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Abstract

In this paper, we take up the outstanding problem of axiomatically
characterizing what we have referred to 1in the paper as the
additive choice function on the classical domain for choice
problems. Apart from an impossibility result for the additive
choice function, there is an axiomatic characterization, which as
a by-product provides a counter example to a conjecture for the
egalitarian choice function. In an appendix, we provide a proof of
an axiomatic characterization of the egalitarian choice function
using a superadditivity axiom. Further we show several non-

rationalizability properties of utilitarian consistent solutions.

In this paper, we also provide proofs of axiomatic
characterizations of the family of non-symmetric Nash choice
functions and the family of weighted hierarchies of choice
functions. Our conclusion is that earlier axiomatizations are
essentially preserved on the classical domain for choice problems.
The proofs are significant in being non-trivial and very dissimilar
to existing proofs on other domains.



1 Introduction

Choice theory which dawned with the seminal paper of Nash written
in 1950, has by now developed into a well defined body of
mathematics, concerned with choosing a point from a compact,
convex, comprehensive feasible subset of the non-negative orthant
of a finite dimensional, Euclidean space, each such feasible set
admitting a strictly positive vector. Axiomatic choice theory is
concerned with the axiomatic characterization of rules which assign
an alternative to each such choice problem in a given family of
choice problems. We shall here be concerned with two dimensional
choice problems.

Following the choice function suggested by Nash, theé other well
known choice functions are the relative egalitarian due to Kalai
and Smorodinsky [1975], egalitarian due to Kalai [1977]7,
lexicographic egalitarian due to Chun and Peters [1988], equal loss
due to Chun [1988], lexicographic equal loss due to Chun and Peters
[1991] and the equal area due to Anbarci and Bigelow [1994]. Some
of the other choice functions have been studied on more relevant
domains in Lahiri [1996]. However, the simplest of all solutions
j.e., the one which maximizes the sum of the coordinates from
amongst all feasible vectors has been a rather mute spectator of a
spectacular pageantry in which all these other choice functions
participate. Except for a significant axiomatic characterization
by Myerson [1981], very little attention has been devoted to this
choice function: the utilitarian choice function. The reason is
that this choice function (as a single valued mapping) is not well
defined for a very large class of meaningful and non pathological
choice problems. The purpose of this paper is to suggest a way out
of this difficulty, so that much of applied research which uses
maximization of the sum of the coordinates of vectors in a feasible
set of vectors will now have a theoretical underpinning. However,
it is observed in the paper, that one can easily prove several
results showing that utilitarian consistent solutions are not
rationalizable by social welfare functions. Some remarks about
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related results due to Peters [1986a] are given, to put earlier
results in proper perspective. In an appendix to this paper we

prove a variant of a result in Peters ([1986a), which is valid on
our domain.

The family of non-symmetric Nash choice functions, which was
proposed for the first time in the seminal work of Harsanyi and
Selten [1972], has been axiomatically characterized in almost the
same way that Nash himself characterized its symmetric ancestor in
his by now historic 1950 paper. A more recent and thorough
investigation of the family of choice functions characterized by a
weighted hierarchy (and containing the family of non-symmetric Nash
choice functions) is the work of Peters [1986b]. There an
additional axiom called the consistency axiom is used, which
however is not required for two dimensional choice problems. All
the above mentioned characterizations of the non-symmetric family
under discussion, rely heavily on an assumption which has often

been gquestioned from various quarters: Nash's Independence of
Irrelevant Alternatives Assumption (NIIA).

There has been several attempts to free the characterization of the
Nash choice function from the grip of NIIA. Of interest in the
present paper 1is a characterization for two dimensional choice
problems presented in Thomson [1981], where instead of NIIA an
assumption called Independence of Irrelevant Expansions (IEE) has
been used. Interest in choice theory had since then shifted
largely to the multidimensional cases and even more to choice
problems with varying dimensions. A recent revival of interest in
the two dimensional case (and solely that) is seen in the paper by
Bossert [1994], where once again NIIA is used to characterize
rational choice functions. Our theorem 3 in the present paper is
an easy and valid extension of Thomson's original result to the
non-symmetric cases.



