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Cutting Plang Based Methods
for Integer Programs.

1. Introduction

A wide variety of integer programs are NP-compliete, i.e., they belong
to the class of hard combinatorial optimization problems, and there
is no known algorithm to date to solve them 1in polynomial time.j
Examples are the multi item lotsizing problems, with or without start-
up dosts and/or backlogging, plant location problems and the fixed
charge network design prob]em.‘In all cases both the uncapacitated and
capacitated versions of the problem are NP-complete, although_capacity
cohstraiﬁés often make the prob]ém harder to solve.

- These _prcblems»_-,---—a.cg,;ﬁ‘;.,g\ga.;ggir(q)_w___j\n» ;h_e operations research/management
science literature not only becauée of theirlintrinsic theoretical
content, but also because of their close similarity to real 1life
prob]ems. For instance, the fixed charge network problem frequently
ar{ses, in a variety of contexts, including transportation,
communication and distribution systems. Francis.and Goldstein (1974)
provide a detailed bibliography for the plant Jlocation problem,

Minoux(1989) gives a detailed survey of network synthesis problems,

and Magnanti and Vachani(1990) give a brief survey for the lot-sizing

problems.

various methods have been used to solve these problems. The
running times of exact combinator{al aTgoriths varies exponentially
with the size of input data, and hence they are not useful for
problems of large size. Lagrangean relaxation methéds hava also not
performed well on these class oﬂ‘prob1ems, except for the p1an£
location problem (see for instance Karmarkar and Schrage (1985)). Some

dual ascent based methods have performed reasonably wgll in somu causes



V(éee fqr}1nstance wWong (1984)), and also a duatl decomposition based
‘method by Magnanti, Wong and Mireault (1986). However, the success of
cutting plane_bésed methods in a variety of problems including the
travelling salesman problem (Groetschel and Padberg (1979), Crowder
And Padberg (1980), Padberg and Hong (1980), and Crowder, Johnson and
Padberg (1983)), the lot-sizing problem (Barany, Van Roy and Wolsey
(1984a and b), Leung, Magnanti and Vachani (1989), Wolsey (1989),
Magnanti and Vachani(1390), and Sastry (1990)) has motivated research
based on these methods for integer ‘programs. The‘ network design
problem has not been studied very extensively using the cutting plane
lmethbd ang a lot of re;earch needs to be done in this area.-We have
various versions of this problem includihg the éingle and multi
commodity “véféisné;"wftﬁ or without capacity constraints, with
simultaneous or non-simultaneous flow, and with different typés of
cost structures. The Steiner tree problem is also useful in computer
communication networks when trying to decide locations for
concentrators wused in routing messages. Although a specific
application may have additional side constraints (for instance,
capacities for communic;tion lines in a telephone or computer network
might be available in certain discrete sizes only), an understanding
of the basicAmodeT will help in developing solution methods for
specific fnstances”

2. A general framework.

We study only the uﬁcapacitated vaersions of the problem. The
capacitated version needs to be studied separately, and is outside the
scope of this paper.

We describe the fixed charge. sing1e commodity network des{gn

problem, and then show how the lot-sizing and plant location problems



are special cases of the network qesTgn prooiem. INUsS, ONE MUTTVALTUIT
for our study is to generalize results already obtained for the
- special cases to the more genera{ network design problem.

The single commodity fixed chargé problem can be formulated as
follows. Let G = (V,A) be a directed graph with node set V and arc set
A:va.‘At_each node there is a demand d; if d;>0, or a supply d; if
dﬁo.'There is a fixed cost fU of installing arc (i,Jj), and a variable
cost C)j of sending 'one unit of flow from node i to j. Let Xij denote
the flow from node i to j, and let YU=1 if’xU>O.

min { Z(i jacixiy * Eggafiyy 1o (6 yes

where S is the polyhedron

zkxir - zk"ki = di ‘ for all iev
Xijj $ Myjj for all (i,j)eA
yij <1 for all (i,j)eA

y integer and x, y = O.

