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Abstract 

The focus of this paper is on regression models for mixed binary and continuous 
outcomes, when the true predictor is measured with error and the binary responses are 
subject to classification errors. Latent variable is used to model the binary response. The 
joint distribution is expressed as a product of the marginal distribution of the continuous 
response and the conditional distribution of the binary response given the continuous 
response. Models are proposed to incorporate the measurement error and/or 
classification errors. Likelihood based analysis is performed to estimate the regression 
parameters of interest. Theoretical studies are made to find the bias of the likelihood 
estimates of the model parameters. An extensive simulation study is carried out to 
investigate the effect of ignoring classification errors and/or measurement error on the 
estimates of the model parameters. The methodology is illustrated with a data set 
obtained by conducting a small scale survey. 
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Analysis of Mixed Outcomes: Misclassified Binary 
Responses and Measurement Error in Covariates 

 
1. Introduction 

Regression models with mixed binary and continuous responses naturally arise in many 

applied settings. The models find extensive applications in analyzing data arising out in 

developmental toxicity studies (Catalano and Ryan (1992), Fitzmaurice and Laird (1995), 

Regan and Catalano (1999, 2000), Geys et al. (2001) and Gueorguieva and Agresti 

(2001)). The primary impediment to modeling mixed binary continuous outcomes is: no 

natural choice of a multivariate distribution for modeling such data exists. The model by 

Olkin and Tate (1961) is the earliest one which considers the factorization of the joint 

distribution into binary marginal and continuous conditional. Cox (1972), on the other 

hand, arrives at a model considering the factorization in the reverse sequence viz., 

continuous marginal and binary conditional. Sammel et al. (1997) subsequently consider 

a multivariate mixed outcomes model assuming component responses to be independent 

observations from one parameter exponential families conditional on a common latent 

variable. Gueorguieva and Agresti (2001) recently consider a correlated probit model that 

considers an underlying normal latent variable for the binary response. Finally 

Gueorguieva and Sanacora (2006) extend it for analyzing longitudinal mixed outcome 

data. 

 
In this paper our primary interest is related to the application of the Cox (1972) model in 

analyzing data contaminated with measurement error in covariates and/or classification 

errors in binary responses. In epidemiologic studies, often for some reason, the predictors 

are not directly observable instead its surrogates are observable though the model is 

determined by the true predictors. In such cases usually the true predictor is modeled as a 

linear function of the surrogates plus an error. In measurement error literature such 

models are usually called the Berkson model (pp.9, Carroll et al. (1995)). On top of it, it 

may happen that the binary responses recorded may be subject to classification errors. For 

example, it could be interesting to analyze the data, if available, on the survivors of 

atomic bomb explosions in Hiroshima and Nagasaki who died after 1945. The continuous 

response may be the log number of years of survival of a person after his/her exposure to 

radiations from the explosion and the binary response may be whether he or she died of 
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cancer or not. One of the important covariates is a measure of exposure to radiation at the 

time of explosion. The amount of radiation exposure is not observable but one can use the 

estimated dose using DS86 dosimetry (Roesch 1987, Fujita 1989) as the surrogate. Also 

the cause of death viz., cancer or not, may be misclassified (Sposto et al.(1992)). The 

binary regression modeling when the responses (death from cancer or not) are subject to 

classification errors and covariates (exposure to radiation) are subject to measurement 

error is considered by Roy et al. (2005).  

 

Surprisingly, however, regression problem with mixed outcomes is not considered in the 

measurement error literature. And thus the effect on the estimates of the model 

parameters of misclassification errors in the binary outcome and measurement error in 

covariates are not known. The problem that we consider here seems to be new and of 

considerable importance in the epidemiologic studies. To be more specific, the questions 

that we address here are: in a regression set-up with mixed outcomes how the likelihood 

estimates of the model parameters would be affected if we consider a naïve model i.e., a 

model that assumes the surrogates as the true predictors and ignores the presence of 

classification errors? Which of these errors is more serious? How the proposed models 

that incorporate these errors would perform compared to the naïve model? We also 

present some interesting theoretical results that provide strong insight in understanding 

the effects of these errors on the parameter estimates and also partial answers to the above 

questions. The proofs of a few others still elude us. We cite them as open problems. 

Extensive simulation studies that we present at the end support our theoretical findings 

besides helping us to understand the joint effect of these errors on the estimates of the 

model parameters.   

 

Regarding the presentation, first we introduce the naïve model (Cox (1972), Catalano and 

Ryan (1992)) in Section 2. In Sections 3-5, we propose its modifications in the presence 

of classification errors, measurement errors and lastly, in the presence of both 

respectively. The Subsections in Sections 2-5 discuss the parameter estimation and some 

theoretical results regarding the effect of measurement and/or classification errors on the 

estimates of the model parameters. The results of an extensive simulation study 

investigating the sensitivity of the estimates of the model parameters to different choices 

of classification errors and measurement error parameters are presented in Section 6. In 
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Section 7 analysis of a data set collected by conducting a small scale survey is given. 

Finally conclusions are drawn in Section 8. 

 

2. Naive Model Analysis  

2.1. Model  

Suppose , i =1,2,…n, denote the bivariate responses where  is binary and 

 is continuous. Let  be the unobserved latent variable such that  

1 2( , )T
i i iy y y= 1iy

2iy *
1iy

.0y  if  ,0      

,0y if   ,1
*
1i

*
1i1

≤=

>=iy
            (2.1) 

Associated with the ith observation there is a 1 1p ×  covariate vector 1ix  thought to predict  

 (and hence ) and a  covariate vector *
1iy 1iy 2 1p × 2ix  thought to predict . The following 

bivariate model is considered, 

2iy

*
1 01 1 1 1

2 02 2 2 2

,

,

T
i i

T
i i

y x

y x
i

i

β β ε

β β ε

= + +

= + +
          (2.2)  

where the joint distribution of 1iε  and 2iε  is normal with zero means, correlation 

coefficient ρ and variances unity and 2
2σ  respectively. For the model to be identifiable 

1( ) 1iV ε =  is a standard assumption (Cox, 1972; Catalano and Ryan, 1992). 

