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Abstract

Despite the popularity of open-source languages like R and Python in modern em-
pirical research and the data-science industry, spreadsheet programs like Microsoft
Excel remain the data analysis software of choice in much of the business-school
curriculum, including at IIMA. Even if instructors are comfortable with modern pro-
gramming languages, they have to pitch their courses at the level of computer literacy
prevalent among students. Excel then appears to be a natural choice given its popu-
larity, but this choice constrains the depth of analysis that is possible and requires a
certain amount of dumbing-down of the subject by the instructor. Recent software ad-
vances however make the ubiquitous web browser a worthy challenger to the spread-
sheet. This article introduces one such browser-based tool called Shiny for bringing
finance applications to the classroom and smart phones. Fueled by the availability of
high-quality R packages in finance and statistics, Shiny brings together the power of
HTML with the R programming language. It naturally creates an environment for the
instructor to focus on the role of parameters and assumptions in analysis without the
clutter of data, and allows the instructor to go beyond the toy problems that are ne-
cessitated by the nature of spreadsheets. The learning curve is short for an interested
instructor with even a rudimentary exposure to programming in any language. The
article ends with the discussion of a fully-worked out example of Shiny for teaching
the mean variance efficient frontier in a basic investments course.

Keywords: Finance, Open-source computing, Pedagogy, R , Shiny, Statistics

1 Introduction

There is no denying the popularity of spreadsheets, and in particular Microsoft Excel, in
financial reporting and modeling (Panko and Ordway, 2008). Excel is also one of the
most popular software for data analysis courses in the classroom, and much of
post-graduate finance and statistics teaching relies on it (Adams et al., 2013; Nash, 2006).

Examples and websites illustrating applications in Excel abound. There is no dearth of
helpful material on Excel for topics ranging from time value of money (Zhang, 2015) to
regression (Berenson, 2013) and portfolio analysis (McDermott, 2010) to solving complex
problems of optimal control (Nævdal, 2003).

Barreto (2015) argues that Excel provides a "just right" balance of software for training in
the classroom. With enough advanced features available, it offers the advantage of
gradually moving up the learning curve to implementing more complicated models.

However, it is also true that Excel has been named an important culprit in high profile
instances of operational losses, both financial and reputational (JP Morgan, 2013).
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While some cases are more publicized than others because of the organizations
involved,1 the problem is more widespread. So much so that there exists a dedicated
special interests group called the European Spreadsheet Risks Interest Group with the
sole focus of highlighting dangers in use of spreadsheets in organizations. Even the
Basel Committee on Banking Supervision explicitly warns financial institutions to build
controls against errors arising due to ‘manual processes’ (Bank of International
Settlements, 2013).

Notwithstanding the increase in awareness about errors caused due to spreadsheets,
Excel remains popular with both students and instructors in business schools (Adams
et al., 2013; Nash, 2006). With the generations of faculty themselves being trained and
used to spreadsheets, and with Apple and Microsoft resellers bundling the Office suite
virtually for free for students,2 it is not surprising either.

This article, however, is not another attack against spreadsheets or Excel. The problems
with Excel for applications in finance and statistics are well-known and written about at
length (McCullough and Heiser, 2008; Yalta, 2008; Panko and Ordway, 2008). Our
objective is to introduce an alternative way of approaching empirical finance in the
classroom using the R programming language.

Recent software advances make the ubiquitous web browser a worthy challenger to the
spreadsheet. We introduce one such browser-based tool called Shiny for bringing
finance applications to the classroom and smart devices. Shiny brings together the
power of HTML and Cascading Style Sheets (CSS) with the sophistication of the R
programming language and contributed packages.

Shiny with R naturally facilitates an efficient separation of data (fixed), inputs (constants
vs variables) and output (tables vs figures), and allows for focus to remain on important
issues like the role of parameters and assumptions in models. Without having to deal
with clutter of data and unwieldy formatting, the instructor can go beyond the toy
problems that are necessitated by the nature of spreadsheets.

As we illustrate with examples, Shiny offers a full-fledged programming environment in
which simple applications easily scale up to advanced models without any cost to the
the end-user. The learning curve is short for an interested instructor with even a
rudimentary exposure to programming in any language.

2 The R Environment

The R project and the programming language began in the 1990s as an offshoot of the S
language by Robert Gentleman and Ross Ihaka at the University of Auckland. Its name
is both a hat-tip to the developers’ initials while also being a play on the name of the
language on which it is based.3

1http://www.eusprig.org/horror-stories.htm, accessed March 27, 2017.
2https://www.microsoft.com/en-in/education/students/deals/default.aspx
3Ross Ihaka, “R: Past and Future History”, https://cran.r-project.org/doc/html/

interface98-paper/paper.html, 1998, accessed March 27, 2017.
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Since the mid-2000s, R has come to be one of the most important languages and
environment for empirical work in academia and businesses. It is also the fastest
growing language for training in empirical methods at universities worldwide.4 Since
the rise of data science as an industry, R has come to be the main competitor of Python,5

and according to IEEE, its rank has been consistently rising in the list of most important
programming language for jobs in the last three years.6

While there is no dearth of tutorials and books available for R , the wealth of information
available can be overwhelming for a beginner. Given the popularity of the language,
today popular Massive Open Online Courses (MOOC) platforms like Coursera offer
formal courses covering a variety of applications using R .7 For a beginner, we however
recommend starting with the official R manual and tutorials available at its home page8

and then going from there depending on one’s area of specialization. The installation
instructions for different platforms are also available at the same page as the manuals.

