

 

We now explain the application of the one child set rule through the same example, 

Example 4. First, we describe the one child set rule. 

2.2.2 One-Child Set Rule (1C) 

If all activities in the parent state have completed, and among the candidate activities, 

each activity, in all its modes, can be scheduled with all other activities together, in all 

of their mode combinations without causing a resource violation, then (instead of all 

resource satisfying sets) we need to consider only the maximal resource satisfying sets 

(MRS) for generating the child states of this parent state. The concept of MRS is 

adopted from Nazareth and Bhattacharya (1993) and Nazareth (1995) with some 

modification. In each MRS set each of the candidate activities is included, in one of its 

modes. For the pruning rule to apply, all possible sets of mode combinations of all 

candidate activities should be (renewable and non-renewable) resource feasible. Note 

Figure 8: Application of Left-shift Rule 
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that one (or more) of these candidate activities is the longest in its selected mode. We 

call this activity in its selected mode the distinguished member of the MRS. 
 

Although application of this rule involves substantial computational overhead, the 

reduction in computational requirement on its application justifies its use, as it is able to 

prune several partial schedules at early levels which cuts large chunks of the search tree 

from the need to be generated. As more activities are completed and lower levels in the 

search tree are reached, non-renewable resources are depleted. In a large number of 

these partial schedules, it is then not possible to schedule all candidate activities in all of 

their modes due to reduced residuals of non-renewable resources. Hence, the rule 

applies less frequently. The power of the rule, too, is diminished, as the size of the 

search tree pruned at lower levels is relatively smaller. As such, deactivating the rule in 

the last few levels may yield an improved computational performance, though, we 

apply the rule at all levels. We solve the same example, Example 4, by applying only 

the one child set rule. The generation of states with only one child set rule is given in 

Table 3. 
 

Table 3: Breadth-first Search in Example 4 Project with only 1C Rule 

(1) (2) (3) (4) (5) (6) (7)  

State 

X 

Level Parent 

State 

Decision 

Point 

(dpx) 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs 

(Ax) 

Resource feasible 

RSS 

 

S1 0 -- 0 -- {a11} {a21}{a22}{a22,

a32}{a31}{a32} 

 

S2 1 S1 2 {1} {a21} {a31}{a31,a41} 

{a31,a42}{a32} 

{a32,a42}{a41} 

{a42} 

 

S3 1 S1 4 {1} {a22} {a31}{a31,a41} 

{a31,a42}{a32} 

{a32,a41}{a32,a4

2} 

{a41}{a42} 

* 

S4 1 S1 4 {1} {a22,a32} {a31}{a31,a41} 

{a31,a42}{a32} 

{a32,a41} 

{a32,a42}{a41}{

a42} 

** 

S5 1 S1 3 {1} {a31} {a21}{a22}  

S6 1 S1 6 {1} {a32} {a21}{a22}  

*1C rule applied, hence, process only {a31,a41}{a31,a42}{a32,a41} and {a32,a42} 

**1C rule applied, hence, process only {a31,a41}{a31,a42}{a32,a41} and {a32,a42} 

...and so on. A completely solved example, with all pruning rules applied, follows later. 

 

The child states at level one for the root starting state are generated similar to previous 

discussion. However, while processing the level one states and applying the one child 
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set rule, for states S3 and S4, we generate the child states only for those RSSs which are 

maximal, i.e. the MRSs. These MRSs are {a31,a41}, {a31,a42}, {a32,a41}, and {a32,a42}. 

The remark '1C' in the remarks column indicates the application of one child set rule. 

This further reduces the number of states to be generated. Only ninety three states for 

the Example 4 problem instance are generated when one child set rule is applied. We 

provide the proof of optimality of the solution when the one child set rule is applied 

later. Note that if the one child set rule is not applied, and instead, all RSSs are 

developed into child states (partial solutions), they lead to such child states which are 

subsequently pruned by the left-shift rule or by the dominance pruning rule. 

Next, we discuss the dominance pruning rule, which, out of the three rules applied, 

appears to be the most powerful when all the rules are applied only one at a time to the 

test problem sets. It prunes several partial schedules much earlier, which would have 

been pruned later by the left shift rule or the one child set rule. 
 

2.2.3 Dominance Pruning Rule (DP) 

If at any time during the execution of breadth-first algorithm there are two states X and 

Y in the search tree such that: 

FX = FY, i.e., the activities completed are same; 

AX = AY, i.e. activities in progress and their corresponding modes are same; 

the residual of each non-renewable resource, after consumption by all activities 

completed or allocation to all activities in progress in set X, is same or more 

than in set Y; 

the starting time in state X of each activity in AX is less than or equal to its starting 

time in state Y; 

then prune state Y from the search tree, as state X dominates state Y. 

 

A state X can dominate a state Y only if they are both at the same level, making the rule 

easier to implement in a breadth-first progress scheme. By collating sets of activities co

mpleted and non-renewable resources consumed in one data structure; the activities in p

rogress and their modes in another data structure; and the start times in a yet another dat

a structure; all connected suitably through linked lists, the memory requirement in the al

gorithm's implementation is substantially reduced. The scheme also enables simpler and 

speedier implementation of the pruning rule. The application of only the dominance pru

ning rule in the Example 4 problem instance is described below. The states developed ar

e as shown in Table 4. 
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Table 4 : Breadth-first Search in Example 4 Project with only DP Rule 

(1) (2) (3) (4) (5) (6) (7) 

State 

X 

Level Parent 

State 

Decision 

Point 

(dpx) 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs 

(Ax) 

Resource feasible 

RSS 

S1 0 -- 0 -- {a11} {a21}{a22}{a22,a32}{a3

1}{a32} 

S2 1 S1 2 {1} {a21} {a31}{a31,a41{a31,a42}

{a32}{a32,a42}{a41}{a4

2} 

S3 1 S1 4 {1} {a22} {a31}{a31,a41{a31,a42}

{a32}{a32,a41{a32,a42}

{a41}{a42} 

S4 1 S1 4 {1} {a22,a32} {a31}{a31,a41{a31,a42}

{a32}{a32,a41{a32,a42}

{a41}{a42} 

S5 1 S1 3 {1} {a31} {a21}{a22} 

S6 1 S1 6 {1} {a32} {a21}{a22} 

S7 2 S2 5 {1,2} {a31}  

S8 2 S2 5 {1,2} {a31,a41}  

S9 2 S2 5 {1,2} {a31,a42}  

S10 2 S2 8 {1,2} {a32}  

S11 2 S2 8 {1,2} {a32,a42}  

S12 2 S2 6 {1,2} {a41}  

S13 2 S2 9 {1,2} {a42}  

S14 2 S3 7 {1,2} {a31}  

S15 2 S3 7 {1,2} {a31,a41}  

S16 2 S3 7 {1,2} {a31,a42}  

S17 2 S3 10 {1,2} {a32}  

S18 2 S3 8 {1,2} {a32,a41}  

S19 2 S3 10 {1,2} {a32,a42}  

S20 2 S3 8 {1,2} {a41}  

S21 2 S3 11 {1,2} {a42}  

S22 2 S4 7 {1,2} {a31} (S22 DP by S14) 

S23 2 S4 7 {1,2} {a31,a41} (S23 DP by S15) 

S24 2 S4 7 {1,2} {a31,a42} (S24 DP by S16) 

S25 2 S4 6 {1,2} {a32} (S17 DP by S25) 

S26 2 S4 6 {1,2} {a32,a41} (S18 DP by S26) 

S27 2 S4 6 {1,2} {a32,a42} (S19 DP by S27) 

S28 2 S4 8 {1,2} {a41} (S28 DP by S20) 

S29 2 S4 11 {1,2} {a42} (S29 DP by S21) 

S30 2 S5 5 {1,3} {a21}  

S31 2 S5 7 {1,3} {a22}  

S32 2 S6 8 {1,3} {a21}  

S33 2 S6 10 {1,3} {a22}  

...and so on. A completely solved example, with all pruning rules applied, follows later. 
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Table 5: Breadth-first Search in Example 4 Project with all Rules 

(1) (2) (3) (4) (5) (6) (7)  

State 

X 

Level Parent 

State 

Decision 

Point 

(dpx) 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs 

(Ax) 

Resource feasible 

RSS 
 

S1 0 -- 0 -- {a11} {a21}{a22}{a22,a32} 

{a31}{a32} 

 

S2 1 S1 2 {1} {a21} {a31}{a31,a41}{a31,a42

}{a32}{a32,a42}{a41}{a

42} 

 