In Peters [1986b] can be found a characterization of a family of
choice functions determined by a weighted hierarchy for two
dimensional choice problems using a slightly weakened version of
Thomson's Independence of Irrelevant Expansions assumption.
However, the domain chosen for the result deviates considerably
from the conventional domain used by Thomson [1981] or Bossert
(1994), in that it assumes that every choice problem admits
infinite free disposability. Now, this is an assumptioq‘whose
worth or meaningfulness depends on the context. If we assume that
each choice problem répresents a multisectoral investment planning
problem for instance (i.e., dividing a2 dollar between several
sectors, the returns being measured by concave, non-decreasing,
non-constant and continuous revenue functions), then the kind of
domain assumed in Peters [1986b] for the present purpose is not
quite meaningful. That the set of investment planning problems is
isomorphic to the domain of choice problems assumed in this paper,
is however a result established in Lahiri (1996). So, the natural
question that crops up is whether the result established by Peters
is valid when the domain (as in the present paper) consists of non-
empty, compact, convex, comprehensive subsets of two dimensional
Euclidean spaces, each such set admitting a strictly positive
vector. A cursory look at the proof of the result in Peters
[1986a], shows that it is very dependent on his choice of domain.
In fact, a couple of lemmas simply do not have any meaning in our
framework. What 1s however notewbrthy, is our Theorem 4: the
original result continues to hold. The choice functions determined
by weighted hierarchies, are the only choice functions which
satisfy the assumptions suggested by Peters.



2 The Model
We consider two dimensional choice problems only. A (two
dimensional) choice problem is a non-empty subset S of R (: the

non-negative quadrant of two dimensional Euclidean space),

satisfying the following properties:

i) S is compact (: closed and bounded), convex

1i1) S is comprehensive i.e. 0 s y < xeS > yeS

-

iii) there exists x € S such that x> 0 (i.e. if x = (x, x,) then x,

> 0, X, > 0). Let I* be the class of all choice problems.

A choice function (or solution) is a function F : I » B such that

F(S) eSV SeZ®.
Given Ser?*, let u(S) = {xes/x1 +x, 2y, + v, Vy=(v..¥) eS}. u(s)
is non-empty for all Ser’. Further u(S) is a compact convex subset

of A = {xe]Rf/x = (%, %), x, +x = c} V¥ Ser? for some c>0. However,

u(S) is 1n general not a singleton.

I

Example: Let S = {xeRf/x = (xl, xz), X, + X, s l}. Then u(S) A .

Let a, (S) = max {xl/a x, = 0 with(x,, x,) eu(S)},

I

b, (S) _min{x;/E x,20 with (x ,x,) € u{S)}.
Let a(S) =(a (S), a, (8)),

b(S) =(b, (8}, b, (S) )} € u(s)

Clearly, af(S) and b(S) are well defined for all Se¢Z* and
u(S) =(ta(s) ~ (1-t) b(S)/tel0,1]}.



We define the additive choice function A : £* > R as fellows:

A(S) = % (@(S) + b(S))V Sex .

We are basically interested in the axiomatic characterization of

this choice function, which is nothing but the expected value of

the random vector which has a uniform distribution on u{(8).

IN

3 T Some Axioms
Let F: Z? > R be a choice function.

1) Weak Pareto Optimality (WPO):

V Ser*, F(S) € W(S), where W(S) ={xeS/y>x-»>ye¢S)V Sez?.
2) Pareto Optimality (PO):

V Ser?, F(S) € P(S), wherw

P(S) ={xeS/y =2x, yeS >y = x}V SeZ?.

3) Scale Translation Covariance (STC) :

V Sexr’, VceR_  if c =(c,,c,) then

F(cS) =(c,F, (S), ¢,F,(S)), given that

cS = {(clxl, szz)/(x_;xz)éS}.