Once one has understood the basic R syntax and practised examples given in the
manual, the job of installing the right R packages is a cinch. The R core development
team has come up with a suite of packages called Task Views (Zeileis, 2005).9 So as one
prepares to work in any given field, say, Finance or Econometrics, all one needs is to
install the associated Task View. This will not only install all the commonly used and
popular packages in the field, but also their dependencies.10 For example, the Finance
Task View is easily installed by running the following commands in R console:

i n s t a l l . p a c k a g e s ( " c tv " )
l i b r a r y ( " c tv " )
i n s t a l l . v i e w s ( " Finance " )

An advanced user, of course, might want to be more selective about the packages being
installed. The entire Task View could be an overkill if one is going to be working on only
a select set of applications. However, given how light most packages are (with many of
them written in C++), and easy availability of memory and hard disk, one need not fret
about it much. In fact, one could customize one’s own list of packages in a custom Task
View too.11 This is ideal convenient an instructor who foresees repeat usage of a specific
set of R packages in teaching over multiple years. This has some initial set-up cost, but
in the long-term it makes life easier not only for the instructor but also for the students.

For a beginner, if one is installing a package which is not part of the Task View, it might
be useful to go through the package manual and find out about the package developers.

4R. A. Muenchen, “The Popularity of Data Science Software,” February 28, 2017, http://r4stats.
com/articles/popularity/, accessed March 28, 2017.

5https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis,
accessed March 27, 2017.

6http://spectrum.ieee.org/computing/software/the-2016-top-programming-
languages, accessed March 27, 2017.

7See, for example, the suite of courses and specializations offered at Coursera: https://www.
coursera.org/courses?languages=en&query=r+programming, accessed March 27, 2017.

8https://cran.r-project.org/manuals.html
9The list of Task Views is available at: https://cran.r-project.org/web/views/. Click on a Task

View to see the packages included in it.
10This might take a while though depending on the network speed and the Task View being installed.
11See http://stackoverflow.com/questions/7265133/how-can-i-list-packages-not-

included-in-any-r-task-view, accessed March 28, 2017.
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As a rule of thumb, if the manual is detailed and the developers are well-known in their
fields (easily checked using search engines), one should feel safe about the accuracy and
quality of implementation. Two highly useful and reliable resources which regularly
publish reviews of new packages are The R Journal published by the R foundation itself12

and the Journal of Statistical Software,13 a free open-access journal published by the
Foundation for Open Access Statistics.

3 The Shiny Package

The Shiny package was developed by RStudio,14 the company behind the popular
eponymous integrated development environment (IDE) for R . Shiny, or Shiny app as it
is called,15 is essentially an HTML document hosted on a computer running R (this
could be one’s personal computer or a remote server in the intranet or internet), which
means any smart device running a modern browser can run the apps.

Like any app in the modern smartphone sense of the word, it can take clicks and
keystrokes, interpret them in R and send the output back to the browser window. The
input can be in the form of sliders, drop-downs, text fields or even mouse clicks, and it
supports output in all familiar forms including figures, tables and summaries. Once
developed, the apps can be shared via cloud, intranet or internet, and run on any
browser-enabled smart phone, making it ideal for use within and outside the classroom.

Even though a Shiny app is an HTML document, and an advance user can easily
enhance and embellish the apps by using HTML and JavaScript, it neither assumes nor
requires any knowledge of HTML on part of the instructor. Pretty sophisticated apps
can be built by Shiny functions alone, so an instructor need only be familiar with R and
the Shiny environment.

3.1 Elements of a Shiny App

The way Shiny is designed, there are two components/files to every Shiny app:

1. The user interface script (ui.R): This component handles the user experience. It
sets the page details (the way the app looks like), lists the input options and
defines the output formats.

2. The server script (server.R): This component does all the R work, meaning it
handles all the input calls and instructions given to the app and returns the output
objects to be displayed on the browser.

Although, technically, both the components can reside in a single file named app.R,
RStudio recommends that they be separate for reasons of tractability and ease of
debugging.

12https://journal.r-project.org/
13https://www.jstatsoft.org/
14https://www.rstudio.com/
15https://shiny.rstudio.com/
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3.1.1 A Simple Example

The first example at the Shiny Github demo page16 plots an histogram for a well-known
data on waiting time between eruptions of the Old Faithful geyser in Yellowstone
National Park, USA.17 The lesson is to illustrate the impact of bin size on the shape of
the histogram. The app consists of the following ui.R and server.R files:

1. ui.R: The user-interface script controls

a) The title of the app (titlePanel)

b) How the app looks on the browser: In this case with a left hand side area
(sidebarLayout) to collect inputs and the remaining area to display output

c) How it handles the input: In this case a sliderInput (with minimum,
maximum and the default value defined) for controlling the bin size for the
histogram

d) How it displays the output: In this case a plot or a figure (plotOutput)

# Define UI for application that draws a histogram
f lu idPage (

# Application title
t i t l e P a n e l ( " Hello Shiny ! " ) ,

# Sidebar with a slider input for the number of bins
sidebarLayout (

s idebarPanel (
s l i d e r I n p u t ( inputId = " bins " , l a b e l = "Number of bins : " ,

min = 1 , max = 50 , value = 30)
) ,

# Show a plot of the generated distribution
mainPanel (

plotOutput ( " d i s t P l o t " )
)

)

2. server.R: The server script reads the data, gets the number of bins from ui.R
(input$bins) and tells R to plot a histogram (renderPlot) given the number of
bins and other fixed histogram characteristics like color (darkgray) and border
(white).

l i b r a r y ( shiny )

# Define server logic required to draw a histogram
func t ion ( input , output ) {

# Expression that generates a histogram. The expression is
# wrapped in a call to renderPlot to indicate that:
#
# (1) It is "reactive" and therefore should be automatically

16https://github.com/rstudio/shiny-examples/tree/master/001-hello, accessed March
27, 2017.