S3 1 S1 4 {1} {a22}{a3

2,a41} 

{a32,a42} 

{a31}{a31,a41} 

{a31,a42}{a32} 

{a41}{a42} 

* 

S4 1 S1 4 {1} {a22,a32} {a31}{a31,a41}{a31,a42

}{a32}{a32,a41}{a32,a4

2} 

{a41}{a42} 

** 

S5 1 S1 3 {1} {a31} {a21}{a22}  

S6 1 S1 6 {1} {a32} {a21}{a22}  

S7 2 S2 5 {1,2} {a31} {a41}{a42}  

S8 2 S2 5 {1,2} {a31,a41} {a41}{a42}  

S9 2 S2 5 {1,2} {a31,a42} {a41}{a42}  

S10 2 S2 8 {1,2} {a32} {a42}  

S11 2 S2 8 {1,2} {a32,a42} {a42}  

S12 2 S2 6 {1,2} {a41} {a31}  

S13 2 S2 9 {1,2} {a42} {a31}{a32}  

S14 2 S3 7 {1,2} {a31,a41} {a41}{a42}  

S15 2 S3 7 {1,2} {a31,a42} {a41}{a42}  

S16 2 S3 8 {1,2} {a32,a41} (LS)  

S17 2 S3 10 {1,2} {a32,a42} (LS)  

S18 2 S4 7 {1,2} {a31,a41} (S18 DP by S14)  

S19 2 S4 7 {1,2} {a31,a42} (S19 DP by S15)  

S20 2 S4 6 {1,2} {a32,a41} {a41}{a42}  

S21 2 S4 6 {1,2} {a32,a42} {a41}{a42}  

S22 2 S5 5 {1,3} {a21} {a41}{a42}  

S23 2 S5 7 {1,3} {a22} {a41}{a42}  

S24 2 S6 8 {1,3} {a21} {a42}  

S25 2 S6 10 {1,3} {a22} (LS)  

S26 3 S7 9 {1,2,3} {a41} (LS)  

S27 3 S7 12 {1,2,3} {a42} (LS)  

S28 3 S8 6 {1,2,3} {a41} {a51}  

S29 3 S8 12 {1,2,3} {a42} (S29 DP by S31)  

S30 3 S9 9 {1,2,3} {a41} (S30 DP by S28)  
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(1) (2) (3) (4) (5) (6) (7)  

State 

X 

Level Parent 

State 

Decision 

Point 

(dpx) 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs 

(Ax) 

Resource feasible 

RSS 
 

S31 3 S9 9 {1,2,3} {a42} {a51}  

S32 3 S10 15 {1,2,3} {a42} (LS)  

S33 3 S11 9 {1,2,3} {a42} {a51}  

S34 3 S12 9 {1,2,4} {a31} (LS)  

S35 3 S13 12 {1,2,4} {a31} (LS)  

S36 3 S13 15 {1,2,4} {a32} (LS)  

S37 3 S14 8 {1,2,3} {a41} {a51}  

S38 3 S14 14 {1,2,3} {a42} {a51}  

S39 3 S15 11 {1,2,3} {a41} (S39 DP by S37)  

S40 3 S15 11 {1,2,3} {a42} (S38 DP by S40)  

S41 3 S20 8 {1,2,3} {a41} (S41 DP by S28)  

S42 3 S20 13 {1,2,3} {a42} (S42 DP by S31)  

S43 3 S21 10 {1,2,3} {a41} (S43 DP by S28)  

S44 3 S21 11 {1,2,3} {a42} (S44 DP by S31)  

S45 3 S24 15 {1,2,3} {a42} (S45 DP by S33)  

S46 3 S22 9 {1,2,3} {a41} (S46 DP by S28)  

S47 3 S22 12 {1,2,3} {a42} (S47 DP by S31)  

S48 3 S23 11 {1,2,3} {a41} (S48 DP by S37)  

S49 3 S23 14 {1,2,3} {a42} (S49 DP by S40)  

S50 4 S33 9 {1,2,3,4} {a51} --  

S51 4 S28 6 {1,2,3,4} {a51} (S50 DP by S51)  

S52 4 S31 9 {1,2,3,4} {a51} --  

S53 4 S37 8 {1,2,3,4} {a51} (S52 DP by S53)  

S54 4 S40 11 {1,2,3,4} {a51} --  

*1C hence process only {a31,a41}{a31,a42}{a32,a41}{a32,a42}  

**1C hence process only {a31,a41}{a31,a42}{a32,a41}{a32,a42}  

Example 4 Optimal makespan: 6 

 

The algorithm is started, as in earlier explanation, with the starting state S1 at root. Its d

evelopment at the first level is identical to previous examples. After developing the state

s of the first level by processing the starting state, we develop the next (second) level. T

he first state at level one, state S2, is taken and its seven RSSs are developed into states 

S7 to S13. The state S3 of level one is processed next, and its eight RSSs are developed 

into states S14 to S21. State S4 of level one is then processed, yielding eight RSSs. The 

first of its RSS, {a31}, generates state S22, which is dominated by state S14, hence, prun

ed. Observe that: (a) activities completed in S22 and S14 are same, (b) activities current

ly in progress and their modes, in S22 and S14, are same, (c) residual of each non-rene

wable resource after allocation to activities in progress in state S14 is same or more tha

n corresponding residual in state S22, and (d) the starting time(s) of activities in progres
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s in S14 is same or earlier with respect to S22. Thus, state S14 dominates state S22. Hen

ce, state S22 may be pruned. By identical comparisons between states S23 and S15, S23 

is dominated, and hence, pruned. In this example, all child states of parent state S4 are d

ominated and pruned. This shows the power of this rule in reducing computational time 

in solving a problem instance. We now explain the application of all the three pruning r

ules together in a completely worked out example. Once again, consider the same probl

em instance, Example 4, as shown in earlier. The development of states in breadth-first 

order, applying all pruning rules, is as shown in Table 5. 
 

The processing of level zero to develop level one is identical to the previous 

explanation. However, while processing the level one, we encounter two states, S3 and 

S4, where the one child set rule applies. Three states at level two are pruned due to left-

shift rule, and two due to dominance pruning rule. The effect of pruning rules becomes 

even more evident at the level three, where six states are pruned by the left-shift rule, 

and thirteen due to the dominance pruning rule, leaving only four states for further 

development. This demonstrates the power of the dominance pruning rule. The 

advantage arising from the DP rule is explained as follows. While generating child 

states in different branches, as activities are scheduled and completed in different 

modes, there is a difference between the non-renewable resource amounts consumed. 

However, when activities are scheduled in same modes, but in a different order, two 

similar child states X and Y, may be generated from two different parent states. DP 

avoids repeated processing of such duplicate states by pruning them timely. 

Additionally, DP prunes some such child states, which at later levels, would have been 

pruned by LS. By pruning them at an earlier level, substantial computational effort is 

saved. The pseudocode for pruning rules incorporated version of breadth-first algorithm 

is as follows. 

 

Algorithm Breadth-first With Pruning Rules 
Preprocessing  remove infeasible modes, redundant resources, and inferior modes 

Step 1 (Initialization)  create the root state I at level 0 in the search tree 

Step 2 (Loop)  for L from 0 to N-1 do 

for each state X at level L do 

Step 3 (Expansion)  determine dpX, completed activities, and child states' level (Lc) 
 construct KX and all the RSSs 
Step 3A (1C)  if 1C applies, retain only MRSs with all candidate activities 

 for each RSS/MRS do 

Step 3B (LSR)   if LSR applies then 

 do not generate child state 

else 

 generate a child state at Lc for each RSS/MRS 
Step 3C (DP)  apply the dominance pruning rule to all states at Lc 
Step 4 (Termination)  Traverse the states at level N and output the complete schedule 

associated with the state X with minimum makespan at level N 

 

At the last level generated, as we schedule the dummy end activity, the tree yields 

multiple solution states. Not all, but many among these are optimal solution states. 

These solutions differ by the total amounts of non-renewable resources consumed in the 
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schedules generated. Even for small problem instances, sometimes hundreds of multiple 

solutions may be found. It is then possible to search for such an optimal makespan 

solution, which simultaneously optimizes on the consumption of the first non-

renewable resource (or alternatively the second non-renewable resource). As this only 

requires a re-traversal of the leaf nodes at the last level, the computational effort and 

time needed is negligible. It is possible to find multiple such solutions, which consume 

the same least amount of the first non-renewable resource, and then, within these, the 

solution consuming the least quantity of the second non-renewable resource may also 

be searched, thus leading to an exact multi objective non-renewable resource conserving 

optimal makespan solution. Note that among several single-objective optimal solutions, 

the modes in which activities are performed may be different, and so are the critical 

paths. As we search for higher order multi objective solutions, the number of critical 

paths increases, which could be of concern to a manager. 
 