Further 1 2( , )i iε ε ’s are independent and are independent of 1 2( , )T T T
i i ix x x= . Thus the joint 

distribution of  and  is given by,  *
1iy 2iy

                        * 2
1 2 2 01 1 1 02 2 2 2, ~ ( , ,1, ,T T
i i i i iy y x N x x )β β β β σ+ + ρ

)

.                (2.3) 

Now, the joint distribution of  given the true predictor can be written as  1 2( ,i iy y

1 2 1 2 2 2( , / ) ( / , ) ( / )i i i i i i i if y y x f y y x f y x=       (2.4) 

where 2 2( /i i )f y x and 1 2( / ,i i i )f y y x are the marginal distribution of  and the 

conditional distribution of  given  respectively. From (2.3) it follows that 

2iy

1iy 2iy

        )
1

(),/0(),/1(
2

1
2

*
1211

ρ
µπ
−

Φ=≥=== i
iiiiiii xyyPxyyP                (2.5) 

 

where, 

    1 01 1 1 2 02 2 2
2

(T
i i i )T

ix y xρµ β β β β
σ

= + + − − .     (2.6) 
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 It also follows from (2.5) that if ρ=0 then 1 2( 1 ,i iP y y x= )i

)

becomes independent of y2i. In 

general the joint distribution of  can be written as 1 2( ,i iy y

         ( ) 11
1 2

1 2 1 1 2 02 2 22
22

1 1( , / ) 1 exp ( )
22

ii
yy T

i i i i i i if y y x y xπ π β β
σσ π

− ⎛ ⎞
= − − − −⎜ ⎟

⎝ ⎠
,        (2.7) 

where 1iπ  is given by (2.5).  

 

2.2. Parameter Estimation 

Let the parameter of interest be denoted by , where 1 2( , )T T Tθ θ θ= 1 01 1( , , )T Tθ β β ρ= and 

.  The log likelihood function is given by 2
2 02 2 2( , , )Tθ β β σ= T

1 1 2 11 1 2 12 2( , ) ( , ) ( )L L Lθ θ θ θ= + θ

i

,            (2.8) 

where, 

           11 1 2 1 1 1 1
1 1

( , ) ln (1 ) ln(1 )
n n

i i i
i i

L y yθ θ π
= =

= + −∑ ∑ π− ,            (2.9) 

                       2
12 2 2 2 02 2 22

12

1( ) ln(2 ) ln ( ) .
2 2 2

n
T

i
i

n nL yθ π σ β β
σ =

= − − − − −∑ ix           (2.10) 

The maximum likelihood estimate (mle) of θ is obtained by solving the following 

likelihood equations iteratively: 

                                                      11 1 2

1

( , ) 0L θ θ
θ

∂
=

∂
,               (2.11) 

                                      11 1 2 12 2

2 2

( , ) ( ) 0.L Lθ θ θ
θ θ

∂ ∂
+ =

∂ ∂
                                                   (2.12) 

Starting with an initial value of 2θ  the equations (2.11)-(2.12) can be solved iteratively 
until convergence is achieved. 
 
 
3.  Model with Classification Errors  

3.1. Model and estimation 

Suppose the true binary response  is subject to classification errors and instead of , 

an error prone response is observed. We assume a simple probability model linking the 

manifest response  to the true response . This is given by, 

1iy 1iy

1iy%

1iy% 1iy

        1 1 2 1 1

1 1 2 1 1

( 1/ 0, , ) ( 1/ 0)
( 0 / 1, , ) ( 0 / 1)

i i i i i i

i i i i i i

P y y y x P y y
P y y y x P y y

0

1

,
,

ε
ε

= = = = = =
= = = = = =

% %

% %
                              (3.1) 
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where ε0 and ε1 are unknown probabilities of misclassification. To keep the treatment 

simple, the misclassification probabilities are assumed to be independent of the covariate 

xi and the continuous response . Now, straight forward probability calculation gives, 2iy

    )
1

()1(),/1~(
2

1
100212

ρ

µ
εεεπ

−
Φ−−+=== i

iiii xyyP                           (3.2) 

where 1iµ is given by (2.6). Note that the above model is no longer a probit model. 

Note, ρ=0 entails ( )1 2 0 0 1 1 1( 1/ , ) (1 ) ( 1/i i i i iP y y x P y xε ε ε µ= = + − − Φ = =% % )i .The effect of 

classification errors on the estimates of regression parameters in this special case of 

binary regression has been considered by Roy et al. (2005).  

Now, the joint probability distribution of  given the true predictor is factorized 

as,  

1 2( , )i iy y%

( )

1 1

11

1
1 2 1 2 1 2 2

1 2
2 2 2 02 2 22

22

( , / ) ( 1/ , ) (1 ( 1/ , )) ( / )

1 11 exp ( ) ,
22

i i

ii

y y
i i i i i i i i i i i

yy T
i i i i

2f y y x P y y x P y y x f y x

y xπ π β β
σσ π

−

−

= = − =

⎛
= − − − −⎜ ⎟

⎝ ⎠

% %

%%

% % %

⎞

L

            (3.3)  

with π2i as defined in (3.2). The resulting log likelihood function is  

2 1 2 0 1 21 1 2 0 1 22 2( , , , ) ( , , , ) ( )L Lθ θ ε ε θ θ ε ε θ= + ,                (3.4) 

where, 

21 1 2 0 1 1 2 1 2
1 1

( , , , ) log (1 ) log(1 )
n n

i i i
i i

L y y iθ θ ε ε π π
= =

= + −∑ ∑% % −                (3.5)   

and 22 2( )L θ  is identical to 12 2( )L θ .  

 

For finding likelihood estimates we need to solve the likelihood equations simultaneously 

for θ1, θ2, 0  and 1ε ε . However, if the observations are such that most of the 

)
1

(
2

1

ρ

µ

−
Φ i ’s lie in the central part of the probit function, more specifically between, 

say, 0.1 and 0.9  then 0  and 1ε ε become almost confounded with θ1 (Cox and Snell, 1989, 

pp.22 ) and thus making separate estimation of 0 1,ε ε and θ1 difficult unless the sample 

size is very large. In such situations estimation of θ1 is possible if 0  and 1ε ε  are known or 

its estimates are available from independent validation studies. In epidemiologic studies, 

separate estimates of 0  and 1ε ε  are often obtained from external validation data (see 

Holcroft and Spiegelman (1999), Morrissey and Spiegelman (1999) and other references 
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therein). Maximum likelihood estimate of θ1 is then obtained by replacing 0 1 and ε ε  in 

the log likelihood function by their estimates and treating them as if they are known. The 

asymptotic distribution of such estimates may be obtained as in Roy et al. (2005).  

