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ABE'RACT

This paper suggests a method of estimation that is the least—squares
estimator in the general situation when observations are interdependent
or independent. The method is designated as perfect least—squares (PLS)
because there is no other method, known so far, that provides lower magni-
tude of the optimality criterion. The method holds good for data
collected according to any sampling method or census method. It is shown
in this paper empirically as well as theoretically that PLS estimator
scores over OLS and GLS estimators. The method is also extended to
simultaneous equation systems, It can be applied straightaway to dynamic

models,



PERFECT LEAST SQUARES ESTIMATOR

by
PN Misra & Puneet Handa*

1. Introduction

Most of the methods of estimation are based upon the principle of
ordinary least squares (OLS) and its extehsion, namely, Aitken's generalise
least squares (GIS) procedure [_*1_7 that accommodates dependence amongst
sample observations. GLS procedure is supposed to be the only way to tackl
the problem of intra—observational dependence but its quantification has
been achieved in certain special cases only. Is GLS really optimal in the
sense of minimising error sum of squares in the general case? This questio

deserves further examination.

The problem can be defined better in context to a general linear model

in terms of K variables and n sample observations and expressed as

{(1.1) y = —Xﬁ«!—u

where y and u are each nx1 vectors, X is nx(¥+1) matrix and g is (%1 )x1
vector. Assuming that the observations are collected according to simple

random sampling with replacement so that

(1.2)  Blw') =¢° 1

*The authors are Professor and post-graduate student at Indian Institute of
Management, Ahmedabad, respectively.



one can obtain best linear unbiased estimator b of B as
(1.3) £ = (xx)7 Xy
provid.ed' the X matrix is such that
(1.4) B(X'n) =0
or, elements of X are monstochastic zand
(1.5) E(u) =0
In all other situations when data;é&g»not collected according to simple
random sampling with replacement, one ﬁay assume that
(1.6) B(uu') = ¥

and obtain best linear unbiased Aitken's estimator, b, as

-1 -1 -
(1.7) b = (X' x) XLy

provided (1.4) or {1.5) hold good. Computation of b_ depends upon the
knowledge of y which is not estimable completely if only time-series or
cross-section data are available.. Using estimate of part of I matrix is
equivalent to misspecification of § matrix and in that caée properties of

Aitken's estimator will be rendered suboptimal.

The properties of the OLS as well as GLS estimator depend upon the
assumption that elements of vector u are distributed at each observation

point. Tt is difficult to conceive such a distribution in case of time

1An ﬁnbiased estimator of all the elements of ¥ matrix is provided by
Misra ((47) in case both time-series as well as cross-section data are
available.



seriesvdata where observations may relate to entire population or part of

a population, This is because population can be defined to be only that
time-span over which the parametric vector § remains invariant while in

most practical situations B changes over even short time-spans not to speak
of long time-spans., It is, therefore, closer to reality in most cases to
considervdependence amongst error terms as such without involving their
variance-covariance matrix § as defined in (1.6) because in that case one

is not required to assume that errors are necessarily distributed at each

observation point.

These problems can be avoided if we realise that interdependence amongst
the elements of u can be considered in functional sense while minimising
error sum of squares, Such a consideration will hold gobd irrespective of
whether the data are sample, population or part of population and the sample
is with or without replacement because the inherent dependence will be
exhibited in the functional dependence used while minimising the error
sum of squares. Section 2 of this paper provides an estimator based upon
the aforesaid principle., Ve call this estimator as perfect least—-squares
(PLS) estimator because it is only this estimator that provides smallest

error sum of squares in the general case.

The PLS estimation is extended in Section 3 to several independent
or interdependent equations, Its properties are analyse& in Section 4.
Section 5 contains discussion on the problems invelved in yuantification
of PLS estimator and actually empirical results are reported in Section 6.

The last section includes discussion on related issues throwﬁ;tp;}g%y the
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preceding results, These include ahalysis of predictive and explanatory
powers of linear models besides other issues,

2. The PLS Bstimator

Interdependence amongst elements of u can be expressed functionally as

{2.1) w = £, u ) i='1,...., n

where functional forms could differ over i. Perfect least—-squares estimato
of g in (1.1) is obtained by minimising

(2.2) u'a = (yXg) (yXg)'

subject to constraint (2.1). In this case, first order condition of

minimisation of u'u can be written as

(2.3) _B_U_:u___ - 2 ¥ bu§ }ui bui
28 13J duy B g

=2 eu' du'