The multiple exact single objective optimal solutions, with different activity modes and 

start times, may be substantially different from any given optimal solution. A Pareto 

bound analysis between two points representing optimal solutions for two different 

objectives may fail to yield another multi objective optimal solution even though one 

exists! 

 

It is noteworthy that the problem instances which have multiple solutions involve more 

processing in Breadth-first approach as it builds all the optimal solutions up to the last 

level, while Depth-first approach, once it finds an optimal solution, prunes away even 

other optimal solutions. When multiple optimal solutions exist, one may be found early 

in the search tree to the advantage of Depth-first. However, Breadth-first is still able to 

solve the larger problem instances faster! 
 

Retraction Example: We provide below a small example problem instance which 

would not yield the correct solution without considering retraction. Consider the 

problem instance shown in Figure 9. 

 

The generation of all states up to level 3 for this instance is shown in Table 6. 
 

Table 6: Breadth-first Search in Example with Retraction 

(1) (2) (3) (4) (5) (6) (7)  

State 

X 

Level Parent 

State 

Decision 

Point 

(dpx) 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs 

(Ax) 

Resource feasible 

RSS 

 

S1 0 -- 0 -- {a11} {a21}{a21,a31}{a21,a31,a41} 

{a21,a41}{a31}{a31,a41}{a41

} 

* 

S2 1 S1 3 {1} {a21,a31,a

41} 

{a21}{a21,a41}{a41}{a41,a61

} 

{a41,a62}{a61}{a62} 

** 

Figure 9: Example Problem Instance for Retraction 
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(1) (2) (3) (4) (5) (6) (7)  

State 

X 

Level Parent 

State 

Decision 

Point 

(dpx) 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs 

(Ax) 

Resource feasible 

RSS 

 

S3 2 S2 4 {1,3} {a21} {a41}{a41,a61}{a41,a62}{a51

} 

{a51,a61}{a51,a62}{a61}{a62

} 

 

S4 2 S2 4 {1,3} {a21,a41} {a41}{a41,a61}{a41,a62}{a51

} 

{a51,a61}{a51,a62}{a61}{a62

} 

 

S5 2 S2 9 {1,3} {a41} {a21}{a61}{a62}  

S6 2 S2 8 {1,3} {a41,a61} {a21}{a21,a41}{a41}  

S7 2 S2 9 {1,3} {a41,a62} {a21}{a61}{a62}  

S8 2 S2 8 {1,3} {a61} {a21}{a21,a41}{a41}  

S9 2 S2 13 {1,3} {a62} {a21}{a21,a41}{a41}  

S10 3 S3 13 {1,2,3} {a41} (S10 DP by S18)  

S11 3 S3 9 {1,2,3} {a41,a61} (S11 DP by S19)  

S12 3 S3 13 {1,2,3} {a41,a62} (S12 DP by S20)  

S13 3 S3 6 {1,2,3} {a51} (S21 DP by S13)  

S14 3 S3 6 {1,2,3} {a51,a61} (S22 DP by S14)  

S15 3 S3 6 {1,2,3} {a51,a62} (S23 DP by S15)  

S16 3 S3 9 {1,2,3} {a61} (S24 DP by S16)  

S17 3 S3 14 {1,2,3} {a62} (S25 DP by S17)  

S18 3 S4 9 {1,2,3} {a41} {a51}{a51,a61}{a51,a62} 

{a61}{a62} 

# 

S19 3 S4 9 {1,2,3} {a41,a61} {a51,a81}  

S20 3 S4 9 {1,2,3} {a41,a62} {a51}{a51,a61}{a51,a62} 

{a61}{a62} 

## 

S21 3 S4 6 {1,2,3} {a51} (S21 DP by S13)  

S22 3 S4 6 {1,2,3} {a51,a61} (S21 DP by S13)  

S23 3 S4 6 {1,2,3} {a51,a62} (S21 DP by S13)  

S24 3 S4 9 {1,2,3} {a61} (S21 DP by S13)  

S25 3 S4 14 {1,2,3} {a62} (S21 DP by S13)  

S26 3 S5 13 {1,3,4} {a21} {a51}{a51,a61}{a51,a62} 

{a61}{a62} 

## 

S27 3 S5 14 {1,3,4} {a61} {a21}  

S28 3 S5 19 {1,3,4} {a62} (S28 DP by S34)  

S29 3 S6 12 {1,3,6} {a21} {a41}{a51}  

S30 3 S6 9 {1,3,6} {a21,a41} {a21}  

S31 3 S6 9 {1,3,6} {a41} {a21}  

S32 3 S7 13 {1,3,4} {a21} (S32 DP by S26)  

S33 3 S7 14 {1,3,4} {a61} (S33 DP by S27)  
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(1) (2) (3) (4) (5) (6) (7)  

State 

X 

Level Parent 

State 

Decision 

Point 

(dpx) 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs 

(Ax) 

Resource feasible 

RSS 

 

S34 3 S7 13 {1,3,4} {a62} {a21}  

S35 3 S8 12 {1,3,6} {a21} (S35 DP by S29)  

S36 3 S8 12 {1,3,6} {a21,a41} (S36 DP by S30)  

S37 3 S8 17 {1,3,6} {a41} (S37 DP by S31)  

S38 3 S9 17 {1,3,6} {a21} (S38 DP by S29)  

S39 3 S9 17 {1,3,6} {a21,a41} (S39 DP by S30)  

S40 3 S9 22 {1,3,6} {a41} (S40 DP by S31)  

S41 4 S18 11 {1,2,3,4} {a51,a61} {a61}{a62}  

S42 4 S18 11 {1,2,3,4} {a51,a62}   

*(1C), only {a21,a31,a41} processed. 

**(Note retraction of a41 in parent state S2 

#(1C), only {a51,a61} and {a51,a62} processed. 

##(1C), only {a51,a61} and {a51,a62} processed. 

##(1C), only {a51,a61} and {a51,a62} processed. 
...and so on. Note that there is only one optimal solution to this problem achieved when considering retraction. 

Optimal makespan: 18 

 

Note that a retracted activity is considered as if it had never started. In the multi-mode 

case of RCPSP, a retracted (or withdrawn) activity (or activities), when scheduled later, 

may be performed even in different mode(s) compared to their previous mode from 

which they are now retracted. This allows them to be performed along with such other 

activities, which were otherwise successors of those activities with which they were 

earlier being scheduled. This leads to generation of such feasible schedules for a 

problem instance which would not be generated, if retraction is not considered. 

 

Single Processor Best-first Algorithm: The best-first algorithm differs from the 

breadth-first in two respects: (a) the order of selection of next state to be expanded, and 

(b) the termination condition. The optimistic estimates of earliest start time (EST), latest 

start time (LST), earliest finish time (EFT), and latest finish time (LFT) are made by the 

Metra Potential Method (MPM), without considering the resource constraints. We use a 

makespan heuristic for evaluating the forward estimate of the makespan of a partial 

schedule as follows: a partial schedule is converted into a pseudo-complete schedule by 

adding the unfinished activities in conformance with the precedence constraints but 

ignoring the resource constraints, and this estimated makespan is used as the heuristic 

estimate of the state. A priority queue is maintained to keep the states with smallest 

makespan estimates first; breaking any ties by considering the finished activities set, FX, 

and breaking further ties by the decision point, dpX, of the state. As the heuristic value 

underestimates the actual makespan, the first solution state selected yields a schedule of 

minimum length. Note that though with same makespan, the schedules found by 

breadth-first and best-first may be different. The algorithm is explained through an 

example problem instance after its pseudocode below. 
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Algorithm Best-first With Pruning Rules 
Preprocessing  remove infeasible modes, redundant resources, and inferior modes 

Step 1 (Initialization)  create the root state I at level 0 in the search tree, add to heap 

Step 2 (Loop) while (states in heap and solution not obtained) do 

get best state from heap 

determine earliest finish time from activities in progress 

determine activities finished, generate candidate set 

develop RSS, build child states applying pruning rules 

append to heap 

Step 3 (Termination)  determine and output solution schedule 

 

Now we present the application of Best-first algorithm for regular measures with an 

example, first to the same example problem as is presented for the Breadth-first 

algorithm, i.e. Example 4, and then for another problem in which application of all 

pruning rules in Best-first algorithm is visible. Consider the same problem as shown in 

example for Breadth-first algorithm. The states generated by Best-first monotone 

heuristic algorithm are given in Table 7 and explained thereafter. 
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Table 7: Best-first Search in Example 4 Project with Pruning Rules 

