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Abstract-

We study the uncapacitated and capacitated one facility versions of the two
commodity network design problem. We characterize optimal solutions and
show that we can restrict the search for optimal solutions to feasible solutions
with at most one shared path. Using this characterization, we describe the
convex hull of integer solutions to the uncapacitated problem using O(m)
variables and O(n) constraints. We also describe how Dijkstra’s shortest
path algorithm can be used to solve the problem in a transformed graph with
O(n) nodes and O(m) arcs. For the capacitated two commodity problem, we
show that the problem can be solved either by using any standgrd shortest
path algorithm or by the algorithm described for the uncapacitated case.

Key words and phrases: counvex bull, network design. algorithm



1 Introduction

In this paper, we study the two commodity network design problem. We
first consider the uncapacitated version of the problem. The multi com-
modity problem can be described as follows. Consider an undirected graph
G = (N, A), with node set NV, arc set A. and origin destination pairs Oy, D,
with demand of 1 unit between every pair for £ = 1...., K. Capacity can
be purchased on each arc (¢,j) € A at cost w;; > 0. Flow costs are as-
sumed to be zero. The objective is to minimise the total cost while satisfying
demand between every origin destination pair. The Steiner Tree problem.
which is known to be NP-complete, is a special case of this problem in which
all commodities have a common origin. However, we show that if there are
at most two commodities, the problem is easy and can be solved by a poly-
nomial algorithm. Balakrishnan, Magnanti and Wong (1989) have studied
the uncapacitated network design problem and solved large instances us-
ing a dual ascent based procedure. Hu(1963), Sakarovitch (1973}, Seymour
(1979) and Seymour {1980) have studied the two commodity flow problem.
The uncapacitated multi commodity network design (UMC) problem can be
formulated as follows.

Problem UMC
Min Z W5 Ys; "

(i.7)€4
subject to:
-1 ifi=04
Yeh—zf) = {1 ifi=Dy
J 0 otherwise
yij 2 I+
.y > 0:y€{0,1}.

We designate the two commodity version of this problem as problem UTC.
Let m = |A| and n = |N| denote the number of arcs and nodes repectively.
The arcs are undirected and have symmetric cost, i.e.. wy; = wj;. The flow
variables fo are directed and have zera flow cast. In the next section we
characterise the optimal solutions and describe a simple algorithm to solve
the two commodity uncapacitated problem. In Section 3 we give an explicit
reformulation for the problem in O(m) variahles and O(n) constraints and
show that it describes the convex hull of feasible integer solutions. In Section
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4, we study the capacitated two commodity problem and show that it can
either be solved by obtaining the shortest O, — D, paths or that it reduces
to the uncapacitated problem.

2 A Polynomial Algorithm-

We characterise the optimal solutions and use this characterisation to obtain
an algorithm to solve the problem. A commodity k path P; connects Oy to
Dy and has flow zf; + z% > 0 for all arcs (4, §) € P.

Lemma 1 If (z,y) is an extreme point solution to UTC, then each com-
modity has one path and thus, :cfj =0 or! for all arcs.

Proof ‘

Suppose commodity k& has m > 2 paths Py, ..., P, in some optimal solution.
Let px, = min {zf + 2% : (3,7) € Py}, ¢ = 1,...,m. By definition of a
commodity path, px, > 0. We can re-route py; units of flow from path P to
path Py, or pj, units of flow from path P;, to path Py, to obtain two feasible
solutions (z(1),y(1)) and (z(2),y(2)). Since

(o) = £(Z ) + pi(a(1).4(1)
‘ Pr1 + pr2

b

it cannot be an extreme point.

a

Define an arc (1, j) to be shared if :z:fFj +J:f,« > 0 for both commodities £ = 1.2.
Define arc (. j) to be a shared forward arc if zj; > 0 and z¥;, > 0, or z}; > 0
and z3; > 0. Arc (1,5) is a shared reverse arc if z; > 0 and z% > 0, or
z}; > 0 and zf; > 0. Path P is shared if both z; + z}; > 0 and 27, + 2% > 0
for all arcs (z, ) on the path.

Lemma 2 There exists an optimal solution for UT'C with at most one shared
path such that all shared arcs are shared forward arcs or all shared arcs are
shared reverse arcs.