 

3.2.  Effect of Classification Errors on the Estimates 

In this section we investigate the effect of ignoring classification errors on the likelihood 

estimates of the parameters assuming that the classification errors are known. The key 

result that we use follows from the work of White (1982) on misspecified models. It says 

the likelihood estimate under the false model converges to 

 that minimizes the Kullback-Leibler divergence (See Kullback (1959)) 

between the true and the false models. In our case it is given by,  

* * *
1 2

ˆ ˆ ˆ( , )
T T Tθ θ θ=

TTT ),( *
2

*
1

* θθθ =

[ ]
2 1 2x / / , 1 2 1 2E E E log{ ( , / ) / ( , / )}y x y y x T Ff y y x f y y x% % % ,                                                          (3.6) 

where,  1 2 ( , / )Tf y y x%  and 1 2 ( , / )Ff y y x%  are given by (3.3) and (2.7) respectively. Also the 

expectations are taken with respect to the true model.  

 

Let the parameters under the true and the false models be denoted by and 

respectively. Taking the derivatives of (3.6), we find that  

TTT ),( 21 θθθ =

TTT ),( *
2

*
1

* θθθ =

TTTTTT ),,,,,(),( **
2

*
202

*
1

*
01

*
2

*
1

* ρσββββθθθ == solve the system of equations given below:  

( ) ( ) ( ) ( ){ }2x / 2 2 2 2E E 1 x,y 1 , 0 , 0 ,  =0y x F FP x y x y P x yλ λ′ ′+                                           (3.7) 

( ) ( ) ( ) ( ){ }2x / 1 2 2 2 2E E 1 , 1 , 0 , 0 , 0y x F Fx x y P x y x y P x yλ λ⎡ ⎤′ ′+ =⎣ ⎦                                   (3.8) 

( ) ( ) ( ) ( ){ }( )
2

* *
x / 2 2 2 2 2 02 2 2E E 1 x,y 1 , 0 , 0 , y =0T

y x F FP x y x y P x y xλ λ β β⎡ ⎤′ ′+ −⎣ ⎦−           (3.9) 

( ) ( ) ( ) ( ){ }
( ) ( ){ }

2

* * 1
x / 2 2 2 2 2

* 2 * *
x 2 02 02 2 2 2

E E 1 x,y 1 , 0 , 0 ,

+E 0

y x F F

T

P x y x y P x y

x

λ λ

σ β β β β

−

−

⎡ ⎤′ ′+⎣ ⎦
⎡ ⎤− + − =⎢ ⎥⎣ ⎦

ρ σ
                                (3.10)                        

( ) ( ) ( ) ( ){ }
( ) ( ){ }

2

* * 1
x / 2 2 2 2 2 2

* 2 * *
x 2 2 02 02 2 2 2

E E 1 , 1 , 0 , 0 , +

E  =0

y x F F

T

x x y P x y x y P x y

x x

λ λ

σ β β β β

−

−

⎡ ⎤′ ′+⎣ ⎦
⎡ ⎤− + −⎢ ⎥⎣ ⎦

ρ σ
                         (3.11) 
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( ) ( ) ( ) ( ){ }
{ }

2

2

* *2 * *
x / 2 2 2 2 2 2 02 2 2

* 3 * * 2 *
x y / 2 2 02 2 2 2

E E 1 , 1 , 0 , 0 , ( )

E E ( ) (1/ ) 0

T
y x F F

T
x
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λ λ ρ σ β

σ β β σ

−

−

⎡ ⎤′ ′+ −⎣ ⎦
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( ) ( ) ( )1 2
2 2 1*

1 2 01

( / , )where ,   and , / , ; u 0,1.
( / , )

T
F F

F

P y u y xu x y P u x y P y u x y
P y u y x

λ
β

=
2

∂′= = =
= ∂

%
%

%
=   

 

For a given distribution of x, one can solve the system (3.7) - (3.12) and compare  with 

the true value of θ. In general

*θ
*θ ,θ≠  i.e. ignoring the classification errors produces 

biased estimates. It does not seem possible to find an explicit general solution to the 

above system of equations and hence a general result on the effects of classification errors 

on the estimates of the model parameters. However, in the following we find some 

interesting results in specific cases and then discuss its implications.  

 

To be specific, we consider solving the system of equations (3.7)-(3.12) assuming that 
*
2 2θ θ= . It is interesting to note that this assumption is valid in case the covariates for the 

mixed outcome responses are same. This is generally the case in all teratological 

applications (Catalano and Ryan (1992), Fizmaurice and Laird (1995), Regan and 

Catalano (1999, 2000), Geys et al. (2001), Gueorguieva and Agresti (2001)) as well as in 

most of the applications related to the epidemiologic studies. For example in the cohort 

study of the effects of radiation exposures among the survivors of atom bomb explosions 

in Hiorshima and Nagasaki in Japan the covariates are radiation exposure level besides 

other demographic characteristics.  

 

 

In this specific case since we consider equations (3.7)-(3.9) with 2
*
2 θθ = * *

02 2( , )β β in (3.9) 

replaced by 02 2( , )β β . Still a general solution ( )* * * *
1 01 1, ,

T
θ β β ρ= to (3.7)-(3.9) eludes us. 

