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Abstract

We study a nonlinear 0-1 knapsack problem with capacity selection decision, as it

arises as a part of facility location/service system design problems with congestion. The

capacity selection decision gives rise to a non-convex objective function. We present

two cutting plane based solution approaches: one based on Generalized Benders decom-

position based, and the other based on a reformulation of the problem using additional

auxiliary variables, followed by outer linearization of a resulting simple concave func-

tion in the constraint.

Keywords: knapsack, integer, non-convex, generalized Benders, cutting plane
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Nonlinear 0-1 knapsack problem with capacity selection

1 Introduction

Consider a set of customer regions (nodes), indexed by i ∈ I, each generating demand arrivals

with a Poisson distribution with rate λi to a service facility that takes a random amount of

time with a mean 1/µ and standard deviation σ (hence, coefficient of variation cv = σµ)

to serve them. The service facility thus behaves like an M/G/1 queue with arrival rate

Λ =
∑

i∈I λixi, where xi = 1 if customer region i is served by the service facility, 0 otherwise.

Revenue generated from customer region i, if served by the facility, is πi. However, the

variability in the arrival and the service processes results in congestion at the service facility,

resulting in waiting for the customers. Customers are paid, on average, a penalty c per unit

time for the time they spend in the system. Although the service facility may want to serve

as many customer regions with its service capacity, doing so may lead to excessive penalty

for waiting customers. So, it may not be optimal for the server to serve all the customer

regions even if its capacity allows it to do so. Hence, the server faces the decision as to which

customer regions to serve, i.e., {i ∈ I : xi = 1}.

The service facility can appropriately select its capacity (i.e., mean service rate) µ as

at most one from the set {µl : l ∈ L} of available capacity levels (with the corresponding

standard deviation σl) such that µ =
∑

l∈L µlyl, where yl = 1 if capacity level l is selected,

0 otherwise. Setting up a capacity µl calls for an investment (amortized over a period)

of $kl ∀l ∈ L. The server, therefore, also needs to decide its optimal service capacity µ,

in addition to which customer regions to serve, such that its total profit (revenue minus

penalty minus capacity cost) rate is maximized. We refer to this problem as Nonlinear 0-

1 Knapsack Problem with Capacity Selection (NKPSC) for reasons described later in this

section. Such a problem appears naturally as a part of facility location/service system

design problems with congestion (Berman and Krass, 2002; Amiri, 1997, 1998). To state the
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problem mathematically, we first summarize below the notation used.

Indices:

i : node; i ∈ I

l : capacity level; l ∈ L

Parameters:

λi : Rate of Poisson demand arrival from node i

µl : Service rate of the facility at capacity level l

σl : Standard deviation of service times at capacity level l

cvl : Coefficient of variation of service times at capacity level l; cvl = µlσl

kl : Fixed (amortized over the time period) cost for capacity level l

πi : Potential profit from node i

c : Average penalty per unit time per customer in the system

Variables:

xi : 1, if the server serves customer region i, 0 otherwise

yl : 1, if capacity level l for the server is selected, 0 otherwise

Using the above notation, the optimal decision problem of the server can be mathemati-

cally stated as:

[NKPCS]:

max
x,y

∑
i∈I

πixi −
∑
l∈L

klyl − cE[N ] (1)

s.t.
∑
i∈I

λixi ≤
∑
l∈L

µlyl (2)

∑
l∈L

yl ≤ 1 (3)

xi ∈ {0, 1} ∀i ∈ I (4)

yl ∈ {0, 1} ∀l ∈ L (5)

where E[N ] in (1) is the expected number of customers in the system in steady state in the
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M/G/1 queuing system at the service facility, the expression for which is given as:

E[N ] =

(
1 + cv2

2

)
Λ2

µ(µ− Λ)
+

Λ

µ

=

(
1 +

∑
l∈ cv

2
l yl

2

) (∑
i∈I λixi

)2∑
l∈L µlyl(

∑
l∈L µlyl −

∑
i∈I λixi)

+

∑
i∈I λixi∑
l∈L µlyl

(6)

(2) is the steady state condition for the service facility. (3) enforces the selection of at most

one capacity level. (4) and (5) are the binary constraints on the decision variables.