4) Homogeneity (HOM) :

VSeZ?, VEt>0, F(tS) = tF(S), where

tx = (tx,, tx,) V x = (x,, x,) €R? and tS = {tx/x € S}.
5) Additivity (Addi) :

VYV SeZ?, Texr?, F(S + T) = F(S) + F(T) .
6)

Super Additivity (S Addi):
VYV S, Tez?, F(S+T) = F(S) + F(T) .
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7) Partial Super Additivity (PS Addi):
VS, TeZ?, F(5+T) =2 F(S) .

8) 's In nden f Irrelevant Alternativ NIIA) :
VS5, Ter?, Sc T, F(T) €S> F(8) = F(T) .

9) Translation Covariance (TC):

V Ser?, ceRR if S(c) ={ye]R2/ys X+ cC, xeS},
_then F(S(c))=F(S) +c.

10) Symmetry (SYM):
V Ser® such that (x,x)eSeo(x,,x)eS, F (S) =F,(S) .

2

- 11) Convex Linearity (C. Lin):
VS, TeZ?, FlaS + (1-a)T) = aF(S) + (1-0)F(T) if aoe [0,1].

12) Binary Additivity (B. Addi):

VS, Ter: with u(S) ={A(s)} and u(T) ={Aa(T)} if

V = comprehensive convex hull {S, T}, then

F(V) = %[F(S) + F(T)] if F (8) + F,(S) = F(T) + F, (T) .

Let us first mention that A does not satisfy STC and NIIA.

Example:

{xeRf/(xl,XQ) =X, X, +Xx, s1f,
S = Convex hull {(0,0), (0,1), (l,i), (l,o)}.
2 2 2

Clearly Sc T and A(T) = (

(]
(NI

)eS. However A (S) =(

does not satisfy NIIA.

VIKRKAM  SARABH M 1 8N AR
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We will however, modify A somewhat later to take care -of STC.
Observe that:

i) PO -» WPO

ii) STC -» HOM

1ii) Addi -» S Addi -» PS Addi
iv) Addi + HOM - C. LIN

4 A Result on the Additive Choice Function
Theorem 1:

The only choice function on £I* to satisfy PO, SYM, C.LIN and B.
Addi is A.

Proof :
The proof that 1if F satisfies PO, SYM and C.LIN, then

F(S) € argmax[x2+»xJ V Ser? is the relevant portion of the proof

x€S

of theorem 1 in Myerson [1981]. If in addition F satisfies B.Addi
the following argument holds:

Let VeEf and let h (V) =max{x1/xe V}, i=1,2. Suppose {A(V)} is

a strict subset of u(v). (If u(V) ={ZYIU}, there is nothing more
to be proved).

Case 1: a(V)eR \R_, b(V)eR \ R_.

In this case V = comprehensive convex hull of A for some c > 0.

By WPO and SYM, F(V) = A(V) .

Case 2: al(Vv)eR

v 1

b(V)eR.

Let S = Convex comprehensive hull ﬁo,hz(V)L {xev/x, az(V)}}.



T = Convex comprehensive hull khx(V),O),{er/xas bl(V)ﬁ.

Clearly V = Convex comprehensive hull {S,T}

Further, u(S) ={A(8)} =(a(v)], u(T) ={&(T)} = (b(WV)}.

Thus F(S) = a(V), F(T) b(V) .

I

By B.Addi, F(V) = A(V) .

Case 3: alv) e B\R_, b(V) ¢ R
In this case let T be as in Case 2 and let
S ={xeV/x, s a, (V)}

Once again V = Comprehensive convex hull {S,T} and from here on the
argument is as in Case 2.

Case 4: a(v) e R, b(V) ¢ E \ B,

In this case let T be as in Case 2 and let S = {xeV/x, = (V)]

Again V = Comprehensive convex hull {S,T} and the resulting
argument is as in Case 2.

Thus F(V) = A(V) in all cases

Remarks:

1) The theorem due to Myerson [1981]) which we refer to in our

proof is wvalid only on a subdomain of £ for which

u{S) ={§18)}. However, the same proof works for us.