Proof
Consider any extreme point solution (z.y) with exactly one path P for
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each commoditv k = 1.2. Suppose arc (i.J) is a shared forward arc, i.e..
z}; = 2}, = 1, and arc (u,v) is a shared reverse arc; i.e., z,, = z;, = L.
Wlthout loss of generality assume that flow is directed from node J to node
u for commodity 1 and node j to node v for commodity 2. Let w,(j,v) and
w2(J, v) denote the cost of the arcs on path P, and P; between nodes j and
v. If wi(j,v) > wy(j,v), we can reduce the cost by re-routing commodity 1
flow between nodes j and v to path P,. Hence. w;(J,v) < wy(j,v). Since we
are considering an optimal solution, wy(J,v) = wi(7, u} + Wy, and wo(j,v) =
wy(J,u) — Wyy. It follows that wy(j,u) + 2wy, < wa(f,u). Therefore. we
can re-route commodity 2 flow between nodes ; and u to path P; without
increasing cost. But then. arc (u,v) is no longer a reverse shared arc. By
repeating this procedure. we can eliminate all reverse arcs if there is a shared

forward arc.

0

This result implicitly uses the fact that there are no flow costs, i.e.. that the
coefficient of zf; in the objective fuunction is zero. Thus, the polyhedron
defined by the constraints of UTC may have extreme points with more than
one shared path or with both forward and reverse shared arcs. However,
given the cost structure. it is sufficient to consider optlmal solutions with the
following property.

Corollary 1 There ezists an optimal solution in which each commodity has
one path, and thus, zf-‘j =0 or 1 for all arcs. Further, in this optimal solution,
either all shared arcs are shared forward arcs or all shared arcs are shared
reverse arcs.

Remark 1 In the case of two commodity flows, there ezist optimal flows that
are multiples of 0.5. However, in the case of two commodity uncapacitated
network design, flows are integral.

This result allows us to classify the optimal solution as either a forward or a
reverse solution. Thus. in a forward solution. lows of both commodities on
any shared path or arc are in the same direction. In a reverse solution. flows
on any shared path or arc are in opposite directions.

We now derive some optimality conditions based on shortest distances. Let
a(i. j) be the shortest distance from 7 to ; using w;; as arc costs.



Lemma 3 The objective function value v corresponding to some feasible so-
lution to UTC is optimal if and only if

(i) v < a(Ol, Dl) + G(OQ,DQ)

(i) v < a(Or, i) + a(02,1) + a(i, 1) + a(j, D1) + a(j, D2) and v < a(Or,j) +
a(02,7) + a(3,7) + a(¢, D1) + a(i, D2) for any two nodes i and j,

(1) v < a(Oy, 1) +a(0q,7) + a{2,3) + a(J, D1) + a2, D) and v < a(O1,J) +
a(0,1) + a(¢,j) + a(i, Dy) + a(7, D) for any two nodes i and j.

Proof

The righthand sides of conditions (i), (ii) and (iii) are costs of feasible so-
lutions. If any one of the conditions are not satisfied. then there is a lower
cost solution. Therefore, if v is optimal. the conditions are satisfied. The
righthand sides of (ii) are the costs of feasible forward solutions and that of
(iii) the cost of feasible reverse solutions. If v is not optimal, then there is a
solution with lower cost. By Lemma 2. there is an optimal solution with at
most one shared path which has either all forward shared arcs or all reverse
shared arcs. Hence. one of the conditions must be violated.

O

We describe the so called two-path algorithm to solve the problem. For the
forward problem we define sy = Oy and t; = Dy, while for the reverse
problem, we define s; = Oy, t; = Dy, s = D, and ¢, = 0,.

The algorithm adds a super source node s. a super sink node ¢, arc (s,t) of
cost a(sy,ty) + a(32. t2), arcs (s, j) of cost a(sy, j) + a(sy, ), and arcs (j, ) of
cost a(j,t,)+a(j, t;). It then uses any standard algorithm to find the shortest
path between s and t. Notice that there are two passes for the algorithm. one
for the forward problem. and the other for the reverse problem. Choose the
shorter of the two shortest paths. If arc (s.j) belongs to the shortest path,
replace it by the shortest paths from s, to j and from s; to ;. Similarly. if
arc (J,t) belongs to the shortest path. replace it by the shortest paths from
J to t; and from ; to ¢,. We show later that this gives the optimal solution.

We use Dijkstra’s algorithm herebecause we can find the distance label =;( f)
(w;(b)) for each node j € V, which as we show later, represents the minimum
cost of sending one unit of flow from nodes s, and s, to node j in the forward
(reverse) problem. These labels are useful in proving that the reformulation
in Section 3 is the convex hull of feasible integer solutions to UTC.



Algorithm two-path.
Solve the shortest path problem between nodes O; and Dy for k = 1.2.
Assume that the shortest path trees rooted at O,, O, and D, are known.