D8 du

where the matrices of partial derivatives are given as

T2u1 sup |
| 8B T 3F
(2.4) dul %1 | 1 = - X'
' 2 ! oy
il IEE ey
= r = V
Bul ——_— bun
U, bunJ
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Using (2.1) and (2.4) we can rewrite (2.3) as
(2.4) X'VXg = X'Vy
which in tum can be solved for PLS estimator é of g as
(2.5) £ = xve)xvy

provided X'VX is nonsingular,

Second order condition of minimum of u'u can be seen to hold good

provided the matrix

t
(2.6) ——,-g‘éag = 2X'VX

is positive definite which depends upon positive definiteness of matrix V.
It will be seen later that V can be replaced by several alternative estimates
but only positive semidéfinite ones are acceptable in view of aforesaid

second ord«r condition.

Considering a general expression to be minimised as

(2.7)  w'hu = (y-X§)'AyXB ) |

we observe that the resulting estimator is OLS, GLS or PLS dependirgupon A
. - ~

eing’ replaced by identity matrix, I 1, or V. Let B represent estimator

of 8 wheriu'Au is minimised, then, u can be estimated as

(2.8) & = rxg

and the estimated minimum error sum of squares is given by Gi\ﬁ This
estimate can be used to ascertain empirically as to which one of OLS,GLS
and PLS estimators are providing least value of the criterion and the same
rule can be used t6 pick up that estimator of V that provides PLS estimator

providing least value of U'VQ.



This method can be used straight away to estimate dynamic models of
all kinds because it is capable of incorporating in itself the dependence
amongst the observations., It can alsc be used to estimate various time-

series models where time is supposed to be the sole causal variable.

3, FLS Estimation of Complete System Model

The procedure of estimation in section 3 can be easily extended to
complete system mod&ﬁ;”_.;‘specified in terms of n observations on each one

of endogenous (y) and predetermined (x) variables as

(3.1) vy = Y, 0%, Bru,
= 2, { +u,
11 1
z, =(Y, X,)

- F i
B = Eﬁli

i =1,..., M

where y, and u, are (nx1) vector, Y, is (nxmi) matrix, ¥,

; is (mix‘! Jvector,

X; is (nxli) matrix, B, is (lix‘l) vector and n; = 1.4m,, Rewriting the M
equations in (3,1) together as

(3.2) y*

]

Z* Pyt

.. 5

and defining a matrix V¥, similar to V in (2.4), as
(3.3) vx =

Au* '
u*
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we can obtain PLS estimatorx %* of g* as

(3.4) ﬁ* o (k) vage )T xe gk

The matrix V¥ incorporates all kinds of dependence amongst the clements of
u® including dependence amongst various equations as well as dependence
amongst different observations, It can also be easily seen that the estimatc
ﬁ* in (3.4) can be computed even if number of observations are different

in eacth equation of the system (3.1 ). The criterion QI*'V*G* can be uged

to make?choice for the appropriate PLS estimator owing to same logic as
provided towards the end of ﬁj,action 3. The estimated residual, ?1*, can be

obtained as

(3.5) 8% = yroxx B

4. Propertics

In view of discussion in Section 1, we consider the observations to
be sample from a given population or the population itself, In case it is
interpretted as sample the sample could be simple random sample with o
without replacement or any part of the population selected in any other
wayl. The properties of the PLS estimator are proposed to be analysed in
case of above mentioned alternatives. Ve propose to analyse the properties
of PLS estimator as given in Section 2 and note that similar results hold

good in case of PLS estimator as given in Section 3.

Ll

Combining (1.1) with (2.5) we get

(41) B
Be

B+
(x'vx)"1 X'Vu

Supposing that u is estimated similar to (2.8) corresponding to PLS

estimator g » we find that
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4.2) B = &) v §)

=0
which shows that so long as % is close to u, the estimator 'é is close tof .
This is possible when the sample covers the entire population. This is also
possible when the sample observations are representative enough to provide 4).
that is close enough to tlll'x. Representative sample in this sense includes those
observations that yield/s:me g 2as one would have got by considering the

entire population.

Considering the observations to be a -"sample and assuming that (1.5)

holds good,X and V are independent of u, we have

uc'vx)"1 X'VE(u)

I

(4.3) ~ E(B)
=0

Variance—covariance matrix of a can be obtained as
A ' .
(44) B @E-B)(B-g, =B (B_R_")

so that Be @e' can be used as unbiased estimator of the variance-covariance

matrix. Square roots of diagoral elements along Be B e' provide standard

errors. In other words, if Be could be estimated,; then,; its absolute value

. A
provides standard crror vector for the estimator g .