17https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/faithful.html, ac-
cessed March 27, 2017.
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# re-executed when inputs change
# (2) Its output type is a plot

output $ d i s t P l o t ← renderPlot ( {
x ← f a i t h f u l [ , 2 ] # Old Faithful Geyser data
bins ← seq ( min ( x ) , max( x ) , l e n g t h . o u t = input $ bins + 1)

# draw the histogram with the specified number of bins
h i s t ( x , breaks = bins , c o l = ’ darkgray ’ , border = ’ white ’ )

} )

}

3. Finally, the app is run by putting the two together as:18

shinyApp ( ui = ui , server = server )

The reader would notice that in the app one is able to neatly describe the sensitivity of
the histogram to the bin size, with both data and plotting functions hidden behind the
scenes. The user plays around with only what is important for the task at hand. This is
unlike Excel where tabulation of data, analysis and plots have no natural separation.
However, it is desired to see the tab ala Excel, it is straightforward to do so in Shiny
using, for example, a tabsetPanel where data could be kept/called on demand in one
of the tabs. In fact, that’s what makes browser-styled tabs so popular in Shiny - they are
ideal for keeping space aside for different kind of outputs.

3.2 The Shiny Environment

From a pedagogical standpoint, when building Shiny apps it is useful to think in terms
of inputs and outputs. Inputs provide values to the app (e.g. numbers, clicks), and
outputs are R objects that are produced by the R code (e.g. tables and figures).

Shiny offers a variety of input and output functions in addition to various design
elements that control the look and feel of the app (HTML wrapper functions essentially).
In a sense, then, all one needs is a basic understanding of Shiny input and output
functions and some idea on how to customize the user interface using in-built wrappers.

3.2.1 Input functions

Input functions control how the user interacts with the app, i.e. what kind of inputs the
user can provide and in what format. For instance, in the example above on plotting
histogram, the input function sliderInput(“bins”, ...) created a slider object to
be displayed in the browser.19 The slider recorded the user’s input and passed it onto
the variable input$bins.

In all, Shiny provides for the following input functions that can be used in the apps:

18This particular app with some more features (along with the user interface and server files) is available
to be run at the RStudio gallery at https://shiny.rstudio.com/gallery/faithful.html, accessed
March 27, 2017..

19sliderInput actually generates HTML code which in turned displays the slider in the browser
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• actionButton and actionLink: They both have the same function, but look
different in the app. The actionButton creates a ‘button’ in the app which when
clicked calls for some changes to the app. The actionLink function creates a
hyperlink to achieve the same.

• checkBoxInput and checkBoxGroupInput: checkBoxInput creates a check
box, which when clicked specifies a logical value (whether a condition/case is
TRUE or FALSE). The checkBoxGroupInput does the same for a set of logical
conditions at the same time. It is a convenient method to toggle multiple choices
independently. For example, if one wants to show only few columns of a table, a
table header could be set to TRUE or FALSE using a check box input.

• dateInput and dateRangeInput: As the names suggest these allows for getting
a specific date or a date range as input - tremendously useful in creating custom
plots.

• radioButtons and selectInput: These allow for selection of inputs as radio
buttons or via drop down menus.

• fileInput, numericInput, passwordInput: These three inputs respectively
allow for getting data from a file, as a number or a string for authentication
(protected on display as dots).

• submitButton: This input is often used in conjunction with other inputs to
confirm their value. So the R code changes its state on input only after
submitButton confirms it.

We’ll have an opportunity to use quite a few of the input functions above in our detailed
example later.

3.2.2 Output functions

Analogous to the different kind of input functions, the user interface creates output
objects using output functions. In the earlier example, a plot (histogram) was created
using plotOutput.

Shiny supports many others including dataTableOutput (for an interactive table),
htmlOutput (for raw HTML), imageOutput (for an image), tableOutput (for a
table), textOutput (for simple text), uiOutput (for a Shiny user-interface element)
and verbatimTextOutput (for verbatim text).

While the output function specifies the name of the object,20 the output object itself (in
this case, an histogram) gets created in the server script which assembles inputs into
outputs.

So in the server script in the histogram example (excerpt below), the bin size is kept
track of in input$bins, the output object is accessed by output$distPlot and they
are assembled together using the function renderPlot({...}).

20As with input functions, output functions also internally generate HTML code which sets aside space/-
format in the user interface for the output object
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func t ion ( input , output ) {
output $ d i s t P l o t ← renderPlot ( {

. . .
b ins ← seq ( . . . , l e n g t h . o u t = input $ bins + 1)

# draw the histogram with the specified number of bins
h i s t ( . . . , breaks = bins , . . . )

} )
}

For each output function type, there is an associated render function, namely:
renderPlot, renderDataTable, renderImage, renderPrint (associated with
verbatim text), renderTable, renderText and renderUI.

Shiny articles21 is the definitive source to learn more about the input and output
functions but it maybe easiest to learn Shiny by running the examples in the gallery22

after going through the basic tutorials.23

While familiarity with all the input and output functions is useful (and happens over
time), for a given application, say finance or statistics, realistically one would use one
class of inputs and output functions more often than the others. So, to begin with one
needs to get adept at only a subset of input and output functions. The source codes for
the examples in the gallery act as useful templates to build upon one’s own application
without having to learn everything about it from scratch.