However, an approximate relationship can be established between *
1θ and 1θ . Note that 

the values of * * *
01 1( , , )β β ρ  that yield =),/1( 2yxλ 1),/0( 2 =yxλ  for all x and y2 solve 

(3.7)-(3.9). Equations (2.5) and (2.6) entail  
* -1 *2 1/ 2 1 1

2 2 1 2 1 2 (1- )(1 ) { ( 1/ 1, )} { ( 1/ , )}F FP y y x P y y xρ σ β ρ − − −− = Φ = + −Φ =% %  

where, x is the common covariate. Replacing the false probabilities above by the true 

ones we get 
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* -1 *2 1/ 2 1 1
2 1 2 1
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for small values of ρ.  It is now easy to check that 10 G (0) 1′≤ ≤  whatever x1 may be. For 

proof of this we refer to Neuhaus (1999). For x1=0, the attenuation factor reduces to that 

of Neuhaus (1999) and Li and Duan (1989). Ignoring classification errors thus results in 

the attenuation of the numerical value of the estimate of
21-

ρ
ρ

. Making use of the fact 

that
21-

ρ
ρ

 is an increasing function of ρ it is easy to see that under the naïve model the 

numerical value of ρ is attenuated.  

 

 To investigate the effect on β1, we follow the above logic to arrive at 

1
01 2 2 02 2 2

0 1 2*2
*

1 1 2 1
1 01 2 2 02 2 2

0 0 1 2

((1 )
11

1 ((1 )
1

y x

y x

β ρσ β βε ε φ
ρρ

β β
ρ β ρσ β βφ ε ε ε

ρ

−

−
−

⎛ ⎞+ − −⎜ ⎟− −
⎜ ⎟−− ⎝ ⎠≅

⎡ ⎤⎧ ⎫⎛ ⎞− + − −⎪ ⎪⎢ ⎥⎜ ⎟Φ + − − Φ⎨ ⎬⎜ ⎟⎢ ⎥−⎪ ⎪⎝ ⎠⎩ ⎭⎣ ⎦

                (3.13) 

 

 

In case ρ=0, (3.13) reduces to the result obtained by Neuhaus (1999). Notice here that the 

first factor on the right hand side of (3.13) is more than unity while the second is less than 

unity. Thus the two attenuation effects are confounded. Interestingly, however, comparing 
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the results of the simulation studies presented in Section 8, Tables 4-6 with that given in 

Table 1 of Roy et al. (2005) we observe that the attenuation in the estimate of β1 is more 

in case ρ=0.6 than in ρ=0. This shows that for ρ=0.6 the effect of attenuation of the 

second factor is more than compensate for the inflation of the first factor compared to 

ρ=0.   

 

Note: 

In case the covariates for the two responses are different theoretical results on the effect 

of the classification errors on the likelihood estimates of the parameters seem to be 

intractable. We leave this as an open problem.  

 

4. Model with Measurement Error 

4.1. Model and estimation 

Without loss of generality we assume that the measurements on are 

available only through the recording of an imperfect surrogate

TT
i

T
ii xxx ),( 21=

1 2( , )T T T
i i iz z z= , where 

 We also assume a non- 

differential measurement error model, i.e., given the true predictors, the surrogates add 

nothing to the prediction of the response. Mathematically, it means 

ly.respective x and xfor  surrogates  theare  and 2i1i21 ii zz

1 2 1 2( 1, / , ) ( 1, /i i i i i iP y y t x z P y y t x= ≤ = = ≤ )i .         (4.1) 

Since we consider Berkson model, the measurement error distribution is modeled by the 

conditional distribution of the true predictors given its surrogates. In particular, we 

assume that 

11 12
1 2 1 2 1 2

12 22

( , ) ( , ) ~ ( , ),i i i i p i i Tx x z z N z z
⎧ ⎫Σ Σ⎛ ⎞⎪ Σ =⎨ ⎜Σ Σ⎪ ⎪⎝ ⎠⎩ ⎭

⎪
⎬⎟          (4.2) 

where, p=p1+p2 and Σ is completely known from external validation studies (Carroll et 

al., 1995). With the strength of the assumptions (2.3) and (4.2) we have the following 

latent variable formulation.  

),,1,,(~/),( *
2222

2
211112202110122

*
1 ρββσββββββ Σ+Σ+++ TT

i
T

i
T

iii zzNzyy  

 where * 2 1 12 2

2
1 11 1 2 2 22 21

T

T T

ρσ β β
ρ

β β σ β β

+ Σ
=

+ Σ + Σ
.          (4.3) 

As an implication of the above result it follows that the marginal distribution of the 

continuous variable  given  is normal with mean  and variance 2iy 2iz 02 2 2
T

izβ β+
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=2*
2σ 2

2 2 22
T

2σ β+ Σ β .                                                                                                     (4.4) 

Moreover the conditional distribution of  given  and z*
1iy 2iy i is again normal with mean 
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 and variance *2
1 11 1(1 )(1 )Tβ β ρ+ Σ − where *ρ  is given by (4.3). Thus we obtain, 
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Where, 

01 1
01 1

1 11 1 1 11 1

,
1 1

T
T

T

β βγ γ
Tβ β β

= =
+ Σ + Σ β

.          (4.7) 

                                                                                                               

Now, using factorization representation of the joint distribution of the mixed outcome we 

obtain, 

 1 1

2
1 2 02 2 2

1 2 3 3 *2*
22

(1 1( , / ) (1 ) exp
22

i i

T
y y i

i i i i i
y zf y y z β βπ π

σσ π
− ⎛ ⎞− −

= − −⎜
⎝ ⎠

) ,i ⎟                      (4.8)                 

where, and 2*
2σ 3iπ  are given by (4.4) and (4.6) respectively.  

 

Note: 

 It is interesting to note from the above that even when ρ=0 the conditional distribution of 

 given  still depends on  which should not be the case if the covariates were 

directly observable. This happens because unlike the presence of classification errors ρ=0 

does not entail to be zero in this case. Hence unlike the previous two models discussed 

in Sections 2 and 3, the conditional probit model in this case does not reduce to the 

unconditional probit model.  

1iy 2iy 2iy

*ρ
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4.2.  Effect of measurement error  

Let us define *
1 01 1( , , )T Tξ γ γ ρ= and , where*2

2 02 2 2( , , )Tξ β β σ= T 2* *
01 1 2, ( , ) ,T Tρ γ γ σ are 

given by (4.3), (4.7) and (4.4) respectively. Note that, the estimates of 202  and ββ  remain 

unaffected by the presence of measurement error which is similar to the case observed in 

normal linear model set-up for Berkson model.  