Estimated residual sum of syuares with PLS procedure can be expressed as

(4.5) Al = yvy - yrvy

the
so that Aotal sum of squares in generalised sense can be written as

(4.6) y'Vy = y'V:? + vl
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wherxe y’V§ represents generalised covariation between y and ;’r\ Ve may

define a measure Rﬁ’ as follows:
2 -1

(4.7) R = vy)™ gy

which is PLS estimator of g coefficient in the model.
. ,

(4.8) yi = a.Vi'i'Vl 3 i=19-..an

' A A
Obviously g = 1 for yi=V¥; and = 0 1if Yy and y, axe uncorrelated,
The same interpretation follows from {4.6) where y?"v$ is equal to zero on

one extreme and y'vy on the other,so that Rs lies between O and 1.

Alternatively, one may specify the following regression
' ) 4 -a_ +a s 1=
(4.9 yi = 0 yi+Vi, - X XN n
and define

A
(4.10) sz = squared correlation between y, and y,

The measure R2 is same as syuared multiple correlation when OLS estimator

f
is used to generate y which excludes the contribution of constant term in
explaining y through model (1.1). The measure Rf) includes the contribution
of constant term also., Conceptually, predictive ability of the model will
be better if it scores on R; criterion because the constant term plays
important role in generating forecasts, An attempt to maximise R% by
opting for some specifications may provide distorted estimates because

the role of the constant term could get reduced owing to undesirable

considerations,



10

5. Estimation of V.

Computation of PLS estimator depends upon knowledge of matrix V which
can be estimated in several ways. An estimate of V can be provided by
estimated £ matrix but in that case the resulting estimator may not
possess aptimal properties because elements of V and § are defined on
the basis of different concepts. Alternatively, OLS estimated {\1 or any
other estimate of u could be used to estimate the elements vij of V from

the following relations.
(3.1) u, = v,.u,+e

It can he readily verifiled that PLS estimator Q’ij of vij is given by

(5.2) <";L.j 5. - 3%

|
|

in view of only one observation available to estimate Vij from model

A
(5,1). The matrix V obtained as

(5.3 Vo= (@)

. = vi,j

is PLS estimator of V but one can easily verify that it is singular

so that X'VX will also be rendered singular. Therefore this estimator
of V is not - useful though it provides estimates of all the elements

of Vo

In actual practice we deal with time-series or cross—-section data
that are temporally or spatially arranged into some order. As mentioned

earlier, blocks of time-series are treated as sample, population or
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part of population., This provides data in terms of some temporal order
which can be utilised in obtaining estimate of matrix V, Similarly, cross-
.seqtion data possessessome spatial arrangement no matter whether they are
sample, population or part of population. This additional information
can be used by incorporating the concept of order of dependence in case

of time-series as well as cross—-section data. If we assume that all the
observation units in the first order neighbourhood are homogenous in terms
of their interdependence and if we extend the same concept of dependences

of higher order we can define the following n regressions:

(5.4) Yy © vo:r.:"v:r ui+ Citr

r = Op 1900-.' n_1
i = 1,."" n

Voo = ()]

v = 1

o)

e, = 0

h

These regressions express one way causation amongst observation units,
One may also define regressions similar to those in (5.4) but expressing

the other way causation as

u, = W + + .
(5.5) {mp or v, o w e, »

i—. 1,cloogn
v¥¥ & 0O
00
v ¥ = 1
o)
e* = 0
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Interdependence of types (5.4) and (5.5) can be easily defined in case

of cross-section data. It may not be easily explained in case of time-
series data in all the situations. In either case what one is interested
is observed dependence in either way of causation and that ca.n be estimated
by estimating the regressions in (5.4) and (5.5) by using data on error
terms. Since data on error terms is difficult to obtain unless one estimates
‘the model according to PLS procedure and PLS estimate cammot be obtained
unless V is known, we may follow iterative procedure to overcome this
difficulty. Ve could start with OLS estimated error terms or observations
on the dependent variable, ¥yo and compute the unknown coefficients in
(5.4) and (5.5). Using these estimates we could estimate V because it can
be expressed as

Vi ereeeeseeV g

v’
4

(5.6) ‘ v

iucc -

*
!1-1 Vn_2 0001001

in view o7 relations (2.4), (5.4) and (5.5).