3.3 Reactivity

The power of Shiny lies in what the guys at RStudio call the ‘reactive programming’
framework. Reactivity is what allows the R program to ‘react’ to user inputs through
clicks and keystrokes.

In the example above, the sliderInput(“bins”, ....) collects the value of bins
from the user. R reads this input as input$bins and stores the location of the slider. In
other words, the value of input$bins reflects the current value of the slider position.
The input$bins object changes whenever user slides the slider. In general, the Shiny
code is said to be reactive whenever the current value of the input is used to render an
output object.

Technically speaking, input$bins is called a reactive value, and renderPlot({...})
a reactive function. Reactive values work only with reactive functions. For example, if
hist(...) is called in the server script outside renderPlot({...}), it is not
reactive, and would throw up an error like “Operation is not allowed without an active
reactive context.”

There are circumstances when a reactive value needs to be called multiple times within
the same code, and then it is often convenient to work with reactive expressions. Called
as functions, reactive expressions cache their values to the most recent calculation

21https://shiny.rstudio.com/articles/
22The Shiny gallery at https://shiny.rstudio.com/gallery/ contains many useful examples along

with the source code on their Github page at https://github.com/rstudio/shiny-examples
23https://shiny.rstudio.com/tutorial/
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avoiding unnecessary computation. They help make the code modular and easier to
read/modify.

One could also make the app respond to any changes in the input by forcing an
eventReactive call. In this case a reactive expression gets updated only when the user
confirms by, say, clicking on an actionButton.

An Excel user might think of reactivity as a spreadsheet with automatic refresh turned
on. Unlike Excel, however, Shiny offers a lot more control on what is to be recalculated
and when. For example, if one does not want the app to respond to any specific changes
in the app (say if one wants to keep certain inputs or texts frozen), one can easily
‘isolate‘ it as, for example, isolate(input$bins). isolate() makes objects
non-reactive, and then they behave like normal R values.24

3.4 Customizing Shiny

The look and feel of Shiny apps is controlled by layouts, panels and HTML tags.

Layouts. Layout functions are used to position different elements of the app (inputs and
output) on the page. So in the histogram example, to get the slider in a small ‘left
panel’ leaving a large space for plot in the ‘right panel’, a sidebarLayout was
used. One could achieve the same objective ‘manually’ by dividing the empty
fluidPage() into a number of rows and columns using fluidRow and column
functions.

Panels. After the layout is created, one can group multiple elements into a single unit
with its own properties. Such single units are called panels in Shiny. In the
histogram example this was achieved by having a sidebarPanel for the bin size
input and a mainPanel for the histogram.

Other available panels in Shiny include: absolutePanel, conditionalPanel,
fixedPanel, headerWithPanel, inputPanel, mainPanel, navlistPanel,
tabPanel, tabsetPanel, titlePanel and wellPanel.

Pages. While the fluidPage() is one of the most commonly used default/empty user
interface, two other popular ones include the navbarPage (with the associated
navlistPanel and navbarMenu) and dashboardPage. navbarPage layout
faiclitates browser-styled tabs facilitating different kind of outputs/data to appear
in different tabs.25

Shiny HTML tags. Once the basic app functionality and the layout is ready, one can use
HTML wrappers available within Shiny to further format and decorate the app
keeping in mind the in-class usage.

Some of the wrappers available in Shiny for facilitating text formatting/design
include:

• Hyperlinks: a(href = "www.iima.ac.in", "IIM Ahmedabad")

24For more see https://shiny.rstudio.com/articles/reactivity-overview.html
25This can also be achieved by tabsetPanel. See the Layouts and UI chapter at https://shiny.

rstudio.com/articles/
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• Headings: h1("First") for a first level heading. One can go up to h6.

• New line: p("New line starts here")

• Text formatting: em("This would be in italics") and
strong("This would be in bold")

• Code: code("This is in monospace / verbatim / shaded code")

Note that wrappers work without having to call the HTML tags$ prefix. In addition to
these commonly used functions, Shiny can also take raw HTML and import custom CSS
for building further sophistication.26

4 A Finance Application: The Efficient Frontier

Most courses on portfolio analysis and investments in business schools begin with
mean-variance optimization (Markowitz, 1952). While in general it involves solving a
quadratic programming problem, the basic insight of Markowitz (1952) is that the risk of
a security as part of a portfolio is very different from its standalone risk. In most
textbooks and classroom the intuition of this idea is usually illustrated by working with
two securities.

4.1 The Two Securities Case

If there are two securities, say, A and B with a mean or expected return (µ) as 10% and
15% respectively, and a standard deviation (σ) of 20% and 30% respectively, the
Markowitz’s insight is that risk (standard deviation) of the portfolio of the two securities
is not minimized by putting all of one’s money in security A (the one with a lower
standard deviation). Shifting a small amount of money to the “riskier” security B
reduces the portfolio standard deviation as long as the return of the two securities is not
perfectly correlated.

With two securities, this idea of diversification (“don’t put all eggs in one basket”) is
easy to illustrate with a spreadsheet. This begins by plotting the portfolio mean and
portfolio standard deviation against the portfolio weight in one of the security, say B
(wB). Students quickly see that, as expected, the portfolio mean (σP) rises linearly from
10% to 15% when the weight in security B is increased from 0% to 100%.