(1) (2) (3) (4) (5) (6) (7)   

State 

X 

Parent 

State 

Completed 

Actvs 

(Fx) 

In 

Progress 

Actvs 

(Ax) 

Finish 

Time 

Lower 

Bound 

Number 

Finished 

Resource feasible 

RSS 

 

--  -- {1a} 0 -- -- {a21}{a22}{a22,a32}

{a31}{a32} 

 

S2 S1 {1} {a21} 2 6 1 {a31}{a31,a41}{a31,a

42}{a32}{a32,a42}{a

41}{a42} 

 

S3 S1 {1} {a22} 4 6 1   

S4 S1 {1} {a22,a32

} 

4 6 1   

S5 S1 {1} {a31} 3 6 1   

S6 S1 {1} {a32} 6 6 1   

*         

S7 S2 {1,2} {a31} 5 6 2 {a41}-LS{a42}-LS # 

S8 S2 {1,2} {a31,a41

} 

5 6 2   

S9 S2 {1,2} {a31,a42

} 

5 6 2   

S10 S2 {1,2} {a32} 8 6 2   

S11 S2 {1,2} {a32,a42

} 

8 6 2   

S12 S2 {1,2} {a41} 6 6 2   

S13 S2 {1,2} {a42} 9 6 2   

S16 S8 {1,2,3} {a41} 6 6 3   

S17 S8 {1,2,3} {a42} 12 6 3 {a51}  

S18 S16 {1,2,3,4} {a51} 6 6 4   

Optimal makespan: 6 

* State with smallest lower bound, followed by largest number of activities finished, followed by earliest 

finish time is selected from heap for processing first (here State S2). Resource feasible RSS of S2 are 

given in Col-8 of S2. Its child states, shown below, are added to the heap. 

# Both states are pruned due to the left shift rule. 

 

The Best-first algorithm with all pruning rules solved the above example problem in 

just eighteen states. The starting state, S1, reveals five child states, S2 to S6. The state 

S2 is selected for generation of child states by the Best-first selection criteria, which is, 

(a) lowest lower bound estimate, and breaking ties with (b) largest number of activities 

completed, and breaking further ties with (c) earliest finish time of any activity from the 

activities in progress. 

 

Child states of state S2, i.e. states S7 to S13, are generated and appended to the heap by 

the chosen criteria as stated above. State S7, which fits in the heap at the top, is now 



 

 

 

                                                                  

 

 

IIMA    INDIA 
Research and Publications 

 

W.P.  No.  2014-10-04 Page No. 35 

selected for expansion, and the heap updated. However, both the RSS generated are 

seen to be pruned by the left shift rule. Hence, the next state from the heap is selected 

for expansion, which is state S8. The child states revealed are states S16 and S17, of 

which, the state S16 fits at the top of the heap. State S16 is selected for expansion, now, 

from the top of the heap, and it reveals a complete solution which is the obtained 

optimal solution. The above example shows the power of Best-first algorithm in solving 

these problems faster than Breadth-first. To demonstrate the application of all pruning 

rules in the Best-first algorithm, we consider an example problem instance. 
 

Consider the example problem, Example 5, shown in Figure 10 below. Table 8 shows 

the development of the solution to this example problem instance using Best-first 

algorithm, in which, each pruning rule is applicable at least once. An explanation of the 

progress of the algorithm to this problem follows thereafter. 

 

Figure 10: Example 5 Project for Best-first, Regular Measure Demonstrating All 

Pruning Rules 

 

Table 8: Best-first Search in Second Example 5 Project with Pruning Rules 
(1) (2) (3) (4) (5) (6) (7) (8)  

State 

X 

Parent 

State 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs 

(Ax) 

Finish 

Time 

Lower 

Bound 

Numb

er 

Finish

ed 

Resource 

feasible 

RSS 

 

S1 -- -- {1a} 0 -- -- {a21}{a21,a31} 

{a31}{a31,a41}

{a41} 

 

S2 S1 {1} {a21} 6 13 1 {a31}{a31,a41} 

{a41} 

* 

S3 S1 {1} {a21,a31} 5 13 1 {a21}{a41}  

S4 S1 {1} {a31} 5 13 1 {a21}{a41}  

S5 S1 {1} {a31,a41} 5 13 1 {a21}{a41}  

S6 S1 {1} {a41} 6 13 1 {a21}{a21,a31} 

{a31} 

** 



 

 

 

  

 

 

IIMA    INDIA 
Research and Publications 

 

W.P.  No.  2014-10-04 Page No. 36 

(1) (2) (3) (4) (5) (6) (7) (8)  

State 

X 

Parent 

State 

Completed 

Actvs 

(Fx) 

In Progress 

Actvs 

(Ax) 

Finish 

Time 

Lower 

Bound 

Numb

er 

Finish

ed 

Resource 

feasible 

RSS 

 

S7 S3 {1,3} {a21} 6 18 2 (pa-S3 {a41} 

LS) 

(pa-S5 {a21} 

LS) 

 

S10 S5 {1,3} {a41} 6 18 2 {a21}  

S15 S7 {1,2,3} {a41} 12 13 3 {a51}{a51,a61}

{a51,a62} 

{a61}{a62} 

# 

S16 S15 {1,2,3,4} {a51,a61} 14 19 4 {a61}{a62}  

S17 S15 {1,2,3,4} {a51,a62} 14 19 4 {a61}{a62}  

S18 S10 {1,3,4} {a21} 12 13 3 {a51}{a51,a61}

{a51,a62} 

{a61}{a62} 

$ 

S21 S17 {1,2,3,4,5} {a61} 21 20 5   

S22 S17 {1,2,3,4,5} {a62} 20 20 5   

S23 S16 {1,2,3,4,5} {a61} 19 19 5 {a71}  

(S21 pa-S17 DL by S23)(S24 pa-S16 {a62} DM By S22) 

S25 S23 {1,2,3,4,5,6} {a71} 19 19 6   

Optimal makespan: 19 

         

*(1C, process only {a31,a41}) 

**(1C, process only {a21,a31}) 

# (1C, process only {a51,a61}{a51,a62}) 

$ (1C, process only {a51,a61}{a51,a62}) 

 

The Best-first algorithm is started with the first state, S1, prepared. The RSS generated 

are {a21}, {a21,a31}, {a31}, {a31,a41}, and {a41}, which are respectively developed into 

the states S2, S3, S4, S5, and S6. While each of these states is generated, there forward 

estimates (lower bounds or LB) using the shortest possible modes of all activities, and 

ignoring the resource constraints are also computed and these are appended to a heap 

according to their LB, breaking ties as already explained earlier. 
 

The state S3, which appears at the top of the heap is developed first. The feasible RSS 

are {a21} and {a41}. {a21} leads to the generation of state S7 which is appended to the 

heap at its right place, while S8 by {a41} is pruned using the left shift rule. 
 

The next state is taken from top of the heap, which is S5. The RSS generated are {a21} 

and {a41}. The state S9 developed with {a21} is left shiftable and hence, pruned. State 

S10 generated from the RSS {a41} is appended to the heap at its right place. 
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The state at top of heap is taken again, which is S4. Two RSS are generated, {a21} and 

{a41}. Both the states that these lead to, S11 and S12, are left shiftable, and hence 

pruned. State S6 from top of the heap next taken yields the RSS {a21,a31}, developed 

into state S13, which is also left shiftable. The state S14, from RSS {a21,a41} of the next 

state S2 taken from top of the heap is also left shiftable. 
 

State S7 is now at the top of the heap and is taken for processing. The feasible RSS 

generated is {a41}. State S15 is developed as the child state of state S7, and appended to 

the heap. Due to its estimated lower bound and number of activities completed, it 

arrives at the top of the heap, and hence, also becomes the immediately next state to be 

developed further. The RSS generated are {a51}, {a51,a61}, {a51,a62}, {a61}, and {a62}. 

Applying the one child set rule, only the RSS {a51,a61} and {a51,a62} are developed into 

their child states, which are respectively, states S16 and S17. Both of these are 

appended to the heap at their respective places. 
 

The next state at the top of the heap is taken for processing, which is the state S10. The 

RSS generated are again {a51}, {a51,a61}, {a51,a62}, {a61}, and {a62}, and applying the 

one child set rule, only the RSS {a51,a61} and {a51,a62} are developed into their child 

states S19 and S20. However, both of these are pruned by states S17 and S18, 

respectively, applying the dominance pruning rule. 
 