Let A(:) be the set of arcs adjacent to node :i.
begin

for 6§ = f.bdo

begin

if § = f then s = Oyt = Dy for k=1.2

if § = b then 8 =-O1,t1 = Dl, So = Dg,tg = 02
add additional nodes s and ¢, and arc (s.t) of cost w,; = a(sy,t1) + a(sa,t2)
add arcs (s, 1) of cost w,; = a{s1,7) + a(s2, )
add arcs (7,t) of cost wj = a(7,t1) + a(j,t2)
Initialise

Se—29¢

7;(6) = oo, pred(j,6) —— sforjEN

m4(8) =0

while |5| < n do

begin

let i € S be a node for which m;(§) = min {;(§): j € 5}
Se—SU{i},S+— 35— {i}

for j € A(2) if n;(8) > mi(8) + w;; then

begin

7;(8) = mi(6) + wi

pred(j,6) —1

end

end{while}

end

OPT = min {m(f), m(d)}

end{two — path}

Algorithm two path takes O(n?) iterations if the distances a(sy, j) and a(j, t;)
are known. However. these distances can be obtained by finding the simple
shortest path trees rooted at nodes s, and ¢; in at most O(n?) time. The
complexity of the two path algorithm is therefore O(n?).

Theorem 1 Algorithm two path solves the two commodity problem.



Proof

Let H(6) for 6 = f,b denote the graphs obtained from G by adding nodes
s and t, and arcs (s,7), (J,¢) and (s,t). It follows from Dijkstra’s algorithm
that 7;(6) is the shortest distance from node s to node j in H(§). For any
node j # s,t, let ¢ be the first node not equal to s on some shortest path to
7 in H(é). Then, the shortest distance is a(s,,¢) + a(s2,?) + a(s, ;). But this
is the cost of reaching node j from nodes s; and s, through node :. Consider
the cost of reaching node j from s; and s, through any other node u (u might
equal sy, s, or j), where u is the first node not equal to s. This cost equals
a(s1, u) + a(s2, u) +a(u, j). But this is the cost of a path from s to j in H($).
Therefore, a(sy,1) +a(ss,1)+a(i,7) < a(sy,u) +a(ss,u)+a(u, ), and hence,
7;(6) is the minimum cost of reaching node ; from nodes s, and s,.

Now consider the label 7,(6) and any shortest path from s to ¢. Suppose the
shortest path is not the arc (s,t). Let 7 be the last node not equal to ¢ on
this shortest path, and let : be the first node not equal to s. The cost of this
path is m;(8) +a(s, t1) +a(j, t2) = a(s1,7) +a(s2, 1) +a(i. j) +a(j, t1) +a(J, t2).
If the shortest path is the arc (s,t), then the cost is a(sy,t1) + a(s2,%2). In
either case. the cost represents the cost of a feasible solution to TFOC.

Consider any feasible solution to UTC with exactly one shared path. Let
u and v be the first and last nodes on the shared path. The cost of this
solution is a(sy, u) + a(ss, u) + a(u,v) +a(v, t;) +a(v,t;). But this represents
the cost of a path from s to t in H(§). A feasible sohition to TCOF without
any shared path costs a(s1,t1) + a(s2, t2), which is the cost of the arc (s,¢).
Hence, 7,(6) is the minimum cost of reaching #; and ¢,-from s, and s; in H(§),
and hence OPT = min {7¢(f), m(b)} is the cost of any optimal solution to
UTC.

3 The Convex Hull

Several combinatorial problems can be solved in polynomial time. However.
the convex hull of feasible integer solutions, if known. often has an exponen-
tial number of constraints. For instance. in the case of the spanning tree
problem. for any S C V if A(S) denotes the set of arcs wjth both end nodes
in S, then the inequalities 3_.¢ 45y ¥ < |S| — 1 completely describe the con-
vex hull of integer solutions. However. there are O(2") such inequalities. An



extended reformulation in a polvnomial number of variables and constraints
is also known for this problem where we use a multi commodity formulation
(see Magnanti and Wolsey (1995)). This extended formulation has O(mn)
variables and constraints whereas the original integer formulation has O(m)
variables. Similarly, the the convex hull of the single item uncapacitated lot
sizing problem based on 2 natural formulation of the problem has O(n) vari-
ables and an exponential number of constraints. and an extended formulation
has O(n?) variables and constraints (see Pochet and Wolsey (1994)).

However. for the two commodity uncapacitated network design problem. we
obtain the convex hull with O(m) variables and O(n) constraints. The nat-
ural formulation UTC has O(m) variables and O(m) constraints. We moti-
vate the discussion by first showing that the linear programming relaxation
of UTC gives rise to fractional optimal solutions.