M is a positive number with magnitude at least Zmdi' where a' = max
(a, 0). Let LS denote thé pd]yhedfon obtained by relaxing the intgger
" constraint on y.

van Roy and Wolsey (1985) study this model and describe a class of
valid inequalities for this problem, and show how to solve the
separation problem for some.sbecial cases. Ba1akrishnan (1987) studied
the multi-commodity problem with fixed origin-destination pairs for
each commodity, and describes valid cuts for the problem. Minoux
(1989)»gives a comprehensive survey of network synthesis problems.

The lot-sizing and plant location problems can be cast as follows:



PLANT LocaTionN

LOT- SIZING

If we extend the lot-sizing problem to include an additional start-
up cost if we set up the machine in period i but not in period i-t,

we obtain: : n.
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3. valid Inequalities
;Wé.desckibe a class of valid inequalities for the network design
- problem. For NeV, let E={(i,j)eA: i,jeN}, (N, VAN) ={(i,j)eA: ieN,
jeVAN}, Cc(V\N, N), QcE. Then
=i heciy 3 (i ecipiy Yo%y Y EG el Xij tK
is a valid ihequa1ity (VI) where aj; and K are determined as follows:
Let
J = {Jj: (i,Jj)ecC},
v(Q) = Ju{keN: there exists a path from jeJ to k using/only arcs of

£

- al,
_ +

D = Zyeyiq)dk

V(i) = jufkeN: there‘exists a‘path_from J to k using only arcs of Q,

and there does not exist any path from k'#k, k'edJ to node k using arcs

from Q}.

Theorem 1. The inequalities (VI) are valid for a;j = E%ﬂujdf and K =

D “zﬁuzadLﬂdk'

Proof.

If yij = 0 for all (i,j)eC, then Xij =0 for all (i,j)eC and the
inequality is satisfied. Otherwise, let J' = {j: y;; = 1 for some
(i,j)eC} » ®. The flow from VAN to N along arcs in C either satisfies
demand for nodes in V(Q), or flows along arcs in E\Q, or comes back
to nodes in V\N a]éng arcs in (N, VAN). Consider the portion of the

flow x'U.for (i,J)eC that satisfies demand for nodes in V(Q).

Let
v(Q*) = J'u{keN: there exists a directed path from some
node jed' to k using only arcs of Q}.
DY) = Fyqqndy’ -



iéle&k?j,
L R - ’ '
o E e iy T EjesE(izi,ey* iy £ 004D
°Butvsince yjj = 1 for jed*, and y,j = 0 for jed\J*,
8 | o ,
Z(i,j1ec@ii¥ij = FjesZ(iti,jnecrdj 2 FjeusZen(j) I -
' v L + )
_.Mqreovar, K +szJ'zkEVU)dk = D "}:jEJ\“zk‘v(j)dk 2 D(J ). The last
"inequality follows from the definitions of D and D(J").
. . ‘
Hence X (j X jj S K +ZjeiEqy ;9 - .Smce
0,6y S F(ipex i T EG iy TE,jelnnw X

the result follows.

Example'1. ‘
Let V={1.§.3.4.5.6.7.8}- If N={(3,4,5,6,7,8}, V\N={1,2}, cC={(1,3),

(2,4)} and E=Q={(3,5), (5,6), (5,8), (4,7), (7,8)}, then
Xp3tXg S 10Y3+5yy+xg,+5

is a valid inequality.
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Remark 1. Our inequalities tighten the inequalities described by Van

Roy and Wolsey (1985), They define V(j) = ju{keN: there exists a path

from J to k using only arcs of Q). Hence for Example 1, their

inequality is X +xy, < 15y,+10y, +X.,. If y..+y,,21, our inequality is
» 137 %24 13 47X KR4