From equation (4.4) it is to be noted that the maximum likelihood estimate of 2
2σ , 

say,  under the measurement error model is related to the naïve estimate, say,  by 2
2σ̂ 2*

2σ̂

2 *2
2 2 2 22

ˆˆ ˆ T
2

ˆσ σ β β= − Σ ,provided *2
2 2 22

ˆˆ T
2

ˆσ β> Σ β  , otherwise the maximum likelihood 

estimate does not exist. It shows that the naïve estimate of 2
2σ   gets inflated. 

           Equation (4.7) shows that the estimates of 01β  and 1β  under the measurement 

error model are given by  
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1111 ˆˆ1 γγ Σ> T , otherwise the maximum likelihood estimates do not exist. The equations 

clearly show that the naïve estimates of  01β  and 1β  are attenuated. 

From equation (4.3) we observe that the estimate of ρ , say, ρ̂ under the 

measurement error model and under the naïve model are related by *ρ̂

( )* 2
1 11 1 2 2 22 2 1 12 2 2
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Thus, the maximum likelihood estimate of ρ  under the measurement error model exists 
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It is also clear from above that the estimate of ρ is affected by the presence of 

measurement error. However, the effect of measurement error in this case does not show 

any clear cut pattern. Note *ρ  given by (4.3) can be written 

as * 2 1 1 2 2
2

1 1 2 2 2

( , )
(1 ( ))( ( ))

T T
i i

T
i i

Cov x x
V x V x

ρσ β βρ
β σ β
+

=
+ + T

)

. Here, we observe that if either one of 

and is big enough to offset the contribution of 1 1( )T
iV xβ 2 2( T

iV xβ 2ρσ in the numerator, 

then the value of tends to . In case of a scalar and common 

covariate, say, and measurement error variance σ

*ρ 1 1 2 2( ,T T
i iCorr x xβ β )

iii xxx == 21
2 we 

have
2

* 2 1 2
2 2 2 2 2

1 2 2(1 ) ( )
ρσ β β σρ
β σ σ β σ

+
=

+ +
. Note that σ2=0 implies *ρ ρ= . At the other end 

entails  depending on whether2σ = ∞ * 1 or -1ρ = 1 2 0 or 0β β > < . However it is easy to 

see that ρ* is not necessarily a monotonic function of σ2. Thus effect of measurement  

   se.per 
n observatio ginterestinan  is This .directionsboth in  becan   of estimate naive on theerror ρ

 

5.  Model with Measurement Error and Classification Errors 

Finally the model with the binary responses subject to classification errors and the true 

covariates subject to measurement errors are considered. In this case  acts as the 

manifest response and z

1iy%

i’s are considered to be the surrogate for the true predictors xi. 

Now the conditional probability of the event =1 given the continuous response  and 

the surrogates z

1iy% 2iy

i, is given by 
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               (5.1)                       

where *ρ and *
1iµ  are given by (4.3) and (4.5) respectively.  Thus the joint distribution of 

the manifest binary response and the continuous response  given the surrogate z1iy% 2iy i is 

given by  

1 1

1 2 1 2 2 2
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where 4iπ and *2
2σ are given by (5.1) and (4.4) respectively. The estimates of the 

parameters in this case will be affected in a similar way as discussed in Sections 3 and 4. 

This model is particularly useful in understanding the joint effect of the errors on the 

estimates of the model parameters. Interestingly the above two errors may work in 

opposite directions to cancel out each other’s effect on the estimate of ρ. We investigate it 

further by taking up a simulation study in the next section. 

  

6.  Simulation Study 

An extensive simulation study is carried out to investigate the marginal and the joint 

effects of measurement error and classification errors on the estimates of the parameters. 

We consider a common covariate for both the binary and the continuous outcomes. The 

naïve model obtained from equation (2.7) by replacing y1i by  and x1iy% i by zi is denoted 

by M1. 

 The classification error model obtained from equation (3.3) by replacing xi by zi is 

denoted by M2.  The measurement error model obtained from equation (5.8) by replacing 

y1i by is denoted by M1iy% 3 and finally the model incorporating both the classification 

errors and measurement error as given by equation (5.2) is denoted by M4.  The details of 

the study are given below. 

Step 1: The surrogate zi, i=1,2,…n are generated from uniform(-4, 4), and are kept fixed. 

Step2: xi’s are generated from univariate N (zi, σ2), i=1,2,….n for a prefixed value of the 

measurement error variance σ2. 

 Step3:  i=1,2,…n are generated from *
1 2( , )i iy y 2

2 01 1 02 2 2( , ,1,i iN x x , )β β β β σ ρ+ + . Here 

β01=0,  β1=1.0,  β02=0,  β2=1.0 =1.0  and ρ=0.6. 2
2σ

Step4:  (i =1,2,…n), are generated as follows: 1iy

 otherwise. ,0     
0 if ,1 11

=
≥= *

ii yy  

Step5: ’s (i=1,2,…,n) are generated from  using  1iy% 1iy ( )1 11 0i iP y y 0ε= = =%  and     

( 1 10 1i iP y y ) 1ε= = =%  where (ε0 , ε1) are prefixed numbers. 

Step 6: Given the data ( , , z1iy% 2iy i, i=1, 2,..,n) the likelihood estimates are obtained under 

models M1-M4, by solving the likelihood equations.  
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Step 7: Steps 2-6 are repeated a large number of times and the estimates 
2

( ) 1( ) 2( ) 01( ) 1( ) 02( ) 2( ) 2( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ( , ) ( , , , , ,l l l l l l l l )lθ θ θ β β β β σ ρ= = and 0( ) 1( )ˆ ˆ,l lε ε  are obtained (l=1,2,…R). 

Also the standard errors of 1( ) 2( ) 0( )
ˆ ˆ ˆ, ,l l lθ θ ε  and 1( )ˆ lε  are obtained from the inverse of Fisher 

Information matrix. 