2) We know that A satisfies PO, SYM, HOM and Addi. Thus A
satisfies PO, SYM, HOM, and PS. Addi. Peters [1986] contains
a theorem to the effect that the egalitarian solution due to
Kalai [1977], is the only solution to satisfy WPO, SYM, HOM

and PS. Addi. However, his domain is a nonconventional one
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and is different from ours. On our domain the egalitarian
solution satisfies WPO, SYM, HOM and PS. Addi. as well. Thus
a uniqueness result using WPO, SYM, HOM and PS. Addi on I’ is
clearly not available. It is interesting to note that our
domain £’ is naturally implied by the interesting discussion
on Axiomatic Bargaining contained in Moulin [1983]. Moulin
(1983], considers a domain which is a strict subset of r?.
However, all choice problems in I can be obtained as the
limit in the Hansdorff topology of a sequence of increasing
choice problems considered by Moulin [1983].

3) Since A does not satisfy NIIA, the interesting axiomatic
characterization on the subdomain of I’ defined by
{SeE’/u(S)'={§XS)}} using PO, SYM, TC and NIIA which is there

in Exercise 3.9 of Moulin [1983] fails to generalize.

Proposition 1:

On £° there exists no choice function which satisfies WPO, SYM, TC
and NIIA.

Proof:
{1 3 (1 1 .
Let a = 2’ 2l b-.a, = and S = comprehensive convex hull of
{a,b}.
Now S c A

Suppose towards a contradiction that there exists a choice function

F which satisfies the above assurptions. Then by WEO, STC and SWM, F (A, ) =(% %)

and by NIIA, F(S) =(

Nt

,l)=b.
2



Now let c = (%, %) and T = comprehensive convex hull of
{a + ¢, b+ c}.

Then T = S(c) as defined in the Translation Covariance axiom.

Now Tc A, and F(A)) = (1,1) = a + ¢ by WPO and SYM. By NIIA, F(T)

= {1,1) = a + cC.

By TC, F(T) = F(S) + c = b+c=[1_}l., %)* (1,1) .

This consideration establishes the desired nonexistence. Q.E.D.

We define the following choice function A*: X2 -~ R? which

satisfies both NIIA and SYM:

Let I'=1{(x,x,) eR/x =x,}.

Given Se€X?, let A'(S) =TNu (8) ifTTNu () # ¢

b (8) if x>x, V (x,,x;) € u (5)

=a (S) 1f x,<x, V (x,,x,) e u (9)

It is easy to see that A* : L? - R satisfies Pareto Optimality.

The subsequent results are related to the results reported in
Peters and Wakker (1991), Bossert (1994).

10



Let R be a binary relation on R! which is reflexive (i.e. x R x

VYV x ¢ R?), transitive

(i.e. xRy AN yRz -~ xRz V x,v,z € R’) and total

-

(i.e. x,yeR?, x#y=xRyVyRx)., Such an R is calléd an

ordering.

An ordering R is said to be continuous, if

VxeR, {yeR/yrRx) and {yeR?/xRy), are closed.

Let F:32-R’. F is said to be rationalizable by a continuous

ordering R if

V seX?, { F(S) ) ={ xeS/ xRy V yeS }.

A choice function F:32 - R? is said to be utilitarian consistent,

if F(S) e u(S) VSe B4,

Infact, we can prove a slightly stronger theorem than the one

proved above.

11




Given a choice function F :I2? - R}, say that it is

rationalized by a social welfare function V: R!-R ifV Se I?,

{P(S)} ={xe 5/Vix) > V(y) VyesSl.

Note: No assumptions are being made with regard to the continuity

of V.

Theorem 2:- If F: X2 -R® is utilitarian consistent then it

cannot be rationalized by any social welfare function V : R? - R,

Proof:- Easy.

The implications of this theorem, are rather powerful as we

shall soon observe.

Remark 4:- Thus A’ is not rationalizable by any continuous
ordering. Contrast this with the result in Peters and Wakker
(1991), which says that if a choice function satisfies PO, CONT and

NIIA, it is rationalizable by an upper semicontinuous ordering.