%tféhtér, If y,+y,=0, then both inequalities are redundant and are
imblfédby the original constraints Xjj < My;

iﬁeﬁark 2. An obvious way to exte;dfthese inequalities is to consider
inflow from nodes in VAN to the arcs in C, instead of the outflow into
nodes in N. Let E’={(f,j)eA: i,jeVvV\N} and Q':E'; The basic argument,
which is similar to that used in the inequalities described earlier

is that flow into arcs in C can come from three sources:

1) arcs in Q’
2) arcs in E'\Q’
3) arcs in (N, VAN).
We omit the details.

| 4
4. ‘Relatioﬁ'bctween Ingqualities‘of different problems.
Cho et. al.(1983) described the following 1inequalities for the
uncapacitated plént location prob]ems'. They construct an intersécﬁion
graph for the prop]em as foTlows:.Let 1 denote the set of customers
and J the set of plants. Then for each customer i€l they create 191
nodes, one for each plant. If x; Qenotes these nodes for‘ieI and jedJd,

J
then for each i, the nodes x,; for j=1,...,|J| are connected to each

J
‘other. In addition there is one node y; for each of the plants. Each
node Yj is connected,to the‘nodes X for i:t,.r;.|I|. Let N and E
denote the node set and edge set respectively. Then for any subset
N'(s) of nodes, we construct the corresponding subgraph G(s) where the
node set N(s) and edge set E(s) are defined as follows:
N(s)s{erN'(s): xij and y; eN'(s)}u{yjeN’(s)}
and E(s):{(xu, I E Xy xmeN(s)}u{(yJ,xU): Y erN(s)). - Let

I(s)={iel:ieN(8)}, and J(s)={jeJd:jeN'(s)}.



Then for any connected graph G(s), and. |I(s)]|23, |[J(s)|23, the

~inequality
I e ij S Tjes)YtlI(s)|-B(a(s))
is valid, where B(G(s)) is the covering number of G(s), i.e., the

 minimum number of plants jeJ(s) necessary to cover all customers

jeI(s).

Let us next consider the Single item lot-sizing problem. BArany. van
Roy and Wolsey (1984a) described the convex hull of feasible integer
solutions by means of the following valid inequalities. Let yidahote
the integer {0,1} variables indicating whether the machine is setup
in period i or not, x; the production in period i, si'the stock at the
end of period i; d;>0 the demand in period i, and duzztﬂldt the total
demand in periods i through 1. Let the planning hbrizdn extend up to
period n, and let L={1.2;....1} for 1<n, and. ScL. Then

Tk gy 2 dyp
is a valid inequality. Using the equation Ziﬂlxi+s]=d”, we can rewrite
the inequality as follows

Liggj < Liggdjyyi*s.

Consider the lot-sizing problem with an additional start-up cost
incurred when the machine is setup in period i, but not in period i-1.

Let the integer variables z,&{0,1!} indicate whether we incur a



? s§ért-up cost or not. Then Sastry (}991j\described the following valid
5inqu57i;ies. Lei L=(1,...,1} with 1 € n. We partition L into sets
;X, Y, Z-and XZ(t), where t<l, and impose the conditions:

'i) if period ieX, then period i+ieXuy,

ii) if period ieYZ(t) then periods i+1 through t-1 eYZ(t).
Then,

T tigdnyi tTigdnzi +Zigqo(itdnzi) 2 dy

is a valid inequality. Using the equation Zkﬂxi+sr=d“ we can rewrite
.the inequality as