Step 8: The average of ( )
ˆ

lθ ’s 0( )ˆ lε ’s and 1( )ˆ lε ’s (l=1,2,…R) i.e. θ , 0ε and 1ε  are computed 

and reported in the tables below along with the average of the standard errors (given in 

parenthesis) obtained from the repeated calculation of Fisher Information matrix . The 

simulated standard errors given by 2
( )

1

1 ˆ(
R

l
lR

)θ θ
=

−∑  , 2
0( ) 0

1

1 ˆ(
R

l
lR

)ε ε
=

−∑  and 

2
1( ) 1

1

1 ˆ(
R

l
lR

)ε ε
=

−∑ are also obtained. However, their values being very close to those 

obtained from Fisher information matrix they are not reported in the Tables furnished 

below.  

Step 9: Steps 2-8 are repeated for different choices of prefixed σ2, ε0 and ε1.  

Here we have taken R= 500, n=10000. Selection of large sample size is not unjustified in 

view of the fact that the applications of such models mostly arise in the analysis of 

epidemiological data where such sample size is common enough. We investigate through 

simulation studies three different aspects viz., (i) The effect of measurement error and its 

recovery via model M3; (ii) The effect of classification errors and its recovery via model 

M2 and (iii) The joint effects of measurement error and classification errors and its 

recovery via model M4. 

 

Measurement error:  Tables 1, 2 and 3 describe the effect of measurement error on the 

estimates of 1θ and θ2. Here the misclassification probabilities ε0 and ε1 are chosen to be 

zero. As discussed in Section 4 the estimates of β02 and β2 remain unaffected. The results 

in Table 1 reveal that for small measurement error variance the effect on the estimates of 

the parameters 1θ  and 2
2σ  are negligible. However for large measurement error variance 

say (see Table 3) the estimate of β2 1.0σ = 1 shows appreciable attenuation while those of 

ρ and 2
2σ are overestimated under model M1. Model M3 recovers the point estimates of 

the affected parameters at the expense of increased standard errors.  
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Table 1  2

0 1( , , ) (.01,0,0)σ ε ε =
 

 

 

Estimates        M1      M3

01β̂  .0004(.0200) -.0004(.0202) 

1β̂  .9961(.0187) 1.0061(.0193) 

02β̂  -.0002(.0100) -.0002(.0100) 

2β̂  .9999(.0041) .9999(.0041) 

ρ̂  .6040(.0143) .6000(.0145) 
2
2σ̂  1.0101(.0143) 1.0100 (.0143) 

Table 2  2
0 1( , , ) (.5,0,0σ ε ε = )

 
 

 

Estimates        M1      M3

01β̂  .0008(.0173) .0013(.0260) 

1β̂  .8165(.0136) 1.0006(.0409) 

02β̂  -.0001(.0123) -.0001(.0123) 

2β̂  .9999(.0050) .9999(.0050) 

ρ̂  .7335(.0164) .6004(.0184) 
2
2σ̂  1.5005(.0222) 1.0005(.0223) 

Table 3    2
0 1( , , ) (1.0,0,0)σ ε ε =

      
Estimates        M1      M3

01β̂  .0007(.0155) .0014(.0311) 

1β̂  .7076(.0107) 1.0001(.0649) 

02β̂  -.0002(.0142) -.0001(.0142) 

2β̂  .9999(.0058) .9999(.0058) 

ρ̂  .8002(.0082) .6001(.0198) 
2
2σ̂  2.0069(.0294) 1.0008(.0304) 

 
 
Classification errors: 

Tables 4, 5 and 6 summarize the effect of classification errors on the estimates of the 

parameters and its recovery via model M2. As noted in Section 4, use of common 

covariate for both the binary and the continuous responses leaves θ2 unchanged under 

models M1 and M2. This is just the case here. Results reveal that unlike the measurement 

error, in ignoring small classification error the attenuation effect on the estimate of θ1 is 

perceptible. The attenuation effect becomes more prominent with increase in the 
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magnitudes of 0ε and ε1 (See Tables 5 and 6). Model M2 clearly recovers the point 

estimates of θ1 at the expense of increased standard errors.  

 

Table 4  2
0 1( , , ) (0,.01,.01)σ ε ε =

Estimates        M1      M2

01β̂  .0009(.0188) .0010(.0220) 

1β̂  .8360(.0183) 1.0011(.0220) 

02β̂  .0000(.0099) .0000(.0099) 

2β̂  .9998(.0042) .9998(.0042) 

ρ̂  .4790(.0180) .6033(.0188) 
2
2σ̂  .9996(.0067) .9996(.0067) 

0ε̂  - .0100(.0020) 

1̂ε  - .0100(.0019) 
 

Table 5  2
0 1( , , ) (0,.05,.05)σ ε ε =

Estimates        M1      M2

01β̂  .0018(.0161) -.0010(.0257) 

1β̂  .5933(.0110) 1.0022(.0288) 

02β̂  .0000(.0099) .0000(.0099) 

2β̂  .9998(.0043) .9998(.0043) 

ρ̂  .3067(.0166) .6008(.0230) 
2
2σ̂  .9991(.0133) .9991(.0133) 

0ε̂  - .0500(.0043) 

1̂ε  - .0500(.0040) 
 

Table 6  2
0 1( , , ) (0,.10,.10)σ ε ε =

Estimates        M1      M2

01β̂  .0022(.0147) -.0006(.0315) 

1β̂  .4580(.0084) 1.0024(.0346) 

02β̂  .0000(.0099) .0000(.0099) 

2β̂  .9998(.0042) .9998(.0042) 

ρ̂  .2213(.0148) .6004(.0279) 
2
2σ̂  .9996(.0067) .9996(.0067) 

0ε̂  - .1000(.0059) 

1̂ε  - .1000(.0055) 
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Measurement error and Classification errors: 

Tables 7-15 describe the joint effects of classification errors and measurement error. 

Tables 7-9 show the joint effect when the measurement error variance is held fixed at 

0.01 while the misclassification rates gradually increase from (.01,.01) to (.10,.10). Tables 

10-12 show the joint effect of both the errors when measurement error variance is held 

fixed at .5 and Tables 13-15 show the same when the measurement error variance is 1.0 

 

Comparisons of the estimates of the parameters show that 02β  and 2β  are same for all the 

four models. The estimate of 2
2σ is same under models M1 and M2. This common 

estimated value shows inflation when compared with the estimates of 2
2σ  under M3 and 

M4. The estimate of the regression parameter 1β is attenuated under the naïve model M1. 