The portfolio standard deviation (σP) being a non-linear function of standard deviations
of the constituents behaves in a more complex manner. It goes from 20% to 30% as
expected, but not in a straight line: it falls below 20% before beginning to rise. This
non-linearity follows from the elementary statistics formula for variance of a sum of
random variables:

σ2
P = w2

Aσ2
A + w2

Bσ2
B + 2ρwAwBσAσB

26For more on customizing user interface with HTML see shiny.rstudio.com/articles/html-ui.
html and on using CSS see https://shiny.rstudio.com/articles/css.html

W.P. No. 2017-03-05 Page No. 11

shiny.rstudio.com/articles/html-ui.html
shiny.rstudio.com/articles/html-ui.html
https://shiny.rstudio.com/articles/css.html


IIMA • INDIA
Research and Publications

where, ρ is the correlation between the return of two securities.

Finally, it is possible to plot the mean against the standard deviation (return versus risk)
to obtain the classical parabolic shape of the Markowitz efficient frontier. The usual
graphs that come about then look something like these:
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To be fair, Excel works perfectly for the two asset case. One can build a the portfolio of
the two assets with varying weights in two columns, and portfolio return and risk can
easily be evaluated using the formulas above in different columns. The three graphs
reproduced above result quite easily from the columns of weight in one of the securities,
portfolio return and standard deviation.

4.2 Multiple Securities Case

The difficulty in using spreadsheets lie in extending the analysis beyond two securities.
Traditionally, the approach in the classroom has been simply to indulge in some kind of
hand-waving, and persuading the students by citing important results (Merton, 1972)
that the efficient frontier has the same shape when there are a larger number of
securities.

One difficulty is that with two securities, all portfolios lies along the parabola (including
the “inefficient” lower half), and there are no portfolios in the interior of the parabola.
With more than two securities, most portfolios are in the interior and by restricting
portfolio choice to the efficient frontier, we are able to rule out a very large fraction of
feasible but inefficient portfolios. This key insight of modern portfolio theory cannot be
demonstrated with two securities, and is therefore either very hard or cumbersome to
show with a spreadsheet.

By using R , the problem goes away, because it is very easy using widely available
packages to handle a large number of securities. Also by using Shiny, the instructor can
use this power of R without intimidating the students who might not be familiar with
this or any other programming language, or even Excel. Students only need to point
their browser to the Shiny server and interact with it. They can see the plots change
instantly as they change any of the input parameters.

Now we discuss how one would implement a mean-variance efficient frontier app in
Shiny.
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4.3 A Shiny App for Efficient Frontier

The R package fPortfolio (also part of the Finance Task View) provides functions for
computing the efficient frontier and plotting the frontier as well as the portfolio
composition along the frontier.

1. ui.R: Given the understanding that a finance instructor would have about the
inputs required to compute the frontier, this should appear quite straightforward.
It is designed in the same sidebarLayout as the earlier example.

The sidebarPanel collects all inputs including the number of securities
(numericInput), the names of these securities (textInput), their means,
standard deviations and the correlations (all numericInput). In the same panel,
the user also chooses whether to plot the efficient frontier or the portfolio
composition (selectInput). If the frontier is chosen, there are further choices:
whether to plot the two asset frontiers, and whether to plot random portfolios and
if so how many (conditionalPanel).

Output objects are created in a mainPanel and collected in separate tabs
(tabsetPanel), with the plot plotOutput on one tab and the input data
tableOutput in another. In this paper, we focus only on the first tab containing
the plots.

l i b r a r y ( shiny )

f luidPage (
sidebarLayout (

s idebarPanel (
numericInput ( ’ k ’ , ’No of s e c u r i t i e s ’ , 3 ) ,
t e x t I n p u t ( ’ names ’ , ’ S e c u r i t y Names ’ , ’ Alpha Beta Gamma ’ ) ,
t e x t I n p u t ( ’mean ’ , ’ Expected Returns (%) ’ , ’ 10 15 20 ’ ) ,
t e x t I n p u t ( ’ sigmas ’ , ’ Standard Deviat ions (%) ’ , ’ 20 25 30 ’ ) ,
t e x t I n p u t ( ’ c o r r e l ’ ,

’ C o r r e l a t i o n s ( R2 , 1 . . Rk , 1 R3 , 2 . . Rk , 2 . . . Rk , k−1) ’ ,
’ 0 . 3 0 . 2 0 . 1 ’ ) ,

s e l e c t I n p u t ( ’ type ’ , ’ P l o t type ’ ,
l i s t ( ’ E f f i c i e n t F r o n t i e r ’ ,

’ P o r t f o l i o Composition ’ ) ,
s e l e c t e d = ’ E f f i c i e n t F r o n t i e r ’ ) ,

c on di t i on a l Pa ne l (
condi t ion = " i n p u t . t y p e == ’ E f f i c i e n t Front ie r ’ " ,
checkboxInput ( ’ f r o n t i e r . t w o a s s e t ’ ,

’ P l o t Al l Two Asset F r o n t i e r s ’ ,
value = TRUE) ,

checkboxInput ( ’ montecarlo ’ , ’ P l o t Random P o r t f o l i o s ’ ,
value = FALSE ) ,

numericInput ( ’ npoints ’ , ’No of Random P o r t f o l i o s ’ , 200)
)

) ,

mainPanel (
h1 ( ’ E f f i c i e n t F r o n t i e r ’ ) ,
t a b s e t P a n e l (

tabPanel ( " P l o t " , plotOutput ( " p l o t " ) ) ,
tabPanel ( " Input Data " ,

h4 ( ’Means and Standard Deviat ions ’ ) ,
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tableOutput ( " mu.sd " ) ,
h4 ( ’ C o r r e l a t i o n Matrix ’ ) ,
tableOutput ( " rho " )
)

)
)

) ,
t i t l e =" E f f i c i e n t F r o n t i e r "

)

2. server.R: The server script requires a bit more work. It needs to read the inputs,
compute the correlation matrix and render the output. That said, the reactivity
part of the code remains simple as in the case of the histogram. It calls the
following functions from fPortfolio:

• portfolioFrontier computes the frontier, and weightsPlot plots the
portfolio composition (weights)

• twoAssetsLines plots all two-asset efficient frontiers. If there are three
securities, A, B and C, the efficient frontier drawn by portfolioFrontier
contains portfolios including all three stocks. twoAssetsLines draws three
additional efficient frontiers taking two securities at a time: the frontiers with
only A and B, with only A and C and with only B and C.