12



Remark 5:- The above theorem is easily seen to be wvalid for
utilitarian consistent choice functions defined on the space of n-

dimensional choice problems i.e. collection of nonempty, compact,

convex, comprehensive subsets of RY (: the non-negative orthant

of n-dimensional Euclidean space) each of which admits a strictly

positive vector.

Remark 6:- In view of our proof of the main theorem and Remark 1,

the following observation is easily seen to be wvalid: Let

h:RZ, x R,,-R] be a function which is homogeneous of degree one

pes
and such that V(p,w) € R}, xR,,, ¥ p; h; (p,w) < w. Further suppose
i=1

that V (p,w) eR, xR,, and V xe R? with

13



n n n
Zp;x;<w, Zh;(p,w)>X x;. Then there does not exist any total,
= i=1

i=1 i=1

reflexive, transitive and continuous binary relation R on R! such

that V(p,w)eRl.xR,,,h(p, w)} = { xeRY/ f) p,;x;sw and
1

i=

n
xRy V yeR] with I p;y,<w.

Remark 7:- Let RI, ={xeR?/x,> 0V i=1,...,n. 1In view of Remark 1,

a slight modification of our proof of the main theorem yields the
result 1aat if F is a choice function for n-dimensional choice
problems which is weighted utilitarian consistent, then there does

not exist any total, reflexive, transitive and continuous binary

relation R on RJ, which rationalizes F. Here, F 1is weighted

14



utilitarian consistent with weights we RS, if

F(S)eu(s) = {xes/ﬁ wixizzn‘. wy, Yy=(y,,....,y,) €8
' i=1

1=1

for all n-dimensional choice problems.

Remark 8:- The solution A* is symmetric and utilitarian consistent.
Hence, by Theorem 2, it is not rationalizable, by any social
welfare function.

It is easy to see that A* does not satisfy CONT.

In Peters and Wakker (1991), we have a result of fundamental

importance: A sufficient condition for F: Z2-R: to be

rationalizable by a social welfare function is that F satisfies PO,
NIIA and CONT. Thus we may conclude that there exists no

utilitarian consistent solution which satisfies NIIA, and CONT.

15



S The Non-Symmetric Nash Choice Functions

The following assumption will be used in this section:

13) In nden f Irrelevant E nsions (IEE

V Ser’ there exists a vector peR with p, + p, = 1 such that (a) p.x

= p.F(S) is the equation of a supporting line of S at F(S), (b)

VTeZ? with Sc T and p.xs p.F(S) VxeT, we have F(T) = F(S).

We are interested in a family of choice functions defined thus:

Given W = (W,, W,)eR with W, + W, = 1,

1

let F'(S) = argmax x* x> if W> 0

argmax ;
= (B (5),g,(S)) if W, =1, W, = 0
=(9,(S), h(S)) if W, = 0, W, = 1

VSer. Here (b (S), g,(8)) and (g, (S), h, (S)) belong to the

Pareto optimal set of S whenever SerZ’. The family {F“'/ h‘>o} 1s
called the family of nonsymmetric Nash choice functions. The

family {F"/W> O} is called the family of choice functions

determined by a weighted heirarchy.

16



EXQleQ; W = (11 0)

Thus F*(S8) = (h, (S),g,(S))V Ser*. But this F' does not satisfy

Independence of Irrelevant Expansions.

Take S = {x =(x,,x)eR/x + xX s 1}.

Clearly F¥ (S) = (1,0). At (1,0), the unique supporting hyperplane

in the definition of IIE is given by
p = (1,0). Now take T={(xl,x2)elkf/x1 <1l,x s 1}.. Now T and S

satisfy the conditions in IIE, with »p = (1,0) . But

FF(T) = (1,1) # F*(S) .

This example excludes the weighted hierarchy (1,0) as well as the
weighted hierarchy (0,1) from the list of the possible candidates

which could define a solution satisfying IIE.