The attenuation effect becomes pronounced with increase in the value of the 

misclassification rates as well as measurement error variance. Ignoring classification 

errors causes attenuation of the estimate of ρ while ignoring measurement error causes 

inflation. When measurement error is small the effect of classification errors dominate 

and the estimate of ρ under naïve model shows attenuation compared to that under the 

correct model M4 (See Tables 8 and 9). When measurement error is pronounced and 

classification errors are very small the estimate of ρ shows inflation when compared with 

the same under the correct model M4 since in this case measurement error dominates (See 

Table 13). For moderate measurement error and classification errors the effects of 

ignoring these errors work in opposite directions; one results in attenuation and the other 

results in inflation of the estimate of ρ. As a result we might chance upon a situation when 

the estimate of ρ is close to the true value under model M1 (See Table 10). On the whole 

the model M4 works well in all situations. 
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Table 7  2
0 1( , , ) (.01,.01,.01)σ ε ε =

Estimates        M1      M2 M3 M4

01β̂  .0010(.0191) -.0006(.0222) .0010(.0193) -.0007(.0224) 

1β̂  .8334(.0181) .9963(.0220) .8392(.0185) 1.0063(.0227) 

02β̂  -.0000(.0100) -.0000(.0100) -.0000(.0100) -.0000(.0100) 

2β̂  .9998(.0043) .9998(.0043) .9998(.0043) .9998(.0043) 

ρ̂  .4828(.0189) .6039(.0190) .4785(.0190) .5999(.0191) 
2
2σ̂  1.0099(.0137) 1.0099(.0137) .9999(.0137) .9999(.0137) 

0ε̂  - .0100(.0198) - .0100(.0198) 

1̂ε  - .0100(.0194) - .0100(.0194) 
 

Table 8  2
0 1( , , ) (.01,.05,.05)σ ε ε =

Estimates        M1      M2 M3 M4

01β̂  .0018(.0160) -.0008(.0270) .0018(.0160) -.0007(.0273) 

1β̂  .5923(.0109) .9972(.0284) .5944(.0111) 1.0073(.0292) 

02β̂  -.0000(.0100) -.0000(.0100) -.0000(.0100) -.0000(.0100) 

2β̂  .9998(.0043) .9998(.0043) .9998(.0043) .9998(.0043) 

ρ̂  .3097(.0165) .6044(.0224) .3058(.0166) .6004(.0226) 
2
2σ̂  1.0099(.0137) 1.0099(.0137) .9999(.0137) .9999(.0137) 

0ε̂  - .0500(.0043) - .0500(.0043) 

1̂ε  - .0500(.0040) - .0500(.0043) 
 

Table 9  2
0 1( , , ) (.01,.10,.10)σ ε ε =

Estimates        M1      M2 M3 M4

01β̂  .0021(.0145) -.0009(.0325) .0021(.0146) -.0009(.0324) 

1β̂  .4574(.0084) .9977(.0337) .4584(.0085) 1.0077(.0348) 

02β̂  -.0000(.0100) -.0000(.0100) -.0000(.0100) -.0000(.0100) 

2β̂  .9998(.0043) .9998(.0043) .9998(.0043) .9998(.0043) 

ρ̂  .2236(.0148) .6043(.0271) .2204(.0149) .6003(.0273) 
2
2σ̂  1.0099(.0137) 1.0099(.0137) .9999(.0137) .9999(.0137) 

0ε̂  - .1000(.0059)  .1000(.0059) 

1̂ε  - .1000(.0055)  .1000(.0055) 
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Table 10  2
0 1( , , ) (.5,.01,.01)σ ε ε =

Estimates        M1      M2 M3 M4

01β̂  .0002(.0169) -.0012(.0193) .0003(.0229) -.0018(.0292) 

1β̂  .7211(.0133) .8169(.0160) .9750(.0307) 1.2270(.0484) 

02β̂  -.0002(.0124) -.0002(.0124) -.0002(.0124) -.0002(.0124) 

2β̂  .9997(.0054) .9997(.0054) .9997(.0054) .9997(.0054) 

ρ̂  .6222(.0124) .7340(.0164) .4383(.0247) .5770(.0214) 
2
2σ̂  1.5013(.0226) 1.5013(.0226) 1.0016(.0230) 1.0016(.0230) 

0ε̂  - .0100(.0020) - .0100(.0020) 

1̂ε  - .0100(.0019) - .0010(.0019) 
 

Table 11  2
0 1( , , ) (.5,.05,.05)σ ε ε =

Estimates        M1      M2 M3 M4

01β̂  .0009(.0158) -.0007(.0234) .0010(.0186) -.0010(.0354) 

1β̂  .5450(.0097) .8179(.0190) .6401(.0154) .2307(.0579) 

02β̂  -.0002(.0124) -.0002(.0124) -.0002(.0124) -.0002(.0124) 

2β̂  .9997(.0054) .9997(.0054) .9997(.0054) .9997(.0054) 

ρ̂  .4295(.0156) .7346(.0159) .2574(.0211) .5778(.0264) 
2
2σ̂  1.5013(.0226) 1.5013(.0226) 1.0016(.0230) 1.0016(.0230) 

0ε̂  - .0500(.0044) - .0500(.0044) 

1̂ε  - .0500(.0041) - .0500(.0041) 
 

Table 12  2
0 1( , , ) (.5,.10,.10)σ ε ε =

Estimates        M1      M2 M3 M4

01β̂  .0014(.0147) -.0013(.0289) .0015(.0162) -.0019(.0438) 

1β̂  .4305(.0081) .8187(.0226) .4744(.0107) 1.2336(.0692) 

02β̂  -.0002(.0124) -.0002(.0124) -.0002(.0124) -.0002(.0124) 

2β̂  .9997(.0054) .9997(.0054) .9997(.0054) .9997(.0054) 

ρ̂  .3191(.0147) .7347(.0194) .1751(.0194) .5781(.0312) 
2
2σ̂  1.5013(.0226) 1.5013(.0226) 1.0016(.0230) 1.0016(.0230) 

0ε̂  - .1000(.0061) - .1000(.0061) 