• monteCarloPoints plots the mean and standard deviation of a number of
random portfolios. Most of these would be inefficient portfolios, but they map
out the entire feasible region in mean – standard deviation space. The efficient
frontier produced by portfolioFrontier appears as the upper boundary
of the feasible region.

my.sample() part of the code is explained later. It is there because of a quirk in
the way fPortfolio package uses sample moments.

l i b r a r y ( shiny )
l i b r a r y ( f P o r t f o l i o )

funct ion ( input , output ) {
## Code to read inputs and generate sample is omitted ...
## ... and is implemented before renderPlot({...}) here ...
## ...
output $ p l o t ← renderPlot ( {

fp ← p o r t f o l i o F r o n t i e r ( a s . t i m e S e r i e s ( my.sample ( ) ) )
i f ( input $ type == ’ P o r t f o l i o Composition ’ ) {

weightsPlot ( fp )
} e l s e {

f r o n t i e r P l o t ( fp , c o l = c ( ’ blue ’ , ’ red ’ ) , pch = 20)
i f ( input $ f r o n t i e r . t w o a s s e t )

twoAssetsLines ( fp , c o l = ’ green ’ )
i f ( input $ montecarlo )

monteCarloPoints ( fp , input $ npoints ,
c o l = ’ grey ’ , pch = 20 , cex=0 . 3 )

}
} )

}
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3. Preparation work in server.R: The remaining part of the server script (before
renderPlot) consists in parsing the input data, and computing correlations. In
this particular case, the mean input also needs to be converted from percent to
decimal:27

mu ← r e a c t i v e ( scan ( t e x t =input $mean , quie t = TRUE) / 100)

Note that while the scan function is standard in R for reading text data, reactivity
requires that this be called as a reactive expression so that it can respond to any
changes in the data input by the user.

The correlation matrix computation part of the code (not reproduced here) takes a
little more effort because only the lower triangular part of the correlation matrix is
typed by the user, and the code has to copy this into the upper triangular part and
also fill the diagonal with ones. This requires about a dozen lines of R code easily
understood by anyone with a basic understanding of correlation matrix. The full
source code is available on the first author’s Github page.28

4. my.sample() object in server.R: There is a quirk in the fPortfolio package
in that it does not allow direct input of mean and covariances, but insists on
computing these from a time series of returns. We have no choice but to generate
an appropriate sample of returns and feed these returns to the package.

Now, R has no difficulty generating a sample with specified population mean
vector and variance-covariance matrix. The problem is that the sample mean and
variance of this sample will not be exactly equal to that of the population
parameters. One option is to choose a large sample and ignore the small
differences between the sample and population values.

This is one of the things that can often get ‘hand-waved’ when using spreadsheets
in the class. In R there is no such problem. With a bit of re-centering and re-scaling,
one can ensure that the sample means and covariances are exactly equal to the
desired population values. A non-programmer audience needn’t worry about all
this, but when they input a desired population moment that is what gets used.

One could argue that it is the use of the fPortfolio package that causes the
problem so one should avoid it. But it is one of the most reliable and widely used
packages for portfolio analysis in the R universe. And given that the source code is
completely transparent about its methods, it is easier to deal with any issue than
working with a black-box.

After the iid.sample() code draws uncorrelated multivariate normal variates,
and forces the mean to 0, standard deviation to 1 and removes sample correlation,
the server script deals with scaling of means, variance and correlation as follows:

• Means and variances: R provides a function scale that can be used to
recenter and rescale a sample to change the univariate means and variances.
One can also do this directly by dividing the data with sample standard
deviation and multiplying the resulting new series by the population
standard deviation.

27Input format and its use in the code is something that needs to be kept in mind during development.
28https://github.com/jrvarma
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• Correlation: Getting the correlations right takes more effort. Essentially, we
need a “square root” of the correlation matrix, and the tool needed for this is
Cholesky factorization. The R function chol does the job.

• Validation: It also includes some validation to ensure basic requirements (for
example, all standard deviations should be positive).

iid.sample() and my.sample() part of the codes are excerpted from
server.R below. Ignoring validate() functions and annotated comments, the
rest of the my.sample() code is merely 5 lines.

i i d . s am ple ← r e a c t i v e ( {
k ← input $k
N ← k + 30 # ensure adequate degrees of freedom
x ← rnorm (N∗k ) # iid standard normals (in population)
## Sample moments of x can differ from population moments.
## We now force sample mean = 0 and sample std deviation =
## 1 by simple centering and rescaling
x ← s c a l e ( matrix ( x , N, k ) )
## To remove sample correlations, we multiply by the
## inverse of the cholesky factor of the sample
## covariance. The cholesky factor is like the square root
## of the matrix
x %∗% solve ( chol ( cov ( x ) ) )

} )
## Generate sample with desired sample moments
my.sample ← r e a c t i v e ( {

k ← input $k
v a l i d a t e (

need ( length (mu( ) ) == k ,
’Wrong number of elements f o r Expected Returns ’ ) ,

need ( length ( sigmas ( ) ) == k ,
’Wrong number of elements f o r Standard Deviat ions ’ ) ,

need ( length ( c o r r e l . v e c t o r ( ) ) == k ∗ ( k − 1) / 2 ,
’Wrong number of elements f o r C o r r e l a t i o n Matrix ’ ) ,

need ( length ( names ( ) ) == k ,
’Wrong number of elements f o r S e c u r i t y Names ’ )