Now, the next state at the top of the heap is taken for development, which is state S17. 

The feasible RSS {a61} and {a62} are developed into its child states, which are 

respectively, S21 and S22, both of which are also appended to the heap at their 

appropriate places. The state now at the top of the heap is S16 which is taken for 

processing. The RSS generated are {a61} and {a62} giving rise to states S23 and S24. 

While appending the state S23 to the heap, state S21 is dominated by it and hence 

removed. On the other hand, while appending the state S24 to the heap, state S22 

dominates it, and hence S24 is deleted too. State S23, which now at the top of the heap, 

is taken for processing. The RSS generated is {a71}, which leads to the development of 

state S25, which reveals the optimal makespan for the project scheduling problem, i.e. 

nineteen (19). 
 

We have demonstrated the application of all the pruning rules of the Best-first 

monotone heuristic in Example 5. It also shows how the Best-first is rapidly able to 

compute the optimal solution. 

 

Multiple Solutions and Exact Multi Objective Solutions: The breadth-first algorithm 

generates many complete schedules at the last level. A large number of the complete 

schedules are sub-optimal, however, several optimal solutions are generated by breadth-

first. Trivial multiple solutions for regular measures can be generated from a single 

schedule, for example, by shifting the activities on slack paths within available slack so 

as not to violate resource constraints. 
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Our breadth-first algorithm generates multiple (non-trivial) optimal solutions. The 

activities in these multiple optimal solutions are not only performed in varying sets of 

modes, the quantities of non-renewable resources consumed are different too. The 

critical path, and the number of critical paths in various solutions may also be different. 

We present a small example to demonstrate this ability of the Breadth-first algorithm. 

Consider the problem instance Example 6 shown in Figure 11. 
 

Note that 

activity-

mode a51 is infeasible hence it is removed from consideration during pre-processing, 

and a52 is renamed as a51. Breadth-first yields three optimal makespan solutions for this 

example, all of which are shown in Figure 12, each of which has the same optimal 

makespan, yet a different consumption of the non-renewable resources NR1 and NR2, 

which is also indicated. 

 

The last shown solution with an optimal span (optspan) seventeen time units and 

consumption of fifteen units and twenty units of non-renewable resources one and two 

respectively, is the exact multi objective optimal solution. As our generation scheme 

appends the new child states in order of their decreasing consumptions of non-

renewable resources, and upon finding two states with same consumption of the first 

non-renewable resource, ordering them with respect to the next non-renewable resource 

and so on; we are able to search for an optimal makespan solution which also consumes 

the least amount of the first non-renewable resource. Among multiple such solutions, if 

they exist, we are further able to search for a solution which simultaneously optimizes 

the consumption of the second non-renewable resource and so on. Thus, breadth-first 

algorithm is capable of delivering an exact multi objective solution, where the 

minimization of non-renewable resource(s) consumed is the second (and third, ...) 

objective. As long as the number of solutions obtained does not reach one, further 

optimization among the available solutions is possible. With the reduction in consumed 

resources, naturally, multiple critical paths emanate. A non-renewable resource, whose 

consumption is to be minimized, may be identified by any one of multiple possible 

options, such as: (a) unit price of non-renewable resources, (b) a given priority order of 

conserving non-renewable resources, (c) a weighted priority measure of all non-

renewable resources, and so on (note that all of these may lead to a different multi 

objective optimal solution). If, with the second objective too, multiple solution points 

with respect to activity modes and their start times (i.e. multiple dual objective optimal 

solutions in the feasible hyper-space) are obtained in the leaves of the B&B tree, it is 

further possible to optimize on next chosen objective (such as, the total cost of another 

non-renewable resource consumed based on its unit price). 
 

Availability of multiple optimal solutions to choose from is in correspondence with 

project scheduling needs of managers, as often reduction in resource consumption is an 

Figure 11: Multiple Solutions and Multi-Objective Solution through Example 6 

 

Figure 12: Multiple Schedules and Multi Objective Solution for Example 6 
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important simultaneous managerial goal. Though the computational requirement would 

rise, it is possible in our algorithm to alter the pruning rules and generate all feasible 

optimal solutions of a problem instance, among which, as desired, multi objective 

optimal solutions can be located. The ability of the algorithm to scale up in multi-

processor implementation makes this approach very promising for future research. 

3 THEORETICAL RESULTS 

In this section we provide the proof of optimality of the breadth-first algorithm, first 

when applied without any pruning rules, and then with each of the pruning rules added 

one by one. For convenience, we refer to the breadth-first algorithm without any 

pruning rules as BD; One-Child Set Rule as 1C; Left Shift Rule as LS; and Dominance 

Pruning Rule as DP. Thus, BD+DP refers to the breadth-first algorithm with only the 

Dominance Pruning Rule and no other rule; and similarly, BD+DP+1C represents the 

breadth-first algorithm with the DP and 1C rules, but without the LS rule; and so on. 

Our goal is to prove that BD+DP+1C+LS yields an optimal solution. 

 

We use the following terminology for the proofs: An optimal schedule is a complete 

schedule of minimal makespan. A complete schedule is left-aligned if it contains no left 

shiftable activities. A partial schedule is optimizable if it is an optimal schedule or an 

ancestor (as viewed in the search tree as a state) of an optimal schedule. A state is 

optimal (or optimizable) if its partial schedule is optimal (or optimizable). We first look 

at BD without any pruning rules. 
 

Theorem 1: BD generates all left-aligned complete schedules. It may, in addition, 

generate some complete schedules that are not left-aligned. 
 

Proof: Since: (a) the method of generation of states is exhaustive, and (b) no states are 

pruned, and (c) the activities are scheduled as early as possible consistent with the 

precedence and resource constraints, it follows that BD generates all left-aligned 

complete schedules. Due to retraction, some schedules that are not left-aligned are 

additionally generated. □ 

 

Corollary 1: BD generates an optimal schedule. 
 

Proof: There is a left aligned schedule that is optimal. By Theorem 2.1 BD generates all 

left-aligned schedules, so it produces an optimal schedule.  □ 
We now present proof that BD+DP produces an optimal schedule. 

 

Lemma 1: If a state X is pruned by state Y during the execution of BD+DP and X is 

optimizable, then so is Y. 
 

Proof: Let state Y dominate state X during the execution of BD+DP. Further, let state X 

be optimizable. Since state Y dominates state X, the activities finished in both states are 

same, i.e. FY = FX; the activities in progress and their modes in both states are same, i.e. 

AY = AX; activities in AY do not start later than corresponding activities in state X; and 



 

 

 

  

 

 

IIMA    INDIA 
Research and Publications 

 

W.P.  No.  2014-10-04 Page No. 40 

residual of each non-renewable resource in state Y is same or greater than in state X. 

BD would generate both of the states X and Y. As X is optimizable, it has a successor 

state X' which is optimal, and is generated by BD. 
 

Now, consider the decision points t1, t2,..., and the corresponding RSSs along the path in 

the search tree of BD, from the partial schedule in state X to the optimal schedule in 

state X'. Start from state Y instead of state X, and choose the same RSSs at the same 

time instants t1, t2,..., retaining each activity's start time and mode, and obtain schedule 

Y'. Schedule Y' has no precedence or resource conflicts and the same makespan as 

schedule X', hence it is an optimal makespan. There may be intervals of time in 

schedule Y' when no activities are in progress, i.e., it may contain left shiftable 

activities. Take each left shiftable activity in schedule Y', say in order of activity 

number, and retaining its mode, shift it left as far as possible without introducing any 

precedence or resource conflict. Let the resulting state be Y”. Y” is optimizable and will 

be generated by BD+DP as a successor of Y, so Y is optimizable. □ 

 

Theorem 2: BD+DP produces an optimal schedule. 
 

Proof: This follows immediately by Lemma 2.1, as whatever states get pruned, the 

search tree of BD+DP will always contain an optimizable state. □ 

We now add the One-Child Set Rule to BD+DP. 

 

Theorem 3: BD+DP+1C produces an optimal schedule. 
 

Proof: BD+DP yields an optimal schedule (by Theorem 2.2). Let us suppose that One-

Child Set Rule is applicable when state X is expanded at decision point dpX. Note that 

the number of MRSs eligible for retention here would be a product of all candidate 

activities' modes, each MRS including each candidate activity, while the total number of 

RSSs (including MRSs) would be much larger. 
 