Example 1

Consider a 4 node graph with Oy =1, 02 =2, D; = 3 and D, = 4. Arc
costs are wys = wy = 50 and w3 = wyy = 100. An optimal solution
is z]; = y13 = 1 and 22, = ypy = 1 with cost 200. However, the linear
programming relaxation has the optimal solution zi; = 0.5, z], = zi, =
zi, = 0.3, 23, = 0.5. 22, = 22, = 22, = 0.5. and y12 = Y13 = Y24 = y34 = 0.5
with cost 150.

a

We therefore need a tighter reformulation if we want to obtain a complete
description of the convex hull of integer solutions. Cousider the following
formulation and variable definitions. based on the characterisation of optimal
solutions in Section 2. For arcs without shared flows. let ef(f) and €%(b)
denote the flow on arc (i, j) for the forward and reverse solution repectively.
Similarly, let k;;(f) and k;;(b) denote the flow on a shared arc where k;;(6) €
{0.1} for 6 = f,b. We define shared path P to be mazimal if all shared arcs
belong to it. We now reformulate the problem using the previous results.
Assume w;; = wj; for all (z.7) € A.

Reformulation R2

Min v = Z Z w;j(ebw) - 3,2](5) + hij(é))

(tJ)EA S=Fb
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Ekample 2

Arc costs are shown beside the arcs in Figure 1. Node 1 is the origin for
both commodities, node 6 is the destination for commodity 1, and node 7
the destination for commodity 2. An optimal solution with cost 40 is

€12 = €26 —614 - 64" =L

However, the following fractional solution

Ol

1 2

costs only 37.5.

a

In this example, fractional flows share an arc, then split and then again
combine to share arcs. To avoid this, we introduce some additional sets of
variables as follows. Suppose there is a shared maximal path from node :~
to node ;™ with commodity 1 flowing from :* to ;*. We say that the shared
path starts in node :* and ends in node ;. If k =1 or § = f, then flow of
commodity k on arc (z, ;) is said to occur before the shared path if#he flow
has not vet entered node ¢* and is said to occur after the shared path if it
bas left node j*. If k = 2 and § = b, then flow of commodity 2 on arc (i.J)
is said to occur before the shared path if the low has not yet entered. node
J* and is said to occur after the shared path if it has ieft node :*. We define
the following 0-1 variables.

For each node j € N let:
u;(8) = 1 if the shared path starts in node ;
v;(6) = 1 if the shared path ends in node j

For each arc (z.j) € A let :
e¥. =1 only if commodity k flow occurs before the shared path
gi; = 1 only if commodity k flow occurs after the shared path
hi;(6) = 1 if it is a shared arc.

The uncapacitated two commodity UTC problem can now be reformulated
as follows.

Reformulation UTC(R).



Min v = z wi;(el; + e g“7 + g.J + Z h;;(6})
(ij)eA s=fb

subject to:

-1 } = 01
0 otherwise
-1 7 =0,
0 otherwise

> (el — €3;) = ui(f) — u;(b)

2(6121 k) — u;(f) —v;(0) =
Z(hu — h;i(8)) + u;(6) —v;(8) =
J=D

otherwise
J=D;

otherwise

fork=1,2; § = f,b.

D95 = g5s) + i (f) +ui(b) =

o O -

Y(g% - g5) + o3( ) +us(d) =

c?j’ g:k)) hu(‘s) >

|
S N —A— S~ A
S~
-]
e

Any solution (z.y) to the two commodity problem UTC with at most one
shared path can be transformed to obtain a feasible solution to the reformula-
tion as follows. Assume that since wU >0.y; = z +3:" for all arcs. If there
is no shared path, then set ef; = z¥ for all arcs and set uD,,( fl=vp(f)=1
to obtain a feasible solution to the reformulation. Otherwise, set ef; = z¥;
(g = z¥;) for all ares (3, 7) before (after) the shared path. If there is a shared
forward path from node i* to node j*, then set h;;(f) =1 for all arcs on the
shared path. Set u;e(f) = v;«(f) = 1. If there is a shared reverse path from
node ¢* to node j*, then set k;;(b) = 1 for all arcs on the shared path. Set

u;+(b) = v;+(b) = 1. We thus obtain a feasible solution.

The reformulation has 12m + 4n variables: ef; and e, gf and g}; for k =
1.2, h;;(6) and hji(8) for 6 = f.b. and uJ(6) a.nd v;(6) for § = f.b. The
original integer programming formulation has 5m variables. four flow and
one fixed charge variable for each arc. Therefore, both formulations have
O(m) variables. The reformulation has O(n) constraints whereas the original
formulation has O(m +n) constraints. We show that reformulation UTC(R)
completely describes the convex hull of feasible integer solutions.
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Theorem 2 The reformulation UTC(R) completely describes the convex hull
of integer solutions for the uncapacitated two commodity network design prob-
lem.