1̂ε  - .1000(.0055) - .1000(.0055) 
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Table 13  2
0 1( , , ) (1.0,.01,.01)σ ε ε =

Estimates        M1      M2 M3 M4

01β̂  .0006(.0158) -.0004(.0173) .0010(.0267) -.0008(.0349) 

1β̂  .6416(.0113) .7069(.0124) 1.0920(.0463) 1.0003(.0752) 

02β̂  -.0003(.0143) -.0003(.0143) -.0003(.0143) -.0003(.0143) 

2β̂  .9996(.0063) .9996(.0063) .9996(.0063) .9996(.0063) 

ρ̂  .7013(.0100) .8010(.0138) .3773(.0328) .5486(.0292) 
2
2σ̂  2.0022(.0305) 2.0022(.0305) 1.0028(.0326) 1.0028(.0326) 

0ε̂  - .0100(.0020) - .0100(.0020) 

1̂ε  - .0100(.0020) - .0100(.0020) 
 

Table 14  2
0 1( , , ) (1.0,.05,.05)σ ε ε =

Estimates        M1      M2 M3 M4

01β̂  .0008(.0153) .0003(.0206) .0010(.0206) .0007(.0415) 

1β̂  .5042(.0089) .7072(.0148) .6763(.0202) .9798(.0894) 

02β̂  -.0003(.0143) -.0003(.0143) -.0003(.0143) -.0003(.0143) 

2β̂  .9996(.0063) .9996(.0063) .9996(.0063) .9996(.0063) 

ρ̂  .5089(.0130) .8015(.0148) .1929(.0283) .5501(.0352) 
2
2σ̂  2.0022(.0305) 2.0022(.0305) 1.0028(.0327) 1.0028(.0327) 

0ε̂  - .0500(.0044) - .0500(.0044) 

1̂ε  - .0500(.0041) - .0500(.0041) 
 

Table 15  2
0 1( , , ) (1.0,.10,.10)σ ε ε =

Estimates        M1      M2 M3 M4

01β̂  .0013(.0147) -.0000(.0250) .0015(.0176) -.0000(.4320) 

1β̂  .4054(.0077) .7080(.0176) .4853(.0129) .9983(.0465) 

02β̂  -.0003(.0143) -.0003(.0143) -.0003(.0143) -.0003(.0143) 

2β̂  .9996(.0063) .9996(.0063) .9996(.0063) .9996(.0063) 

ρ̂  .3875(.0145) .8020(.0158) .1240(.0253) .5678(.0345) 
2
2σ̂  2.0022(.0305) 2.0022 (.0305) 1.0028(.0327) 1.0028(.0327) 

0ε̂  - .1000(.0061) - .1000(.0061) 

1̂ε  - .1000(.0055) - .1000(.0055) 
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7.  Example 

A survey was conducted among 121 male undergraduate students studying Statistics as a 

subsidiary subject in St Xavier’s college, Kolkata, India. On a particular day, in the class, 

the students were requested to provide information on the following items keeping their 

anonymity: 

1. Total family income per month (z) 

2. Pocket money available per month (y2) 

3.  Whether the student takes alcohol or not (y1).  

 

Regarding the alcohol intake there are 2 categories: (i) Never (ii) At least once a week 

In our society consuming alcohol is still considered to be a taboo especially among the 

students coming from the middle class. Thus, students do not feel free to speak out the 

truth even if they consume alcohol. On the other hand, there are a few teetotalers who 

might be tempted to provide wrong information just for fun. Thus y1 is subject to 

classification errors. It is expected that the binary outcome (y1) and the pocket money 

available (y2) are correlated. Moreover, y1 and y2 depend upon the family income. 

However, true income (x) of a family or a person is usually subject to measurement error 

and the total family income (z) reported by the students can be taken to be a surrogate for 

the true income. Thus the binary responses in the above data are subject to classification 

errors and the true covariate (family income) is subject to measurement error. 

 

While carrying out the analysis we expressed y2 and z in the unit of thousand rupees. The 

analysis was done for all the four models described in Section 8. In the absence of 

validation data the measurement error variance σ2 was assigned a prefixed value 1. The 

results are reported in Table 16. The results show that the chance of a student reporting 

that he consumes alcohol when he, in fact, doesn’t is small (.0997) whereas the chance of 

reporting that he doesn’t consume when he, in fact, does is high (.5379). The results 

support our contention made above.  

 

The results show that the measurement error does not affect the estimates of the 

regression parameters 02β  and 2β . However the naïve estimate of 2
2σ  shows slight 

inflation. The estimates of 01β  and 1β  under model M3 clearly indicate that ignoring 

measurement error results in attenuation of the estimates. The estimate of ρ under model 
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M3 shows attenuation compared to the naïve estimate. Also it is observed that the effect 

of classification error dominates measurement error. 

 

Table 16 

Estimates        M1      M2 M3 M4

01β̂  -.8072(.1151) -.5394(.1642) -.8750(.1512) -.6294(.2245) 

1β̂  .3860(.0570) .9997(.0125) .4184(.0980) 1.0013(.1015) 

02β̂  .4549(.0819) .4549(.0819) .4549(.0819) .4549(.0819) 

2β̂  .0624(.0043) .0624(.0043) .0624(.0043) .0624(.0043) 

ρ̂  .1736(.1328) .4118(.2007) .1278(.1330) .3125(.2089) 
2
2σ̂  .1783(.0227) .1783(.0227) .1744(.0226) .1744(.0226) 

0ε̂  - .0997(.1245) - .0997(.1245) 

1̂ε  - .5379(.1322) - .5379(.1322) 
 

8.  Concluding Remarks 

In this paper we consider modeling mixed binary and continuous outcomes when binary 

outcomes may be subject to classification errors and/or some of the covariates are not 

observable in the main study but its surrogates are observed. We model the joint 

distribution of the binary and continuous responses by using a model proposed by Cox 

(1972). The advantage of using this model is, we are able to find analytical results that 

throw interesting lights about the behaviour of likelihood estimates of the model 

parameters in the presence of the above errors. There are still unanswered questions 

eluding theoretical justification that we left as an open problem. Developing similar 

methodologies for multivariate mixed outcomes possibly with ordered categorical 

variables would be worth studying.  
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