Hence the only possibilities are weighted hierarchies of the form

W>>0 1.e., a non-symmetric Nash choice function.

Our next objective is to invoke the assumption of weak independence

of irrelevant expansions defined in Peters (1986b) and establish a

result similar to his.

17



14) Weak Independence of Irrelevant Expansions (WIEE):

V Ser’ there exists a vector peR with p, ¥ p, = 1 such that:

a) p.x = p.F(S) is the equation of a supporting line of S at
F(S);
b) V TeX* with ScT and p.xsp.F(S) V xeT, we have

F(S) ¢« F(T) .

Notice that IIE implies WIIE. Hence the non-symmetric Nash choice

functions satisfy WIIE as well.

For the purpose of this section, the following convention is
adopted: Let F: I* > R be a choice function satisfying WIIE.
Given S € £*, let p(F,S) = {peR\{0}/p satisfies the conditions of

WIIE for S}. For Lemmas 1, 2 and 3 below we assume that F satisfies

PO, STC and WIIE.
Lemma 1;: If (0,1)ep(F,S) for some Ser’ with S#*Comv{h(S)} then

F(T) = (g.(T), h,(T))V T e T2\ {aA, /a>0}.

Proof:- Suppose there existsT e L? \ | aA,/a>0 }such that

F(T)# (g. (T), h,(T)).

Clearly (a) (0,1) ¢p (F,T)

(b) T # Comv {(h(T)}.

18



Now, (0,13 € p (F,S), implies by PO that
F(S) = (g, (S}, h, (8))
Let V = Comv {u,v}, where
u, = h, (S), v, = h, (S), u, > g, (S), v, < h, (S),

u, > Vv, 4, < Vv,, u >> 0, v >> 0.

Such a V exists since S#Comv{h(S)}

By PO and WIIE, F(V) = u = (g, (V), h, (V))

By STCA, F(V) =u = (g, (V), h, (V)) VV e £ with

V=~Comv {u,v}, u>>0, v>>0, u > v, u, < v,.

Now, T e Z?\ {aA,/a»0), (1,0) ¢ p(F,T) implies that there exists V
as above (i.e. V = Comv {u,v}) such that TcV and

F(T) < v if (1,0) € p (F,T)

# u, v with F(T) Pareto Optimal.in V if (1,0) ¢ p (F,T)

By WIIE, F(V) =2 F(T). Thus F (V) # u.

This contradiction establishes the lemma.

Lemma 2:- If (0,1) € p (F,S) for some S € T’ with S # Comv {h(S))}

then F(T) = (g, (T), h, (T)) VT ¢ I°.

Proof:- Given Lemma 1 above and by appealing to STC, it is enough

to show that F (A,) = (0,1)
Let T = { xeA,/x. = ¥% )

T e £2 \ { aA,/a>>0 }.

19



By<=Lemma 1, F(T) = (0,1).

By WIIE (since TcA,, with the cenditions of WIIE being trivially

satisfied for T and A, at (0,1)), F(A;) = (0,1).

Lemma 3: If (1,0) € p (F,S) for some S € I* with S # Comv ih(S)}

then F(T) = (h, (T), g, (T)) V T € =*. -
Proof:- Similar to above (i.e. Lemmas 1 and 2).
Lemma 4: Suppose (1,0), (0,1) ¢ p(F,V) whenever Ver’, V # Comv {h

(v)}. 1If F satisfies PO, STC and WIIE, then F is a non-symmetric

Nash bargaining choice function.

Proof : Let F(A)=w>0 since (1,0), (0,1) € pI(F,a,)

Thus F(aA) = F*(aA) V aeR_

Now let SeZ* S#Comv{(h(S)}. Then V p ¢ p (F,S), p » 0

Let T = {(X; , x,) e R /px +px, spPF (S) +pF, (S)}.

Clearly F(T) = F* (T) and F(T) = F(S) the latter by PO and WIIE.
Thus F(S) = F (T). Since F"(T) = F' (S), we have the desired
result. Q.E.D.