For a given capacity decision (i.e., fixed yl ∀l ∈ L) and no waiting time penalty (i.e.,

c = 0), (1) - (5) reduces to the classical 0-1 knapsack problem (KP), which is known to be

NP-hard (Martello et al., 2000). For a given capacity decision and a non-zero waiting time

penalty (i.e., c > 0), the problem becomes a nonlinear (convex, non-separable) 0-1 knapsack

problem (NKP), as studied by Elhedhli (2005). Within the 0-1 (or general integer) NKP

class, quadratic, non-separable KPs have been studied by Gallo et al. (1980), Dussault et al.

(1986), Klastorin (1990), Caprara et al. (1999). Readers are referred to an in-depth review

of the various classes of NKPs by Bretthauer and Shetty (2002).

With capacity as a decision variable and a non-zero waiting time penalty (i.e., c > 0),

the last term in the objective function of (1) - (5), as given by (6), becomes non-convex,

non-separable. Hence, (1) - (5) falls in the class of non-convex, non-separable 0-1 NKPs,

which is much more difficult to solve since locally optimal solutions may fail to be globally

optimal. There has been little work on non-convex 0-1 NKPs. Moré and Vavasis (1990) study

concave knapsack problems (with minimization as the objective), but deal with a continuous

version. Moreover, they limit their focus primarily on finding local optimal, as opposed to

global optimal, solutions.

The objective of this study is to develop efficient solution approaches for the 0-1 non-

convex, non-separable NKP as described by (1) - (6). For this, we present two exact solution

approaches. The first is based on Generalized Benders decomposition, while the second is

based on a reformulation of the problem using additional auxiliary variables, followed by

outer approximation of a resulting simple concave function in the constraint. We refer to
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the second method as Alternate Outer Approximation (AOA) since our GBD can also be

viewed as one form of outer approximation. The paper thus contributes to the very limited

literature on non-convex, non-separable NKP by presenting its excat solution approaches.

The rest of the paper is organized as follows. The two solution approaches, namely GBD and

AOA, are presented in Sections 2 & 3, respectively. The paper concludes with a comparison

of the two solution methods based on computational results reported in Section 4.

2 Generalized Benders decomposition

The last term in (1), as given by (6), is not jointly convex in (Λ, µ). However, for a fixed value

of µ, it becomes strictly convex, which we exploit to solve the problem using Generalized

Benders Decomposition. However, the term lacks separability in Λ and µ, something desir-

able for an implementable algorithm for GBD. With this in mind, we now present NKPCS

a little differently. For this, we define xil = 1 if region i is served by the server with capacity

level l ∈ L. NKPCS can then be rewritten as:

max
x,y

∑
i∈I

∑
l∈L

πixil −
∑
l∈L

klyl − c
∑
l∈L

{(
1 + cv2

l

2

)
Λ2
l

µl(µl − Λl)
+

Λl

µl

}
(7)

s.t. Λl =
∑
i∈I

λixil ∀l ∈ L (8)

∑
i∈I

λixil ≤ µlyl ∀l ∈ L (9)

∑
l∈L

yl ≤ 1 (10)

xil ∈ {0, 1} ∀i ∈ I; l ∈ L (11)

yl ∈ {0, 1} ∀l ∈ L (12)
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Projecting the problem onto the space of the x and y variables results in the following

equivalent problem:

max
x,y

∑
i∈I

∑
l∈L

πixil −
∑
l∈L

klyl − c
∑
l∈L

φl(xl, yl) (13)

s.t. (9)− (12)

where, φl(xl, yl) solves for the following Sub Problem:

[SPl]:

φl(xl, yl) = min
Λl

{(
1 + cv2

l

2

)
Λ2
l

µl(µl − Λl)
+

Λl

µl

}
(14)

s.t. (8)

Clearly, [SPl] is always feasible for any given choice of xl, yl variables. Further, its objective

function is convex and differentiable, and its constraint is linear (in the variable Λl). Hence,

its KKT conditions are necessary and sufficient for optimality. So, associating a dual variable

αl ∀l ∈ L to constraint (8), and because there is no duality gap, φl(xl, yl) can be rewritten

as:

φl(xl, yl) = max
α≥0

{
min
Λl≥0

{(
1 + cv2

l

2

)
Λ2
l

µl(µl − Λl)
+

Λl

µl
− αlΛl

}
+ αl

∑
i∈I

λixil

}

Introducing a new variable θl ≥ 0, (7) - (12) can be rewritten as the following Master

Problem:

[MP ]:

Z = max
x,y

∑
i∈I

∑
l∈L

πixil −
∑
l∈L

klyl − c
∑
l∈L

θl (15)

s.t. (9)− (12)

θl ≥ min
Λl≥0

{(
1 + cv2

l

2

)
Λ2
l

µl(µl − Λl)
+

Λl

µl
− αlΛl

}
+ αl

∑
i∈I

λixil ∀l ∈ L,∀α (16)
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θl ≥ 0 ∀l ∈ L (17)

For a given iteration t, where xl = xtl and yl = ytl ∀l ∈ L, and after the solution of the

associated [SPl] and the recovery of the optimal value of αl (call it αtl) ∀l ∈ L, the optimal

value of φl(x
t
l , y

t
l ) is given by:

φl(x
t
l , y

t
l ) = min

Λl≥0

{(
1 + cv2

l

2

)
Λ2
l

µl(µl − Λl)
+

Λl

µl
− αtlΛl

}
+ αtl

∑
i∈I

λix
t
il (18)

Further, constraint (16), for iteration t, can be rewritten as:

θl ≥ min
Λl≥0

{(
1 + cv2

l

2

)
Λ2
l

µl(µl − Λl)
+

Λl

µl
− αtlΛl

}
+ αtl

∑
i∈I

λixil ∀l ∈ L (19)

Therefore, by eliminating the minimum in (19) using (17), [MP] can be restated as:

(15)

s.t.(9)− (12), (17)

θl ≥ φl(x
t
l , y

t
l ) + αtl

∑
i∈I

(λixil − λixtil) ∀l ∈ L;∀t = 1, ..., T (20)

T in (20) is the total number of possible values of (xl, yl). Including constraints corresponding

to all possible values of t in (20) will result in a very large [MP]. Hence, constraints of (20)

are only added one at a time at each iteration, and not all of them are needed to solve the

problem to optimality. So, at any iteration, a relaxed Master Problem [RMP] with only a

subset of constraints corresponding to t = 1, ...T ′, where T ′ < T , in (20) is solved. For (xtl ,

ytl ) fixed by [RMP] at iteration t, the Sub Problem φl(x
t
l , y

t
l ) is given by:

(14)

s.t. Λl =
∑
i∈I

λix
t
il (21)
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With the dual variable α associated with constraint (21), [SP] at iteration t can be solved

using KKT conditions, as given below:

∂

∂αl

{(
1 + cv2

l

2

)
Λ2
l

µl(µl − Λl)
+

Λl

µl
− αlΛl + αl

∑
i∈I

λix
t
il

}
= 0

⇒Λt
l =

∑
i∈I

λix
t
il (22)

∂

∂Λl

{(
1 + cv2

l

2

)
Λ2
l

µl(µl − Λl)
+

Λl

µl
− αlΛl + αl

∑
i∈I

λix
t
il

}
= 0

⇒αtl =

(
1 + cv2

l

2

)
Λt
l(2µl − Λt

l)

µl(µl − Λt
l)

2
+

1

µl
(23)

Using the above expressions for Λt
l and αtl , [RMP] at iteration T ′ can be restated as:

[RMP ]:

(15)

s.t.(9)− (12), (17)

θl ≥

{(
1 + cv2

l

2

) ∑
i∈I λix

t
il

2

µl(µl −
∑

i∈I λix
t
il)

+

∑
i∈I λix

t
il

µl

}
+{(

1 + cv2
l

2

)∑
i∈I λix

t
il(2µl −

∑
i∈I λix

t
il)

µl(µl −
∑

i∈I λix
t
il)

2
+

1

µl

}∑
i∈I

(λixil − λixtil) ∀l ∈ L;∀t = 1, ..., T ′

(24)

Since [RMP] at any given iteration is a relaxation to NKPCS, its optimal objective function

value, ν(RMP ), provides an upper bound (UB) to NKPCS. At the same time, since xt at

iteration t is a feasible solution to NKPCS, a lower bound (LB) to NKPCS is provided by:

LBt = Z(xt,yt) =
∑
i∈I

∑
l∈L

πix
t
il −

∑
l∈L

kly
t
l − c

∑
l∈L

φl(x
t
l , y

t
l ) (25)

The complete solution algorithm to solve NKPCS using GBD can be summarized using

Algorithm 1. The form of Benders constraint (24) merits further discussion. Seen differently,
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Algorithm 1 Generalized Benders Decomposition Based Algorithm to Solve NKPCS

1: t← 1; UBt−1 ← +∞; LBt−1 ← 0.
2: repeat
3: Solve [RMP], given by (15), (9)-(12), (17), (24), and obtain its optimal solution (xt,yt).
4: Update UB: UBt ← ν(RMP ) using (15).
5: Update LB: LBt ← max{LBt−1, Z(xt,yt)} using (25).
6: Add to [RMP] a new constraint using (24).
7: t← t+ 1
8: until (UBt−1 − LBt−1)/UBt−1 ≤ ε

the RHS of (24) is a linear outer approximation of the nonlinear part of the objective function

in (1). Hence, the above GBD algorithm can also be viewed as an Outer Approximation

(OA) algorithm (Floudas, 1995). GBD, as described above, has the drawback that it uses

an expanded variable set xil defined for each i and l pair, as opposed to the variable set xi

defined only for each i in the original model. In the next section, we present an alternate

solution method that overcomes this drawback by working with the original variable set xi.

3 Alternate Outer Approximation

We now present an alternate reformulation of (1) - (7), followed by a piecewise linear outer

approximation of the resulting nonlinear function of an auxiliary variable. For this, we

rewrite the nonlinear term in (1), given by (6), as:

E[N ] =

(
1 + cv2

2

)
Λ2

µ(µ− Λ)
+

Λ

µ
=

(
1 + cv2

2

)
ρ2

(1− ρ)
+ ρ

where ρ = Λ/µ. Upon rearranging the terms in the RHS, the above relation can be rewritten

as:

E[N ] =
1

2

{
(1 + cv2)

ρ

1− ρ
+ (1− cv2)ρ

}
(26)
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To linearize the RHS in (26), we define a new variable U , such that:

U =
ρ

1− ρ
=

Λ

µ
=

∑
i∈I λixi∑
l∈L µlyl

(27)

which implies:

ρ =
U

1 + U
(28)

Using ρ = Λ/µ, Λ can be expressed as:

Λ =
∑
i∈I

λixi = ρµ = ρ
∑
l∈L

µlyl =
∑
l∈L

µlzl (29)

where zl =

 ρyl if yl = 1

0, otherwise

Given that at most one capacity level can be selected, the above relation between zl and yl

can be restated using the following sets of constraints:

zl ≤ yl ∀l ∈ L∑
l

zl = ρ

zl ≥ 0 ∀l ∈ L

With the above substitutions, the expression for E[N] in (1) reduces to:

E[N ] =
1

2

{
(1 +

∑
l∈L

cv2
l yl)U + (1−

∑
l∈L

cv2
l yl)ρ

}

=
1

2

{
U +

∑
l∈L

cv2
l wl + ρ−

∑
l∈L

cv2
l zl

}

where wl =

 U if yl = 1

0, otherwise
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Again, exploiting the fact that yl = 1 for at most one l, the above relation between wl and

yl can be restated as:

wl ≤Myl ∀l ∈ L∑
l

wl = U

wl ≥ 0 ∀l ∈ L

where M is a large number (called Big M).

Clearly, ρ, as given by (28), is a concave function in U . Hence, ρ(U) can be approximated

arbitrarily closely by piecewise linear functions that are tangent to ρ at points {Uh}h∈H , such

that:

ρ = min
h∈H

{
U

(1 + Uh)2
+

(
Uh

1 + Uh

)2
}

(30)

(30) is equivalent to:

ρ ≤

{
U

(1 + Uh)2
+

(
Uh

1 + Uh

)2
}
∀h ∈ H (31)