Suppose we generate child states corresponding only to all MRSs. Let these child states 

be m1, m2, m3,.... Let the additional states which would have been generated using all 

RSSs, be s1, s2, s3,.... Let state s1 represent a state where exactly one activity, say ai, is 

scheduled later than in a child state generated by the MRS m1, and all activities 

scheduled in s1 and m1 are in correspondingly same modes. Thus ai finishes later in s1 as 

compared to m1. Now, if s1 generates an optimal schedule, and as ai starts earlier in m1, 

without any precedence and resource violation, m1 must also generate an optimal 

schedule. Hence, we need not expand the child state corresponding to s1. Postponing the 

processing of activities, which can be scheduled earlier, to a later time, with the same 

consumption in resources, can not lead to a shorter schedule. Note that activity ai in 

state s1 represents a left shiftable activity with respect to state m1. The case for two or 

more activities straightaway follows. Thus, as for each RSS, we have a corresponding 

MRS generating a child state in which at least one activity, in the same mode, starts 

earlier than in child state generated by the said RSS, all the MRSs together shall 

produce any of the optimal solution(s), which would have been produced by any of the 
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RSSs. Hence, for an optimal solution in the above situation, we need to consider only 

the MRSs.  □ 
 

In Theorem 2.4 below, we present the proof of optimality of a solution when the left 

shift rule is applied. This rule is widely used in tree-search procedures for regular 

measures, including the depth-first approach. 
 

Theorem 4: BD+DP+1C+LS produces an optimal schedule. 
 

Proof: BD+DP+1C yields an optimal schedule by Theorems 2.2 and 2.3. Thus, for a 

solution by BD+DP+1C+LS to be optimal, it suffices to show that it is as good as one 

by BD+DP+1C. 

 

Note that we consider child states corresponding to all RSSs. The set of resource 

feasible MRSs is a subset of these RSSs. Now, consider a partial schedule whose child 

states are under development. Let this state be the parent state X. There is a set of 

activities which is completed at or before the decision point dpX, the earliest finish time 

of an activity in progress in the parent state X. Let the candidate set of activities for 

child states of parent X be represented by C. C includes the activities in progress in X 

but not completed at dpX. 

 

As stated earlier, in generating the child states, all renewable and non-renewable 

resource feasible sets (the RSSs) are considered for the parent state X. Let one child 

state generated, state Y, be such that in it an activity, ai in mode mi, is left shiftable, i.e., 

it can be started at a time < dpX, without violating any resource and precedence 

constraints and without affecting the start time of any other activity in progress. Let 

time t denote the earliest such time when activity ai, in mode mi, can be scheduled. 

Since ai is ready at t, it belongs to one or more RSSs at t in its resource feasible mode 

mi, and thus, is included in one (or more) RSS, for which a child state has been 

generated, say some state Z. If an optimal schedule is generated by a child state of 

parent X scheduling activity ai in its mode mi, at t ≥ dpX, then a schedule with at least 

the same makespan shall also be generated by state Z. Hence, state Y may be pruned. □ 
 

The optimality of best-first using the rules DP, 1C and LS can be established similarly. 

4 EXPERIMENTAL OBSERVATIONS 

We compare and present the results of our breadth-first and best-first algorithms with 

the most competitive exact algorithm for MM-RCPSP by Sprecher and Drexl (1998) 

which uses the depth-first approach. We refer to these algorithms as BRDMM, 

BSTMM, and DEPSDMM respectively. In BRDMM and BSTMM, all the three pruning 

rules described above have been applied. In DEPSDMM, we apply all the rules except 

the global left shift rule and the cut set rule II, as suggested by Sprecher and Drexl 

(1998), both being computationally too expensive. 
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Computational Machines: The development and initial experiments were carried out 

on a desktop machine (details provided below), while the tests were carried out using 

one CPU on a node in a high performance compute-cluster (HPCC) at the Physical 

Research Laboratory, Ahmedabad. The HPC has twenty-one nodes, each node with 

sixteen CPUs. Each compute-node is a collection of four boards, each with four Quad-

Core AMD® Opteron™ Processor 8360 SE with 2511.578 MHz clock speed. At each 

node a total of 64 GB shared DDR2 SDRAM, 677 MHz is available, though in practice 

far less is used. The size of L1 cache is 128 KB, L2 cache is 512 KB, and L3 cache is 

2048 KB. The core speed is 2500 MHz, integrated memory controller speed is 2000 

MHz, and the system bus speed is 1000 MHz. The operating system used on the access 

server (the head node) is Red Hat Enterprise Linux 5 (RHEL 5), while on the compute 

nodes its light weight variant (or thin version without GUI for computational purposes) 

is deployed. All the algorithms were coded in C and compiled using Intel C Compiler 

without using any compile time parallelization or optimization directives. The details of 

computational machines used are as follows. 
 

(A) Details of developmental and experimental operating systems used: 

Operating System : (a) Fedora 11, 12, and 13 for development and testing. 

 : (b) RHEL 5 for experiments. 

Compiler : GNU C Compiler (gcc), Intel C Compiler (icc). 

Analysis tools : valgrind, Kcachegrind. 

 

(B) Details of the developmental and testing platform (desktop) used: 

Vendor_id : Intel Corp. 

Model name : Intel® Pentium® D CPU 3.00GHz 

CPU cores : 2 (only one CPU is deployed in the algorithms explained) 
Core Speed (MHz) : 3000 (Max 4000 MHz) 

L1 Cache Size (KB) : 2 x 16 

L2 Cache Size (KB) : 2 x 1024 

L3 Cache Size (KB) : Not provided. 

System Bus Speed (MHz) : 533 

 

(C) Details of compute-cluster platform used: 

The computational experiments were conducted on a compute-cluster with sixteen 

processors, organized as four Quad-Core boards using AMD processors. The essential 

details are as given below. 

Vendor_id : AuthenticAMD. 

Model name : Quad-Core AMD® Opteron™ Processor 8360 SE 

CPU cores : 4 (only one CPU is deployed in the algorithms explained) 

Core Speed (MHz) : 2500 

L1 Cache Size (KB) : 128 

L2 Cache Size (KB) : 512 

L3 Cache Size (KB) : 2048 

System Bus Speed (MHz) : 1000 

CMOS : 65nm SOI 
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IM Controller Speed (MHz) : 2000 

Virtualization : Yes 

Siblings : 4 

Bogomips : 5026.04 

TLB size : 1024 4K pages. 

Address sizes : 48 bits physical, 48 bits virtual. 

 

Standard Problem Sets: We use the established benchmark test problem sets from the 

PSPLIB for our experiments. The PSPLIB sets j10, j12, j14, j16, j18, and j20 have 

known optimal solutions, however, the largest problem set, j30, with thirty two 

activities in each problem instance, including two dummy activities (start and end), only 

has heuristic/metaheuristic based solutions known. Each of these problem sets includes 

random problem instances generated with varying resource factor (for both, renewable 

and non-renewable resources either 0.5 or 1.0) and resource strength (for both, 

renewable and non-renewable resources from 0.2, 0.5, 0.7 or 1.0) combinations. The 

infeasible problem instances generated were removed from the problem sets. No B&B 

Table 9: Summary of Results of Computational Experiments on Desktop 
 % 

Solved 

Tot 

CPU 

time(s) 

Mean 

time(s) 

Std 

dev 

Max 

time(s) 

Solved 

<5min 

Solved 

<10min 

Solved 

<15min 

Solved 

<30min 

Problem set: PSPLIB j10 set (total number of problem instances 536) 

BRDM

M 

100% 1267 2.4 0.2 35.8 536 -- -- -- 

BSTMM 100% 155 0.3 0.03 8.7 536 -- -- -- 

CPLEX 100% 712 1.3 6.4 157.3 536 -- -- -- 

DEPMM 100% 955 1.8 0.1 27.6 536 -- -- -- 

Problem set: PSPLIB j12 set (total number of problem instances 547) 

BRDM

M 

100% 3591 6.6 0.5 148.9 547 -- -- -- 

BSTMM 100% 406 0.7 0.1 13.5 547 -- -- -- 

CPLEX 100% 979 1.8 7.8 189.3 547 -- -- -- 

DEPMM 100% 211947 387.5 28.9 8787 442 +62 +23 +17 

Problem set: PSPLIB j14 set (total number of problem instances 551) 

BRDM

M 

99.80% 47977 87.2 7.9 1678.3 537 10 3  

BSTMM 100% 4133 7.5 1 273.4 551 -- -- -- 

CPLEX 100% 4512 8.2 84.4 2080.1 550 0 0 0 

DEPMM Unable to solve any problem within 30 minutes per problem 

Note: DEPSDMM is represented as DEPMM in the table. As the Desktop machine used had less (only 2 

GB) RAM, larger problem sets could not be solved. CPLEX uses both of the two processors on the 

desktop machine. 