20



Note: By STC, if F(A)=F'(A) for some W > 0, then
FlaA) = F"(aA) V aeR’. and for the same W. Since F(4A) is always

equal to some F'(A) with W > 0, F(aA) is always equal to

F'(aA ) V acR?, for some fixed W > 0, W, + W, = 1.

As a consequence of the above lemmas we have the following theorem.

Theorem 3: Let F be a choice function on £? which satisfies PO,
STC and WIIE. Then F = F* for some W = (W,, W,) > 0 with W, + W, =
1.

Conversely, any choice function F" with W > 0, W, + W, = 1 satisfies

PO, STC and WIIE.

In view of Theorem 3 and the relevant observation in Section 5 we
have the following corollary.

Corollary to Theorem 3: Let F be a choice function which satisfies
PO, STC and IIE. Then F 1is a non-symmetric Nash choice function.

Conversely, every non-symmetric Nash choice function satisfies PO,

STC and IIE.
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Appendix A
In this appendix and in view of Remark (2) (after Theorem 1), we
prove an axiomatic characterization of the egalitarian choice

function using the superadditivity axiom. We invoke the following

two assumptions as well.

Strong Individual Rationality (SIR):

F(S) >0V SeZ’

Continuity (CONT) :
If {Sf} be a sequence in I’ converging to SeZ’ in the Hausdorff

topology, then lim F(S*) = F(S) .

K -

We now prove the following theorem:
Theorem:

The only choice function on I to satisfy SIR, WPO, SYM, NIIA,

S.Addi and CONT is the egalitarian choice function E defined as

follows:

¥ Sexr’, E(S) = (t,t), where t = max{t/ (t,t) €S5).

To prove this theorem we use the following lemma:
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Lemma ;
Under the hypothesis of-the theorem, F(T) 2 E(T) V TeZ’ of the

form T = {xeR /x s a} for some a>0.

If a=(a,,a,) with a, = a,, then F(T) = E(T) by WPO and SYM:

Hence suppose W.l.o0.g. a, > a,.

Thus E(T) = (a,, a,)

Let Db(e) = (1 - €) a, for 0 < € <« 1.

T(e) ={xeR/x s(bl(e), b (€)))

U(e) ={x-(ble), b(e))/x=(ble), ble)) xeT}.
Then T =T(€) + U{e) VO <€ < 1.

“ F(T) = F(T{e))=(b(e), b(e))VO<e<1.

Taking limits as € » 0, we get F(T) 2 E(T) . Q.E.D.

Proof of Theorem:

That E satisfies the above properties is clear. Thus let us assume

F satisfies the above properties and towards a contradiction assume

that there exists Ser’ such that F(S) # E(S). To begin with assume

E(S) ¢ P(S). The proof is completed by appealing to CONT.
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Let T = Comprehensive convex hull {F(S))
By NIIA, F(T) = F(S) ' -
By Lemma above F(T) = E(T)

Clearly F(T) = E(T) for then F(S) = E(S)

Without loss of generality assume F,(T) > E, (T)

Since E(T) € W(T), F,(T) = E,(T)

Let T = Comprehensive convex hull {E(T))
F(r) = () = E(T)
Let U-={x- E(T) ¢ R/xeS)

Uef?, since E(S) e P(S)

T + Uc § and F(S) = F(T) e U+ T

By NIIA, FIT +U) = F(S) = F(T)

But F(T +U) = F(T') + F(U) by S. Addi.

i.e. F(T) = E(T) + FP{U)
By SIR, F(U) >0
~ F(T) > E(T)

Contradicting F,(T) = E,(T). Q.E.D.

In the above proof we invoke the Nash's Independence of irrelevant
Alternatives Assumption, which sets the egalitarian choice function
apart both from the choice function of Perles and Maschler [1981]

and the choice function that we define in this paper.
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Further since, SIR + HOM + NIIA -» WPO, the following collary is

immediate: -

Corollary:
The only choice function on I* to satisfy SIR, HOM, NIIA, S. Addi,

SYM and CONT is the egalitarian choice function.
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Appendix B

The purpose of this appendix is to establish a replication
invariance property for the additive choice function. Replication
invariance for the relative egalitarian and Nash choice functions
in references contained in the same paper. In order to establish

the replication invariance property we need the following

framework.