)
## print(eigen(correl())$values)
v a l i d a t e (

need ( a l l ( eigen ( c o r r e l ( ) ) $ values > 0 ) ,
’ C o r r e l a t i o n matrix not p o s i t i v e d e f i n i t e ’ ) ,

need ( a l l ( sigmas ( ) > 0 ) ,
’ Standard devia t ion not p o s i t i v e ’ )

)
## To replicate the required correlation matrix we
## multiply the iid sample by the cholesky factor of the
## sample covariance. The cholesky factor is like the
## square root of the matrix
y ← i i d . s am ple ( ) %∗% chol ( c o r r e l ( ) )
## We then rescale the variables to achieve the required
## standard deviations
y ← s c a l e ( y , c e n t e r = FALSE , s c a l e = 1/sigmas ( ) )
## Finally, we then re-center the variables to achieve the
## required means
y ← s c a l e ( y , c e n t e r = − mu( ) , s c a l e = FALSE)
dimnames ( y ) [ [ 2 ] ] ← names ( )
y

} )

W.P. No. 2017-03-05 Page No. 16



IIMA • INDIA
Research and Publications

4.4 Shiny-R Advantages for Finance

While prima-facie the steps involved in building Shiny apps may seem intimidating, an
instructor who needs to use or build similar applications regularly for teaching or
research the benefits far outweigh the cost in our opinion.

Reusability. Once the apps are created, they can be used across for different audience
that one encounters in a business school. While this is shared with Excel for
simple/toy examples to an extent, as argued earlier, Shiny keeps the focus on the
elements crucial for a session. The layout of the app can be designed such that the
same app can be used for different groups by using tabs to separate different
outputs by difficulty level. Select data can also be made non-reactive by using
isolate() as need be.

Object-oriented and vectorized. Many problems in asset pricing and investment
analysis are naturally cast in terms of linear algebra. This makes R an
almost-perfect fit for the task, given that indexing, operators and functions in R
closely resemble the algebra of matrices. Its vectorization capabilities are often
leveraged to speed up the code (Wang et al., 2015).

Graphics. Spreadsheets are particularly infamous for the poor quality of their charting
utility for communicating scientific results. In comparison, R offers a modern
approach to data visualization using the layered grammar of graphics with a
package called ggplot2 (Wickham, 2010). Coupled with the interactivity that
Shiny offers, ggplot2 is leaps ahead of any spreadsheet software in exploring and
visualizing complex data.

Extensions The biggest advantage of working in the R and Shiny environment is
possibilities afforded for extensions to the server script by including more
advanced versions of basic models. Some possible extensions include:

• Non-Normality of asset returns, say, by bringing in other elliptical or stable
distribution using, for example, the fBasics package

• Black-Litterman’s approach (Black and Litterman, 1992) for introducing
investor views and opinions in the Markowitz problem using the BLCOP
package. For many such nonlinear problems, spreadsheets are known to be
particularly unsuitable (Almiron et al., 2010)

• Bring in stylized facts (Cont, 2001) and time series methods to the class using
fGarch, rugarch and rmgarch packages.

• Bring in live financial and macroeconomic data from important financial
markets directly into the R workspace using packages like quantMod and
quandl.

• Animate apps as GIF or flash movie using the animate package (Xie, 2013)

These are only a few obvious examples. Richness of R allows for customization and
extensions in different directions.

Of course, the context decides, but depending on the audience, the apps can be as basic
or as sophisticated as need be. While investment required on part of the instructor
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differs depending on the nature of the app, the user experience at all difficulty levels
remains the same. All Shiny apps essentially involve interacting with the browser,
however simple or complex the app may be. It’s a bit like an Android smart phone. A
high-end Android phone may have more features (so costs more) than a low-end one,
but both run on the same kernel and offer the same basic functionality.

5 Sharing and Deploying Shiny Apps

5.1 Sharing the component files

If the users are familiar with R and have all the necessary data available and R packages
are installed on their computers, sharing a Shiny app is as easy sharing the component
files and instructions to run the app. It is crude, but it works and may work for a small
class.

This may not be ideal with a non-programmer audience though, as the users may
inadvertently damage the app by tinkering with the user interface or server files. If the
objective, however, is to teach R and Shiny, then an instructor could share component
files for an incomplete app and have students finish them as homework. Other than
simply sharing the two files over a network or otherwise, they can also be hosted on
Github or Gist and run directly from there.29

5.2 Hosting a Shiny server

If the users do not have R installed or are not keen to, the utility of Shiny really comes
through as an app hosted on cloud. All the users need is a browser and instructions for
running the app.

RStudio provides a paid service to do so at https://www.shinyapps.io/. They also
have a basic free/trial version. An alternative to using RStudio is to deploy apps using a
Docker-based technology30 at the service called ShinyProxy which only relies on the
open-source Shiny package without any dependency on the server version of Shiny or
RStudio.31

Those with some experience in web hosting or a helpful IT department may either set up
a Shiny server locally32 or on any cloud hosting service, be it, e.g., Amazon EC2, Google
Cloud or Digital Ocean.33

Given the popularity of free Amazon EC2, in Appendix A we provide steps to install and
run the efficient frontier Shiny app discussed earlier on Amazon Web Services (AWS).