 

exact solution algorithm has been able to solve these problem instances optimally 

beyond the size of set j12 in a reasonable time. The heuristic/metaheuristic approaches 
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too have not been able to solve all problem instances when activities considered are 

more than fourteen. 

 

The runs were taken with varying wall clock time limits, such as, 300 seconds (5 min) 

for smaller problem instances and up to 1800 seconds (30 min) for larger problem 

instances. An instance was counted as solved only if the algorithm terminated with an 

optimal solution in the allocated time. All the three algorithms yielded an optimal 

solution on termination. Our single processor breadth-first and best-first tree-search 

algorithms are the first to solve even larger problem instances exactly in a reasonable 

time. 

 

Single Processor Breadth-first, Best-first and Depth-first Results: The entire set j10 

from PSPLIB was solved by all the three algorithms optimally and on average breadth-

first is slowest on these small problem instances, followed by depth-first, while the 

fastest is best-first. It appears that the time taken in processing the pruning rules is 

computationally expensive for smaller problem instances because of which breadth-first 

approach becomes slower compared to other approaches. 

 

However, the benefit of investment of time in the pruning rules mentioned above 

appears substantial in the next larger set j12, where breadth-first performs better than 

depth-first, though best-first remains at top. The depth-first algorithm is unable to solve 

all the problem instances in a limited run time of ten minutes per instance, while 

Breadth-first and Best-first solve all problem instances within ten minutes each. A 

summary of all results in experiments on a Desktop machine and in HPCC are provided 

in Table 9 and Table 10. 

 

The Desktop machine had only 2 GB RAM, and the experiments were carried out with 

a RAM limit of 1792 MB leaving 256 MB for the operating system. Due to this 

limitation none of the larger problem sets could be solved. To arrive at complete results 

for the set j12, it was experimented without any time limit for the Depth-first algorithm, 

and the break-up of numbers of problems solved along with time taken are shown in 

Table 9. In the set j14, Breadth-first is unable to solve any problem on the desktop 

machine either due to RAM availability limitation or exceeding the set time limit of 30 

minutes per problem instance. However, Best-first solves a substantial number of these 

problems. 
 

 

On the HPCC, all algorithms solve the problem set j10 within five minutes of total run 

time. However, much more time is needed from the set j12 onwards. Depth-first solves 

only the j10 set faster than Breadth-first, while Best-first is clearly the fastest. A rapid 

and significant jump in average computational time is observed for both Breadth-first 

and Depth-first as the problem instance's size increases, while Best-first appears to be 

influenced less. Problem set j14 onwards Depth-first is able to solve only a few of the 

problem instances within ten minutes, though both, breadth-first and best-first solve all 

within this time. The advantage of computational time consumed in pruning rules in 
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Breadth-first, which causes it to be slower than Depth-first in the smallest set j10, 

appears significant in larger problem sets, making it faster. 

 

In the set j16, breadth-first is unable to solve all problem instances within ten minutes, 

however best-first continues to solve all of these and most of even the j18 set within ten 

minutes. A small number of problem instances from the set j18 seems to take longer 

time in solving with best-first. Thus, both our algorithms solve much larger problem 

instances on a single processor implementation in reasonable time. Very few problem 

instances are solved with a maximum run time limit of fifteen minutes in the set j20, 

though, notably some instances of even the set j30 are solved within fifteen minutes of 

run time. Our algorithm appears to be the first exact tree-search algorithm to solve any 

problem instances in the set j30 in a reasonable time. All known bounds or solutions 

generated for the j30 set prior to our algorithm are through metaheuristic or other 

inexact approaches. displays the results of performance of our algorithms on the HPCC 

using one processor.
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Table 10: Summary of Results of Computational Experiments on HPCC 

 % 

Solved 

Tot 

CPU 

time(s) 

Mean 

time(s

) 

Std 

dev 

Max 

time(s) 

Solved 

<5min 

Solved 

<10min 

Solved 

<15min 

Solved 

<30min 

  

Problem set: PSPLIB j10 set (total number of problem instances 536) 

BRDMM 100% 299 0.6 0.8 6.1 536 -- -- -- -- -- 

BSTMM 100% 47 0.1 0.2 2.3 536 -- -- -- -- -- 

CPLEX 100% 712 1.3 6.4 157.3 536 -- -- -- -- -- 

DEPMM 100% 228 0.4 0.7 7.9 536 -- -- -- -- -- 

Problem set: PSPLIB j12 set (total number of problem instances 547) 

BRDMM 100% 971 1.8 3.1 26.9 547 -- -- -- -- -- 

BSTMM 100% 120 0.2 0.5 4 547 -- -- -- -- -- 

CPLEX 100% 979 1.8 7.8 189.3 547 -- -- -- -- -- 

DEPMM 100% 15851 29 63.7 589.8 539 8 -- -- -- -- 

Problem set: PSPLIB j14 set (total number of problem instances 551) 

BRDMM 100% 17841 32.4 70.6 463.8 537 14 -- -- -- -- 

BSTMM 100% 1515 2.8 9.9 118.5 551 -- -- -- -- -- 

CPLEX 100% 4512 8.2 84.6 2080.1 550 0 0 0 1 -- 

DEPMM 38.80% 38703 180.8 147.9 521.8 164 50 0 -- -- -- 

Problem set: PSPLIB j16 set (total number of problem instances 550)  
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BRDMM 99.10% 192071 350.5 1011.6 11698 434 43 18 28 14 8 

BSTMM 100% 8041 14.6 40.3 360 548 2 -- -- -- -- 

CPLEX 100% 4514 8.2 75.3 1838 549 0 0 0 1 -- 

Problem set: PSPLIB j18 set (total number of problem instances 552)  

BRDMM 64.10% 472785 1335.6 1623.3 6974.7 116 58 23 77 42 38 

BSTMM 98.20% 87099 160.4 707.4 11731 494 17 7 15 7 2 

CPLEX* 99.80% 12308 22.3 165.2 2310.3 548 0 0 1 3  

Problem set: PSPLIB j20 Set (total number of problem instances 554)  

BRDMM 33.40% 252796 1366.5 1715.4 7080 54 35 21 32 19 24 

BSTMM 88.60% 356797 706.5 3032.1 30297 389 38 22 32 4 6 

CPLEX 100% 17299 31.2 182.9 2230 548 0 0 3 1 -- 

Problem set: PSPLIB j30 set (total number of problem instances 640) 

BRDMM 4.70% 15972 532.4 521.7 1711 13 8 2 7 0 0 

BSTMM 10.20% 31386 482.9 509.9 1719 36 8 4 17 0 0 

*CPLEX could not solve one problem in this set. 
Note: DEPSDMM is represented as DEPMM in the table. CPLEX results shown are as obtained in runs on the desktop machine.
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Table 11: Problem Instances with the Largest Number of States Obtained using 

Breadth-first 
In problem 

instance 

States 

Generated 

States 

Explored 

States 

Dominated 

States 

Deleted 

States 

Removed 

For the problem set PSPLIB j10: 

j1019_5 17,416,684 237,539 6,690,486 363,724 556,136 

j1062_10 14,191,387 269,258 5,974,158 370,491 590,403 

j1055_1 15,542,073 260,793 6,796,004 410,051 616,002 

Note: In set j10, in the same problem instance, the largest number of states dominated, deleted, and removed is 

found. 

For the problem set PSPLIB j12: 

j1251_10 34,255,709 653,955 16,355,118 986,054 1,497,558 

j1219_3 28,231,171 698,292 12,307,604 1,056,126 1,594,634 

Note: The largest number of states generated and dominated is found in the problem instance j1251_10, while the 

largest numbers of states explored, deleted, and removed is also found in the problem instance j1219_3. 

For the problem set PSPLIB j14: 

In problem 

instance 

States 

Generated 

States 

Explored 

States 

Dominated 

States 

Deleted 

States 

Removed 

j1455_5 251490330 3939909 124638289 5753504 9032916 

j1446_5 231255764 3342564 132374587 5057043 7742838 

Note: The largest number of states generated, explored, deleted, and removed are found in the same problem 

instance, i.e. j1455_5. 

For the problem set PSPLIB j16: 

j1647_6 1584311474 7618709 636208223 18306916 24874085 

Note: All the largest numbers of states generated, explored, dominated, deleted, and removed are found in the 

same problem instance, i.e. j1647_6. 