Let neN and R denote the non-negative orthant of n dimensional
Euclidean space. A choice problem in R (often called an n -

dimensional choice problem) is a non-empty set S in R satisfying

the followihg properties:

i) - 0 € S
ii) S is compact, convex and comprehensive (i.e.
0 s x<yeS->xeS )

iii) 3 xe S with x> 0.

Let I® denote the class of all n dimensional choice problems. We

shall be interested in a subclass of E* in what follows.

Giver. S € ©°,

let u(S) ={X€S/i X = 2“: y, Vyes, Y=(Y1)I:.;}

1wl
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We shall be interested in the following subclass of I" denoted

B" : SeB"-~if and only if the compact convex set u(S) has a finite

number of extreme points. Let e(S) denote the set of extreme
points of wu(S), whenever SeB" and let |e(S)| denote its
cardinality. The additive choice function A: B> > K is defined as
follows:

= 1
A(S) = X, whenever SeB".
[e(s) 1125)

Let SeZ* be given, as well as natural numbers m,1l. Let

I ={1, 2, ..., m} and J ={m+1, ..., m~+ 1}. For a pair

S, | ={xeR§‘1/3(x{, x/)eS with x =x/,x =x,%x =0 if k+* i:j}-

The Thomson (m, 1) replication of S is defined as
S"' = Conv {Sn/ (1,7)eI x J]}. Clearly S™' € B"™'. 1Indeed, if x*’

denotes an element of S, . then the extreme point of u(S) are

{@(8), b (8), (1,7)eI, xJ) w h e r e

n
1}
it

a’(s) =a (S),a°(8) =a,(8), & (8) =0 if k=+*1,7;

b>(8) =b (S8),b°(8) = b, (S), B’ (S)

0 if k=# 1,j7. Thus

27



LX(S"‘") = 2; ar(g) -+ Y b”(S)}.

ml{(i,jlll,x.‘ll (1.1 ¢IgxJ;

Theorem:

In the above frame work, ij(S’“) = 1_;: (8) VieI and

14 (s°3) = A,(8) V jey,

pl

Proof :

Let (c,d) =A(S).

Thus (¢, d) m_a(s) +

b(S)

2
Q
£
>
9
I

JeJg JeJ)

?;_1[2 asi(§) + E b:j(S)} if keI

= 2_11111[2 ax(s) ~ ¥ b;k(.g)] if ked,
2 A s = %ml [1a,(5) + 1b,(S)] if keI,

- 1 .
—m[maz(s) +mb, (8)] if ke,

1 |
» Alsme) = —=[a, (8) « b (S)] if kel
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= —[a,(8) + b, (S)] if key

Thus, mAk(S'“'")

A (S) VkeI,

~~
pal
9
=

A (S) Vked . Q.E.D.

h A i
Let us show that, k”;a] Afsmi) = “;“Jg

V xe = (xk)k“muh € S

Let (c, d)

%[a(s) +b(S8)leu(s).

Thus ¢ + d = x| + x, V(x| ,x)eS. Thus if x> denotes a vector in S,

then c +d=x7 + x7.

Now, let yeS"*'. Then, there exists u,, 2 0,(i,j) € I x J such that

ys y p,, x> for some x**, (i,j) € I, xJ,, and po, = 1.

t1.2)elpx Jg (i3) €Igx J}

SYes Y B XO Af kel

1€l

s 3 KXt 1f keg
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Y n+ Y ns Y 32; e, X2+ Y Y u, x>

kelp kedy kelp keJy 1elp

B X7 By X7

(1,3 elgx Iy (1,31 eIgx 33

2

by [0+ x5 e d

(13} elpg>xJy

16lp

¥ Als).

This establishes the bonafides of the extension of A from £ to B°

as introduced in this appendix.
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