29https://shiny.rstudio.com/articles/deployment-local.html, accessed March 27, 2017.
30https://www.docker.com/
31More details at https://www.shinyproxy.io/
32https://github.com/rstudio/shiny-server/
33For an example, see http://deanattali.com/2015/05/09/setup-rstudio-shiny-server-

digital-ocean/, accessed March 27, 2017.
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6 Conclusion

As the data science and analytics industry has grown, so has the popularity of
open-source languages like Python and R . While the former has gained in importance
due to its versatility, R has fast grown into one of the most popular languages for
empirical research in social science. There are not many competitors for R when it
comes to applications in statistical computing in practice.

For beginning data analysis courses at business schools, however, the software of choice
remains Microsoft Excel despite the known problems for its usage in serious finance and
statistics applications. It’s not merely inertia, but a combination low barriers to entry
and lack of exposure of business school students to programming. Even if instructors
are adept at using R , they are forced to use Excel given its popularity. The nature of
spreadsheets often significantly constrains the depth of analysis possible in the class,
often even requiring dumbing-down of the subject.

Recent software advances have brought browser-based tools to fore as capable
alternatives to spreadsheets. In this article we have introduced one such tool called
Shiny. Since a Shiny app is essentially an HTML document hosted on a computer
running R , it is able to leverage the power of HTML and CSS with the sophistication of
the R programming language. Once developed, the apps can be shared via cloud and
run on any browser-enabled device, making it ideal for teaching. With the detailed
documentation available for both R and Shiny, an interested instructor can get up to
speed in quick time.

After describing the design philosophy of Shiny and elements of a Shiny app with a toy
example, we have provided detailed steps for building an app for explaining
mean-variance efficient frontier with arbitrary number of securities. The app is not only
amenable to extensions for more advanced courses, it is also straightforward to set it up
on the cloud for easy accessibility by any modern browser.
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A Deploying the Efficient Frontier Shiny App on Amazon Web
Services

The following steps sets up the efficient frontier Shiny app on a Free Tier EC2 instance
on Amazon Web Services (AWS).

A.1 Creating the instance

The basic setup takes only a couple of minutes:

• Create an Amazon account (or use an existing account)

• Log into the AWS console https://console.aws.amazon.com/

• Launch an EC2 Instance: choose the Ubuntu Server 16.04 LTS Amazon
Machine Image (AMI), select a t2.micro instance type

• Create new key pair, download it as say my-key.pem and change the file
permissions to give all rights only to the owner (Unix permission 400).

• From the AWS Console, determine the public DNS (hostname) of the instance say
my-ec2.amazonaws.com

To connect to a running instance one needs to use secure shell (SSH) as:

ssh -i my-key.pem ubuntu@my-ec2.amazonaws.com

A.2 Installing R on the instance

We then proceed to install R and all requisite packages to install the fPortfolio R
package:

# Some p a c k a g e s r e q u i r e newer v e r s i o n o f R , so we use t h e RStudio
r e p o s i t o r y

sudo apt−key adv −−keyserver keyserver . ubuntu . com −−recv−keys
E298A3A825C0D65DFD57CBB651716619E084DAB9

sudo add−apt−r e p o s i t o r y ’ deb [ arch=amd64 , i386 ] ht tps : / / cran .
r s t ud io . com / bin / l inux / ubuntu x e n i a l / ’

sudo apt−get update
sudo apt−get upgrade
sudo apt−get i n s t a l l r−base
# i n s t a l l a l l p a c k a g e s r e q u i r e d f o r f P o r t f o l i o and i t s

d e p e n d e n c i e s
sudo apt−get i n s t a l l l i b c u r l 4−openssl−dev
sudo apt−get i n s t a l l l ibxml2−dev
sudo apt−get i n s t a l l coinor−symphony coinor−libsymphony−dev

coinor−l i b c g l−dev
sudo apt−get i n s t a l l xorg−dev l ibg lu1−mesa−dev
sudo apt−get i n s t a l l glpk−u t i l s l ibg lpk−dev
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We then run R as root (sudo R) and execute the following commands:

i n s t a l l . packages ( ’ f P o r t f o l i o ’ )
i n s t a l l . packages ( ’ shiny ’ )

A.3 Setting the Efficient Frontier App

We now copy the files ui.R and server.R to the EC2 instance using scp on our local
machine:

scp -i my-key.pem /path/to/my/efficient-frontier/*.R
ubuntu@my-ec2.amazonaws.com:

This command will upload the files from the local machine to the home folder of user
Ubuntu, but they can be moved into the right folder later.

Coming back to the SSH terminal, we execute the following commands on the EC2
instance:

sudo apt−get i n s t a l l gdebi−core
wget ht tps : / / download3 . r s tu di o . org / ubuntu−12.04 / x86_64 / shiny−

server −1.5.1.834−amd64 . deb
sudo gdebi shiny−server −1.5.1.834−amd64 . deb
sudo mkdir / srv / shiny−server / e f f i c i e n t−f r o n t i e r
sudo mv ∗ . R / srv / shiny−server / e f f i c i e n t−f r o n t i e r /
sudo chmod 755 / srv / shiny−server / e f f i c i e n t−f r o n t i e r / ∗

At this point, we can terminate the ssh connection to the EC2 instance. Now in the AWS
Console (in the browser), navigate to Security Group, edit and add rule for inbound
traffic. For Type, choose Custom TCP Rule, for Port select 3838 and for Source,
accept the default 0.0.0.0/0, ::/0.

A.4 Running the App

To run the app, we point the web browser to
http://my-ec2.amazonaws.com:3838/efficient-frontier/.

This completes the steps for setting up the app on Amazon AWS.
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