Using the new variables ρ, U , z and w, as introduced above, NKPCS can be reformulated

as: [NKPCS(H)]:

max
x,y,z,w,ρ,U

∑
i∈I

πixi −
∑
l∈L

klyl −
c

2

{
U + ρ+

∑
l∈L

cv2
l (wl − zl)

}
(32)

s.t. (3)− (5), (31)∑
i∈I

λixi =
∑
l∈L

µlzl (33)

zl ≤ yl ∀l ∈ L (34)∑
l∈L

zl = ρ (35)
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wl ≤Myl ∀l ∈ L (36)∑
l∈L

wl = U (37)

0 ≤ ρ, zl ≤ 1; U,wl ≥ 0 ∀l ∈ L (38)

Consider a relaxation P (Hq) : Hq ⊂ H. An upper bound to P (H), and hence to NKPSC, is

provided by the objective function value of P (Hq), given by:

UBq = ν(NKPCS(Hq)) =
∑
i∈I

πix
q
i −

∑
l∈L

kly
q
l −

c

2

{
U q + ρq +

∑
l∈L

cvl(w
q
l − z

q
l )

}
(39)

where, (xq,yq, zq,wq, ρq, U q) is the optimal solution vector to P (Hq). Further, since the

optimal solution (xq,yq) to P (Hq) is also a feasible solution to NKPCS, a lower bound to

NKPCS is provided by the objective function of NKPCS evaluated at (xq,yq), given by:

LBq =Z(xq,yq) =
∑
i∈I

πix
q
i −

∑
l∈L

kly
q
l

− c
(

1 +
∑

l∈ cv
2
l y

q
l

2

) (∑
i∈I λix

q
i

)2∑
l∈L µly

q
l (
∑

l∈L µly
q
l −

∑
i∈I λix

q
i )

+

∑
i∈I λix

q
i∑

l∈L µly
q
l

if
∑
l∈L

yql ≥ 0

(40)

However, if
∑

l∈L y
q
l = 0, then LBq = 0. The complete AOA based solution algorithm to

solve NKPCS can be summarized as Algorithm 2.

AOA, as described in Algorithm 2, offers the possibility of arbitrarily selecting the initial

set of points {Uh}h∈H1 to approximate the function f(U) = U/(1 + U). However, a careful

selection of the initial set of points should help the algorithm converge faster (Elhedhli, 2005).

Hence, we report our computational results in Section 4 for two different variants of AOA

that differ in the choice of {Uh}h∈H1 . In the first variant of AOA (referred to as AOA1),

H1 ← Φ. In the second variant (referred to as AOA2), the initial set of points {Uh}h∈H1 is

carefully chosen such that the outer approximation of f(U), as given by (31), overestimates

f(U) by at most ε = 0.001. The exact algorithm to select {Uh}h∈H1 for any arbitrary value
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Algorithm 2 Alternate Outer Approximation Based Algorithm to Solve NKPCS

1: q ← 1; UBq−1 ← +∞; LBq−1 ← −∞.
2: Choose an initial set of points {Uh}h∈Hq to approximate the function f(U) = U/(1 +U)

using (31).
3: repeat
4: Solve NKPCS(Hq), and obtain its optimal solution (xq,yq, zq,wq, ρq, U q).
5: Update UB: UBq ← ν(NKPSC(Hq)) using (39).
6: Update LB: LBq ← max{LBq−1, 0} if

∑
l∈L y

q
l = 0. Else, LBq ←

max{LBq−1, Z(xq,yq)} using (40).

7: Generate a new point Uh =
∑

i∈I λix
q
i∑

l∈L µly
q
l −

∑
i∈I λix

q
i
.

8: Add to NKPCS(Hq) a new constraint of the form (31).
9: Hq+1 ← Hq ∪ {h}.
10: q ← q + 1
11: until (UBq−1 − LBq−1)/UBq−1 ≤ ε

of ε is presented by Elhedhli (2005).

4 Computational experience

We now present our computational experience with the two alternate solution approaches

as described in sections 2 & 3. Both the solution algorithms (Algorithm 1 and Algorithm 2)

are coded in C++ (using Visual Studio 2010), while RMP in Algorithm 1 and NKPCS(H)

at each iteration in Algorithm 1 and Algorithm 2 respectively are solved using IBM ILOG

CPLEX 21.5 on a PC with Intel Core i5-3470 CPU @ 3.20 GHz, 8 GB RAM, and Windows

64-bit operating system.