Proof.
The dual DUTC(R) of UTC(R) is given below.
2
2(30,‘ O‘o,,)
k=1
subject to:
e at —aof
g"-‘j : 35‘ 3"
hi;(6) : n;(6) - 77:(6)

u;(f): ni(f)—a} =
vi(f) : /31+32—q,(f)
ui(b): (b)) + 3 —qj
v;(b) : B} — af —n;(b)

Using the r;(6) values from algorithm two path, let
of = a(O.j),
ﬂjl =a(Oy,Dy) - a(j, Dy),
B} = OPT — a(0y, D1) — a(3, D2).
Tb‘(f) = Tj(f), and
7;(b) = 7;(b) + a(Oy, Dy) — OPT.

Notice that a§, = 0, 8h, = a(O1,Dy) and that 85, = OPT — a(Os, Dy).

Hence if the dual variables are feasible. they are optimal.

From algorithm two path notice that =;(f) < a(O1,7) + a(0Oz,)) and that
7i(b) < a(01.J) + a(j,D2). Since 7;(f) is the minimum cost of sending
one unit of flow from each of the nodes O, and O, to node j. and since
a(j, D1) + a(j.Dy) is an upper bound on the cost of sending one unit from
node J to each of nodes Dy and D, it follows that

VAN VAN AN VAR VAR AN VAN
coocog g g

7i(f) + a(37 D1) + alj. Dy) 2 OPT.

Since 7;(b) is the minimum cost of sending one unit of flow from node O; to
node j. and one unit from j to D, and since a(j, D) + a(Oz, ) is an upper

11



bound on the cost of sending one unit from node j to node D, and from O,
to 7, it follows that

7;(b) + a(j, Dy) + a(0,j) > OPT.

It is now easy to verify that these values of the dual variables satisfv dual
feasibility.

4 The Capacitated Problem

We now consider the capacitated network design problem. The multi com-
modity problem can be described as follows. Consider an undirected graph
G = (N, A), with node set N, arc set A, and origin destination pairs Oy, Dy,
with demand of d; unit between every pair for £ = 1,....K. Capacity can
be purchased in batches of C units on each arc (3, 7) 6 A at cost w;; > 0.
Flow costs are assumed to be zero. The objective is to minimise the total
cost while satisfving demand between every origin destination pair.

Magnanti, Mirchandani and Vachani (1993) have studied the two facility ver-
sion of the problem, where capacity is available in batches of 1 or C units,
and describe facets and strong valid inequalities for the problem. Chopra,
Gilboa and Sastry (1996) studied the single origin-destination version of the
one and two facility problem where they describe an exact algorithm and
an extended formulation for the problem. The multi commodity one fa-
cility problem MCOF is NP-complete since the uncapacitated version is
NP-complete. The problem can be formulated as follows.

Problem MCOF

Min 7wy
(iy)ed
subject to:
—'dk if 1 = Ok
Y(ah-ah) = {d  ifi=D;
g 0 otherwise

2

Cyij > Y (z+z%)

&=1

z.y > 0:y integer.



Let dx = purC +ry where we define ri, the residue as ri, = C if di is a multiple
of C. Define the following two problems associated with TCOF. The first is
the full flow problem FF of sending pxC units from Oy to Dy, and the other
is the residual flow problem RF of sending ri units from Oy to Di. These
problems can be formulated as follows.

Problem FF
Min Z Wi Y5
(i.7)€A
subject to:
- —ka if 2 = Ok
Z(:BJl IJ = { ﬂkC ifz= Dk
0 otherwise
2
Cyiy 2 D (zf; 4 z5)
k=1
z.,y > 0:y integer.
Problem RF
Min Z Wi Y5
(1.7)€4
subject to:
—Tk 'if 1= O#
Z(xJt - u = { rk if‘z““.':.- Dy,
0 otherwise

2

min {C. ry + ro}y;; 2 Z(x{“j + l'fi) :
k=1
z.y 2 0:y integer.

Lemma 4 The full flow problem can be solved by finding separately the short-
est paths from Oy to Dy for k = 1.2 using wy; as arc costs. .

Proof
Let €, = zf /C. Then the problem reduces to the flow balance equations
requirmg pr units of low between each O, — D, pair. and the constraints

k
Yij = Z -+ E
k=1

13



Thé dual of the problem therefore is

max Zf‘k(“’l‘h - agk)
*

subject to:
k_ k
aj—o;—7; <0
i < wij.