The iterative process can be carried on by starting with an estimate
of V;, as above, obtaining PLS estimated errors, using these to estimate
V and then repeatirg the process. The choice of best kresult can be made
by picking out the results corresponding to smallest value of estimated
u'Vu, Convergence of estimated V or slope coefficients camnot serve as
a criterion of selection because if we start with OLS estimated u then,

PLS estimated sampling error defined in (4.1) can be expressed as

(5.7) B = é‘—b

€
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which affects estimates of V and g both in the next round and the
process continues. Further, these estimates are found to be sensitive
to slight changes in data. Therefore consecutive rounds of these

estimates are most unlikely to converge. These estimates are PLS if s

are independent,
6. Bmpirical Results

an
BEmpirical resulis are obtained for/irrport function,the model and
data for which are same as used by Johnston 5 s Pe 147:7: The model is

specified as

(6.1) ¥y = B~ Byxy*t R, x5tu

where y represents imports of goods and services, X, represents gross

U.K. product and X, represents ratio of import price to general U.K. output
price. The model is estimated according to five methods, namely, OLS;, GLS,
PLS with V replaced by ¥ , PLS when starting with OLS estimated u and PLS
when starting with observations cn ¥. W¥e shall desigrate them as methods
1,2,3,4 and 5, respectively. Of these, method 2 as used in this section
req_uires some explanation, It is assumed that autocorrelations except

for first and second order are zero so that an autoregressive malel can be

specified as
(6.2)  uy= & uy gk Qpuy @

Then using Durbin's method @J we can obtain estimates of Q1 and Q,z.
These estimates are used in turn to obtain an estimate of § matrix where
higher order autocorrelations are taken to be zero. This estimate of I

matrix is used to obtain GILS estimate as defined in (1.7).
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The statistics defined in (4.7/ and (4.10) are computed in case of
all these methods. The main criterion u'Vu is supplemented with corres-
pording value of u'u to emphasise the magnitude of difference, The
standard exrrors are computed in case of OLS and GLS estimators by using
the relevant formulae while those of PLS estimator are computed by using

the formule in (4.4). These results are reported in Table 1 below.

Table 1

Alternative Estimates of Model (6.1)

Method P 0 E;‘ E 5 R§ Ri u'u u'Vu

1 =0.493  1.364 0.114 0.999376 0.93849 T.75 175
(0.058) (0.020) (0.021)

2 -0.434 1.379 0,064 0.999196 0.93721 12,64 515
(92.19) (39.35) (23.67)

3 ~04341 1.30 0.037 0.999737 0.93562 8.31 7.96
(34.086) (130.043) (3.657)

4 0,129  1.,Wg  -0.376 1.00 0.82005  56.01 2,32
(0.570) (0.157)  (0.779)
5 0.167 1.180  -0,293 1,00 .849579 23,07 0.31

(.990) (.461)  (.455)

The estimates for u'm and u'Vu are in terms of dimension 10'_3 where data

2

as mentioned above are adjusted by multiplying each y, Xy X by 10 <,

2
The figures in brackets are standard errors. Results relating to methods
4 and 5 correspond to rounds 13 and 7, respectively from a total run of

40 and 38 rounds respectively.

Considering the basic criterion, namely, u'Vu; the PLS method as obtained
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by using observations on y to obtain starting estimate of V turns out

to be best, The method provides .negative sign of coefficient of X,
which is desirable in view of economic theory whereas both OLS and GLS
estimates of this coefficient are positive. An attempt to usez in
place of V to obtain PLS estimator leads result that is worse than OLS
estimator. This leads to suggest that method 5 is better than others
from economic as well as optimality considerations, Another interesting
point that comes out from the above exercise is that empirically GLS
estimators could be inefficient as compared to OLS estimators though

theoretically the reverse holds good.

Estimates of the statistic R§ and Ri are available for various
rounds in case of method 4 and 5. We use these results corresponding

to method 5 with positive wvalued WG and plot themong‘;re.ph 1.

RER s

The scatter of the points on this gmphsuggests that neither R;
nor Ri can be used as the sole criterion of deciding predictive power of
a model. However, Rf) coupled with u'Vu can be used to judge the
predictive efficacy of a model and this is supported by the results in

Table 1.

Empirical results of u'Vu and u'efare available for various rounds
in case of methods 4 and 5. Ve use the results corresponding to method

5 for positive values of u'Vu and plot them as below in graph 2.
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The scatter of points in the above graph suggests lack of any
correspordence between the two criteria, Therefore any attempt to use
the eriterion u'u without having any evidence that V = T is most likely
to lead to quite sub-optimel results and this should be avoided in all

the empirical studies.
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