For the problem set PSPLIB j18: 

j1850_3 2946868090 11624006 1141962866 27209130 37429162 

j1847_2 1368580836 12322763 696850240 21709808 31794921 

Note: The largest number of states generated, dominated, deleted, and removed is found in the same problem 

instance. 

For the problem set PSPLIB j20 (from problems solved in 120 minutes): 

j2044_2 1754568734 9023362 659423602 21446638 29354623 

j2046_5 771246560 9936944 412764264 13820466 22048856 

Note: The largest number of states generated, dominated, deleted, and removed is found in the same problem 

instance. 

For the problem set PSPLIB j30 (from problems solved in 120 minutes): 

j3031_6 6189725029 7053502 2504759505 17136021 23418600 

j3029_2 4184151142 11296791 1578857738 14652327 24483610 

j3029_4 4149619341 10605901 1414568659 18000582 27593550 

Note: The largest number of states generated and dominated is found in the same problem instance j3031_6, while 

the largest number of states deleted and removed is found in the problem instance j3029_4. 

 

We also observe that the problem instances taking larger time to solve are also the ones 

which have a large number of available optimal solutions (from which multi objective 

solutions can be found). It appears that if only one optimal makespan solution exists for 

a problem instance, then the last few levels of the tree are quite rapidly processed. 

However, if the problem instance has multiple single objective (makespan) optimal 

solutions, then many more branches need to be evaluated and processed in the tree even 

at the last few levels (i.e. the tree is larger or broader even at these levels). Hence, 

greater the number of different optimal makespan schedules for a problem instance, 
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longer is the time taken by the Breadth-first algorithm to solve it. Two problem 

instances in the set j16 (j1618_ 9 and j1623_ 5), which were not solved within 120 

minutes, when run without time limit, were solved in 22917 seconds (about 6.37 hours) 

and 37583 seconds (about 10.44 hours), and yielded 467 and 333 optimal makespan 

solutions respectively! 
 

The largest number of states generated when solving by the Breadth-first algorithm 

using all three pruning rules in the PSPLIB problem set j10 is for the instance j1019_5, 

which is 17,416,684 states; and in problem set j12 is for the instance j1251-10, which is 

34,255,709 states. In Best-first algorithm, using all three pruning rules, the largest 

number of states generated in problem set j10 is for the instance j1062_10, which is 

8,004,393; and in problem set j12 is for the instance j1240_9, which is 10,700,108. For 

all the problem sets from PSPLIB, we provide in tables below, the largest number of 

states generated, explored, dominated (a newly developed child state pruned as 

dominated by an already existing state by the Dominance Pruning rule), deleted (an 

existing state dominated by a new child state now generated), and removed (a parent 

state removed to conserve memory, as all child states of this parent state are pruned by 

the pruning rules). The largest figures obtained are indicated in bold font in Table 11. 

In Table 12, we present the numbers of states generated by the Best-first algorithm. The 

largest figures obtained are indicated in bold font in the table. 

 

Table 12: Problem Instances with the Largest Number of States Obtained using 

Best-first 
In problem 

instance 

States 

Generated 

States 

Explored 

States 

Dominated 

States 

Deleted 

States 

Removed 

For the problem set PSPLIB j10: 

j1062_10 800,4393 105,397 3,383,340 302,346 81,957 

Note: The largest number of states generated, explored, dominated, deleted, and removed is found in the same 

problem instance. 

For the problem set PSPLIB j12: 

j1240_9 10,700,108 209,432 6,722,593 436,497 209,158 

j1235_2 7,846,486 221,539 4,128,090 191,954 145,846 

Note: The largest number of states explored is found in a different problem instance, i.e. j1235_2, and all the other 

largest numbers of states are found in the same problem instance j1240_9. 

For the problem set PSPLIB j14: 

j1439_2 186065445 2150247 91357911 2762042 2317348 

Note: The largest number of all figures is found in the same problem instance, i.e. j1439_2. 

For the problem set PSPLIB j16: 

j1647_6 864471559 3076614 366124329 9326773 4653106 
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In problem 

instance 

States 

Generated 

States 

Explored 

States 

Dominated 

States 

Deleted 

States 

Removed 

j1637_3 321793242 4398419 177707312 4366496 3781753 

j1635_8 603130992 3672012 304294627 8392050 6328589 

Note: The largest number of states generated, dominated, deleted are found in the same problem instance j1647_6, 

while the largest number of states explored is found in the instances j1637_3 and removed in j1635_8. 

For the problem set PSPLIB j18 (from problem instances solved in 120 minutes): 

j1834_2 4609491105 13156891 2243535572 48244017 16349704 

j1837_1 1302898364 19507176 670536970 16479579 13992127 

j1839_9 2184580116 15587632 1167184861 24995359 21263830 

Note: The largest number of states generated, dominated, and deleted is found in the same problem instance 

j1834_2. 

For the problem set PSPLIB j20 (from problems solved in 120 minutes): 

j2048_9 3060847833 7157750 1478656085 35522008 8070131 

j2042_10 2496103758 10675392 1305062706 23429340 11839840 

j2014_4 1551929189 4318412 628307423 35875626 2519364 

j2034_1 1633433279 10316459 891251469 23998752 15619142 

Note: The largest number of states generated and dominated is found in the same problem instance j2048_9. 

For the problem set PSPLIB j30 (from problems solved in 120 minutes): 

j3029_7 4912496538 9359656 1604225024 22654339 11976806 

j3029_2 4125869694 9636760 1498937670 11498230 8418726 

Note: The largest number of states generated, dominated, deleted and removed is found in the same problem 

instance j3029_7. 

We briefly discuss the generalization of the algorithms to other regular measures in the 

following section. 

Generalization to Other Regular Measures: The breadth-first scheme for regular 

measures can be modified to cater to problem sets with more restrictions, such as, 

activities with a non-zero ready time. However, minor changes to the pruning rules 

would be necessary in order to solve problems with an objective of minimizing the 

mean flowtime given by mft =/ (N – 2), where bi is the ready time for activity ai. The 

1C rule can not be used for this objective, as it may yield sub-optimal solutions. 

Further, the DP has to be altered to a weaker form as follows: If at any time during the 

execution of breadth-first there are two states X and Y in the search tree such that: 
FX = FY, i.e., the activities completed are same; 

AX = AY, i.e. activities in progress and their corresponding modes are same; 
the residual of each non-renewable resource, after consumption by all activities 

completed or in progress in set X, is same or more than in set Y; 

the starting time in state X of each activity in AX is less than or equal to its starting 

time in state Y; 
| ai is in FX ≤| ai is in FY ; 

then prune state Y from the search tree, as state X dominates state Y. 

 

This ensures retention of only left-aligned schedules making the LS rule unnecessary, 

though retaining the rule helps pruning some states earlier and saving overall 

computational effort. The generalization to due date based measures, such as 

minimization of maximum tardiness and minimization of number of tardy jobs, where 

early completion has no penalty, is also straight forward. 
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Maximum tardiness, Tmax, is computed as Tmax = max {0, fi–di : 1<i<N}, where di is the 

due date for the activity ai. It represents the amount of delay in the most delayed of all 

non-dummy activities/jobs from their respective due dates. The application for this 

measure too requires removal of the 1C rule, and modification to the DP rule as 

follows: If at any time during the execution of breadth-first there are two states X and Y 

in the search tree such that: 

FX = FY, i.e., the activities completed are same; 
AX = AY, i.e. activities in progress and their corresponding modes are same; 
the residual of each non-renewable resource, after consumption by all activities 

completed or in progress in set X, is same or more than in set Y; 

the starting time in state X of each activity in AX is less than or equal to its starting 

time in state Y; 
max {0, fi–di | ai is in FX} ≤ max {0, fi–di | ai is in FY}; 

then prune state Y from the search tree. 

 

The best-first algorithm can be similarly adopted for regular measures. 

5 SUMMARY 

In this paper we present the algorithms breadth-first and best-first, along with pruning 

rules, for solving the MM-RCPSP with renewable and non-renewable resources for 

regular measures of performance (makespan). Both of our approaches solve the MM-

RCPSP optimally. Proof of optimality for the makespan version of breadth-first has 

been provided in detail. The ability of breadth-first approach to generate multiple 

optimal solutions, and among these, yield an exact multi objective optimal solution is 

described. Experimental results of tests on standard problem sets from the PSPLIB are 

presented along with comparison of performance with the best known exact solution 

tree-search algorithm of Sprecher and Drexl (1998) and with CPLEX. Both Breadth-

first and Best-first are faster than Depth-first. 
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