We obtain a dual feasible solution by setting v;; = w;; and af = a(O, j).
Consider the primal solution obtained by sending puj units of commodity &
flow on the shortest path from Ok to Dy for k = 1,2 using w;; as arc costs,
and setting y;; = (2% +z%;) on all arcs. It is easy to verify that the primal
and dual solutions satisfy complementary slackness conditions.

o

We modify the definition of a shared arc as follows. Arc (z,7) is shared if
.'L'}J + 1'}" > 0, I?J 4 I_?i > 0 and

1 1 2 2 1 2 2
Zi; T i zTij + Z5i T + T + 3 + 2

(PR R s (T R R,

Notice that according to this definition. if .rf-‘j + xf,- = pC for some integer p,
then arc (i, ;) cannot be shared. Thus, an arc is shared only if (p — 1)C <
a:fJ + :z:fi < pC for both commodities for some integer p > 1. We define two
paths P, and P, as independent if any arc (z,7) € P, N P, is not shared.
Notice that if two paths are independent. then there is no cost saving even
if they have arcs in common. Moreover. if y;; equals 0 or 1 on all arcs
(2,J) € PLUP,, then y;; > 2 if arc (t.j) € PN P,. Foranycut SC N
of nodes, let A(S) = {(¢,j): 1€ S,j ¢ S. orj € 5,1 ¢ S} denote the arcs
across the cut. We show that there are two cases to consider for TCOF.
each of which is easy to solve. The first case is when r; + r, < C, and the
second case is when ry + r, > C. We first establish-a preliminary result.

Lemma 5 There is an optimal solution for TCOF with at most one shared
path.

Proof
We show that we can find an optimal solution with at least zx paths between
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O and Dy, each of which is independent of all other paths. Consider any
optimal solution to TCOF and let y;; denote the value of variables y;; in this
solution. Let r* = 1 if any cut S C N separating 0;,0; from Dy, D; has
capacity puy+p2+1 (which is possible only if ry+r; < C), and r* = 2if all cuts
in the optimal solution have a capacity of i + g2 +2. Since w;; > 0, we can
restrict attention to optimal solutions with y;; < g+ u,+r~ on any arc (4, 7).
Transform the network to obtain the graph G* as follows. Split each arc (. j)
into gy + pz + r” parallel arcs with capacity 5] for m = 1,..., 41 + p2 + 17,
and set b7 = 1if yj; > m and set b} =0 if y; < m.

For any commodity & and any cut set S C N such that Or € S. D, ¢
S, Liijjeasy¥i; = #x + 1 in the optimal solution to TCOF. Therefore.
Tineas) Zm 07 > pr + 1. By Mengers's theorem (see Bondy and Murty
(1976)), there are i + 1 arc distinct paths between Oy and Dy in G~.

Similarly, for any cut S C N such that 0,,0; € S and Dy,D, ¢ S,
Yiieas) m b3 = p1 + p2 + r*. Add a super source node s and a su-
per sink node ¢t and add arcs (s,04),(D,t), with capacity sy + 1, and arcs
(8,0,),(D.,t) with capacity p; +r* — 1.

Solve the maximum flow problem between s and t on this network. Clearly
the maximum flow equals yy + u,+r". If the total low between Oy and D, is
u1+ 1, then the total low between O, and D, is y,+r" —1. Hence, the total
capacity of all paths between O; and D, is p; + 1 and between O, and D,
is g + 77— 1. If r* = 2, this implies that there are p; + 1 arc distinct paths
with unit capacity between Oy and D; in G*. Hence, in the original graph
G, we can send p;C + r; units of flow from O to D, along paths that are
independent. If r* = 1, then we can send uC units on independent paths in
G, and there is a shared path for the residual flows.

Suppose the total flow between O, and D, in the maximum flow in G~ is
¢1+1—m for some m > 0. From the integrality property of maximum flows.
assume that m is an integer. Then. there must be m units of flow from O,
to D, and m units of flow from O, to D,. Call these m units the diverted
flows. We also have yy; + r* — m — 1 units of flow from O, to D,. Notice
that m < min {g1 + 1, p2 + r* — 1}. Clearly, there are m diverted paths
between Oy and D,, and m diverted paths between O, and D;. Label these
paths as Py(q) and Ps(g), 1 < ¢ £ m. and let P; and P, denote these sets
of paths. Further. given the y7; values in the optimal solution to TCOF, we
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can send (1 + 1 — m)C units of flow from O, to D, on paths each of which
is independent of any other path. Similarly, we can send (y; +r* —m—1)C
units of flow from O, to D, on paths each of which is independent of any
other path.