Siotut(vXi S SindinYi *Tigdnzi g (Xi+d2)4s) - |
Can we discover any common‘under1ying structure in these inequalities?
First, in all cases, ther;'is‘a set of nodes which are the supply
nodes. Thus, in the plant location probiem, thesevare the plants, in
the lot-sizing problems these are the dummy node, and in the network
design problem, the nodes with d <0. Seébnd; we'héve ; set of demand
nodes in each cése.vThus, some subset of supply nodes sends flow to

another subset of demand nodes. The inequalities can be conceptualized

as follows: For any cﬁt set of arcs (V\N, N) and any subset of arcs
Q:{(i.J): i,jeN}, Yet F(in) denote the total flow in any subéet of
arcs C:(V\ﬂ, N), y, the integer 0,1 variable indicéting whether arc a
is open or not, c, the coefficiant of ¥,» and F(out) the outflow from
arcs in C along arcs not in Q. Then all the inequa]ities have the form
F(in) < Z,6C, Y, tF(out) +constant.
The coefficients ¢, and the constant are determined as described in
theorem 1. Similarly, as indicated in remark 2, for any subset of arcs
Q's{(i,J): 1,jeV\N}, let F'(out) denote the total outflow from V\N

along any subset of arcs Cc(V\N, N), Y, the integer 0,1 variable



indicatfng whether arc a is open or not, c, the coefficient of y,, and
'F."(in) the inf‘ldw from arcs in C along arcs not in Q’. Then we can
vwk"ite the following valid inequalities

F’(out) < Z,.c,Y, +F'(in) +constant.
However, if we use this framework for the special cases of the
uncapacitated plant location or the lot-si'zing problems, we obtain‘
slightly different inequalities. For instance, in the plant location
problem, for any subgraph G(s), we obtain the inequality

Z(i, jlets)*ij < 11(s)] |
if we use the framework developed for the network design problem. But
since the plant location pr.oblem's underlying network has a special
structure, we can t1ghten these inequalities to obtain the ones

e i s ‘“‘W“W‘ et s el
descri bed by Cho et. a1 3’83‘) L

5. Applications mﬁ'ﬁﬂrﬁf}"ﬁﬁ'mzm | )
VASIRAPUR, AHMEDABAD-200us0
some of the practical apphcatwns of the general network des1gn
.prob‘lem have already been discussed. In the present context, where.
Anformation technology 1is growing rapidly, the demand for greater
communication will grow rapidly. Thus we will need to desfgn networks
for té'lephoh’é. facsimile 'and computer communica\tions. However, much
more applied work in the gehera] network design'prob'lem needs to be
done if we are to benefit from operations research techniques. For
large investments i.n communications of the order of Rs. 10 crores or
more, even a 5% saving can result in an overall saving of Rs.50 lakhs.
Another area where we can profitably use network design is in planning
of regional or national level road transport networks.
From the computational point of view, Lagrangean relaxation techniquus

have worked well on plant location problems. Howéver, not much work

10



has been done on the general network design problem. Therefore one
rpotential application of the cuttjng.p]ane methods is to test out the
COmputatioha1 efficiency on large scale problems, and compare them
with‘other methods. As mentioned earlier, computational success df
this method on large scale trayelling salesman problems, 0-1 integer
programs, and lot-sizing problems, indicates that it might be

worthwhile to study this approach in detail.

6. Summary

‘We have described a new class of cuts or valid 1nequalitﬂes for the
single commodity network design problem, and have shown that they are

valid. we' also indicate how we can extend this class of valid

1s eveiop “a ‘general framework for the valid

inequalities. We
inequalities, and show that 1in some 1instances we can generate

inequalities for special cases like the lot-sizing and plant location

problems.

7. . Future directions

.Some of the open reseafch questions are: can we further extend the:
class of valid inequalities described using results from the special
cases? For instancé, in the network inequalities, can we include nodes
-keN with dk<°? The capacitated version of the problem, and the mu]tif
’commodity versions 6f the problem also need to be studied. A further
problem of interest is to computationally test these inequalities to
find out 1f they are practically useful. Recent research has shown
that inlmany cases valid inequalities can be used to generate compact
refgrmu]ations of integer programs as linear programs, i.e., one where

the number of constraints and variables is a polynomial function of

11



the number of variables in the original integer program (see for
-instance Martin, Rardin and Campbell (1980)). It would be
theoretically and computationally’ useful if we can find alternate

compact formulations for the mixed integer network design problem.
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