Transform the graph G* as follows. Delete the two super nodes and add
super nodes sq and ¢y and arcs (so, O1), (D1, o) with capacity u;+1, and arcs
(80, D2),(02,t0) with capacity g2+ r” —1. Solve the maximum flow problem
between sy and # in G°. Clearly, the maximum flow equals py + p, +r=. If
the total low between O, and D, equals g, + 1, we are done.

Otherwise, we have diverted flows (i.e.. lows between O, and O,, and be-
tween D, and D). of magnitude 0 < my < min {gy + 1, g2 +r* — 1}, and
two sets of paths P; and P, each with my paths Ps(q) and Py(q), 1 < ¢ < myp
connecting the node pairs Oy — Oy and Dy — Dy. Let m* = min {m. mo}.
Clearly, we can send (y; + 1 — m*)C units of commodity t flow between Oy
and Dy, and (g; +r* — 1 — m*)C units of commodity 2 flow between O, and
D, on independent paths, and there are m™ paths that are diverted. i.e. that
do not connect Ok to Dy. If m < my, arbitrarily delete mq — m pa.ppifrom
each of the sets of paths P; and P,. If m > myg, arbitrarily delete m <*m,
paths from each of the sets of paths P, and P;. Thus we have four sets of
paths Py, P,, P3, and P; each having m™ paths. Consider the graph obtained
from the union of these paths. We can choose one path from each of these 4
sets and arbitrarily establish a one to one correspondence between them.

Consider any four paths P, P, P;, Py in this graph connecting Oy — D,,
0,—D,, Oy —0; and D, — D;, obtained from this one to one correspondence.
Let i, be the last node common to paths P, and Ps starting from node Oy, 3
the last node common to P, and P; starting from node O,, i3 the last node
common to P; and Py starting from node D,. and ¢4 the last node common
to P, and Py starting from node D,. For any node : € Py, let a(z) be the
sequence number on the path starting from O, with «(0,) = 1.

If a(z;) > afi4), then we can proceed from O; to i4 along P;, and then
switch to P, and proceed from™4 to D,. Similarly, we can proceed from O,
to i; along P, and from #; to D; along P,. Thus we have two arc disjoint
paths. one between O, and Dy. and the other between O, and D,, which are

therefore. independent.

Similar arguments establish that we have arc disjoint paths if:
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B(22) = B(13), where (i) is the sequence number of node i on path P, sta.rting
from node O, or

v(i1) > (1), where 4(¢) is the sequence pumber of node 7 on path P; starting
from node O,, or

8(i3) = &(i4), where 6(2) is the sequence number of node i on path P, starting
from node D,.

Finally, suppose a(é1) < a(i4), B(12) < B(3), ¥(71) < ¥(i2) and 8(i3) < §(i4).
This implies we have the configuration in Figure 2. Notice that even if there
are arcs (i,j) € PN P, (or (i,7) € P3N P,), these arcs are independent. and
hence. have been shown schematically as two separate arcs in the figure. one
on P, and the other on P,, (one on P; and the other on P;) each with unit
capacity.

INSERT FIGURE 2 HERE -

If the cost of the path from ¢; to iy on P, using w;; as arc costs, is at most
equal to the cost of the path from i, to i3 on P, we can delete arcs on P,
between i, to i3 and add an extra unit of capacity between i; to iy along
P,. This does not increase the cost. But we now obtain a solution with
two independent paths, one between O, and D;, and the other between O,
and D,. If the cost of the path from #; to i4 is greater than the cost of the
path from i, to i3, we can delete arcs on P; between ¢y and 4, and add arcs
between i; to i3 along P;. Thus, we have obtained*two independent paths
connecting the two origin destination pairs from the 4 paths P, P;, P3, P,.

By using the same procedure for each set of four corresponding paths. we
can obtain m* independent paths between Oy and Dy for k =1,2. If r= = 2.
we obtain ui+1 independent paths between O, and D;. If r* = 1. we obtain
g independent paths between O, and D;, and one additional path between
each of the origin destination pairs which share exactly one path.

O

If r, + r, > C, then any cut separating O0,,0; from D;,D; in G~ has a
capacity of at least u; + u2 + 2, and hence. the maximum flow in G~ equals
at least gy + g2 + 2. Hence, there are y; + 1 independent paths for each
commodity k. Therefore, with the given values of y;; in the optimal solution
to TCOF, we can send uC + r = di units of commodity k& from Oy to Dy
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for each commodity on independent paths. We have therefore established
the following result.

Theorem 3 Ifry + 1, > C, then TCOF can be solved by sending dy. units
along the shortest path between Oy and Dy for k = 1,2 using w;; as arc costs.

If r{ + r, > C, the convex hull for TFOC is therefore represented by the
usual network flow constraints for two shortest path problems, one for each
commodity, in which we send g + 1 units from origin Oy to destination Dy.

Theorem 4 Ifr,+r; < C, we can solve TCOF by solving the full flow and
the residual flow problems separately. Moreover, the residual flow problem
reduces to the uncapacitated two commodity problem UTC .

Proof

As shown in Lemma 5. there are y; independent paths between each origin
destination pair in G*. Therefore, for the problem TCOF. we can send pu;C
units of flow on the shortest path between O and D;. Hence TCOF can be
solved by solving FF and RF separately.

Consider the residual flow problem RF. Since ri +r, < C, yij = 11is a
sufficient value for y;; on any shared arc. Hence, the constraint min.{C,r; +
e

2 :
rotyi; 2 Z(zfj + a:f,—) can be replaced by the constraints ryy;; > J:f-"]- + a:f,-

k=1 .
for ¥ = 1.2. The problem can therefore be recast as follows by using the
k

. . k —
substitution rye; = ;.

Min Z WisYis

(i.g)eA
subject to:
-1 if:=04
S(ehi—el) = <1 ifi=Dy
i 0 otherwise®"

ko _k
Yij 2 e;+tey;
ey > 0:y integer.

This is precisely the two commodity uncapacitated problem.
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If ry +r, < C, then the convex hull is represented by the constraints for the
full low problem FF and the constraints for the uncapacitated problem’s
reformulation UTC(R). Problem FF can be solved by any shortest path
algorithm, and problem UTC(R) by the two path algorithm in Section 2.

5 Extension to Multi Commodity

For the uncapacitated multi commodity problem the following result holds.

Lemma 6 There is an optimal solution in which each commodity k flows on
exactly one path between Oy and Dy.

Proof
If a commodity flows on two paths, we can redirect all flow from one path to
the other without increasing cost since capacity is unrestricted.

0

Using this result, it is perhaps possible to generalize the two path algorithm
to the multi commodity case. For each node i and any subset @ C {1,.... K}
of the set of commodities, we can calculate 7;(Q) which is the optmimum
cost of reaching node i from origin nodes O : k € @. This approach. if it
works, would give an exponential time exact algorithm since 7;(Q) needs to

be calculated for all subsets Q.

Notice that in the two commodity capacitated problem TCOF, we show that
we can solve the full flow and the residual flow problems separately, and that
there is an optimal solution in which the flow on any arc equals 0. ry, uC
or uxC + ri. This enables us to classify arcs as either full flow or residual
flow arcs and solve the problem efficientlv. However, the following example
for the three commodity problem shows that these results do not hold.

Example 3

Consider a 4 node. 4 arc problem with arc capacity 10. Let node s be the
source node for the three commodities whose destination nodes are 1. 2 and
3. Let arc costs be wy; = wey = 2. w3 = w3 = 1, and let d; = d; = 1. and
d3 = 12.
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An optimal solution with cost 6 is :

Ys1 = Ys2 = Y13 = Y23 = 1, and Iil = '332 =4, ril = 132 = 1?3 = 1-'33 =6.
However, the full flow problem has the optimal solution:
Yn =y3=1,25 =z}, =10
with cost 3, and the residual flow problem has the solution:
Yya=yu=yn=landz}, =z}, =zl =z =4,z =z}, =2
with cost 4. The total cost is therefore 7.
O

Therefore a simple generalisation of the solution approach for the two com-
modity problem is unlikely to help in solving the problem. However. an
efficient heuristic which assumes that arcs flows are either full or residual
can perhaps be obtained by generalising the two path algorithm for the two
commodity case.

6 Conclusions

We characterize optimal solutions of the two commodity network design prob-
lem and show that the search for optimal solutions can be conﬁng@ to solu-
tions with at most one shared path for both the capacitated and uncapaci-
tated problems. Using this characterization. we describe the convex huf! of
integer solutions to the uncapacitated problem using O(m) variables. We
also describe an O(n?) algorithm to solve the problem. For the capacitated
two commodity problem. we show that we can separate the problem into the
full low and the residual flow problems. We further show that the problem
can be solved using any standard shortest path algorithm whgn total residue
is large (i.e., r; + 7, > C), and that it reduces to the uncapacitated case
when total residue is small (i.e., when+ + r; < C).

A generalization of the two path algorithm can perhaps be used to obtain an
exact algorithm for U M C and efficient heuristics for M FOC. It might also
be useful to find more general conditions under which the multi commodity
capacitated problem is easy.

ez
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