4.1 Data generation

The difficulty level of 0-1 NKPs is known to vary with the level of correlation between the

weights of the objects and their profits (Martello et al., 2000; Elhedhli, 2005). As such, we

test the efficacy of Algorithm 1 and Algorithm 2 for the following two different classes of

problems instances based on the level of correlation between the object weights and profits.

• Weakly correlated instances: customer arrival rates are randomly generated as λi ∼
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U [1, R], and revenues are randomly generated as πi ∼ U [λi −R/10, λi +R/10]

• Strongly correlated instances: customer arrival rates are randomly generated as λi ∼

U [1, R], and revenues are set as πi = λi +R/10

where R takes values from the set {1,000, 10,000}. The above two classes of data instances

are generated for the following 4 number of demand nodes {500, 1,000, 5,000, 10,000}. The

waiting penalty c is set as a ∗ R/10, where a takes values from the set {0.1, 0.5, 1.0, 2.0}.

The number of capacity levels is set as L = 5. The coefficient of variation of service times

(cvl) at capacity level l takes values from the set {0, 0.5, 1.0, 2.0}. The capacity (service

rate) corresponding to capacity level l = 3 is set as µ3 = (2 ∗ b ∗maxi λi)/10.1, where b takes

values from the set {1, 2, 3, ..., 10}. The service rates corresponding to the remaining 4 levels

are set as µ1 = 0.5µ3, µ2 = 0.75µ3, µ4 = 1.25µ3, µ5 = 1.5µ3. The amortized capacity cost

for capacity level l = 3 is set as k3 = µ3/10. The capacity costs for the remaining 4 capacity

levels are set as k1 = 0.60k3, k2 = 0.85k3, k4 = 0.15k3, k5 = 1.35k3. The capacity costs at

different capacity levels are so chosen to exhibit both economies as well as diseconomies of

scale in capacity addition.

4.2 Discussion of results

For each class of problem instances (weakly correlated and strongly correlated), we run the

experiments for all combinations of the problem parameters, namely the number of nodes, R,

a, cv and b. This gives us, for each class, a total of 1,280 (= 4x2x4x4x10) problem instances.

Tables 1-4 present, for each combination of problem size, R, a and cv, the average over the

10 different values, of b of CPU times (in seconds) taken by GBD, AOA1 and AOA2. We use

a run time limit of 2 hours (7,200 seconds) for each instance. For cases where some instances

cannot be solved to optimality within the 2 hour time limit, we report the corresponding

average optimality gap (GAP%) over the 10 different values of b.

Tables 1 & 3 clearly show that for problems instances of the size 500 and 1,000 nodes,

both GBD and AOA (whether AOA1 or AOA2) are very efficient, solving all instances to
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Table 1: Comparison between GBD and AOA with initial cuts (AOA1) and without initial
cuts (AOA2) for weakly correlated data and small problem instances

GBD AOA1 AOA2

Nodes R a cv Gap(%) CPU(s) Iter Gap(%) CPU Iter Gap(%) CPU Iter
500 1000 0.1 0 0.00 1.5 5 0.00 0.4 5 0.00 0.5 5

0.5 0.00 1.6 6 0.00 0.5 6 0.00 0.5 6
1 0.00 1.9 6 0.00 0.6 6 0.00 1.0 6
2 0.00 2.3 7 0.00 0.6 7 0.00 0.6 7

0.5 0 0.00 2.0 7 0.00 0.6 7 0.00 0.6 7
0.5 0.00 1.8 6 0.00 0.5 6 0.00 0.5 6
1 0.00 2.0 7 0.00 0.6 7 0.00 0.6 7
2 0.00 2.6 8 0.00 0.7 8 0.00 0.6 8

1.0 0 0.00 2.4 7 0.00 0.7 7 0.00 0.6 7
0.5 0.00 2.2 7 0.00 0.6 7 0.00 0.6 7
1 0.00 2.2 7 0.00 0.6 7 0.00 0.7 7
2 0.00 3.8 12 0.00 0.8 9 0.00 0.8 9

2.0 0 0.00 2.3 7 0.00 0.6 7 0.00 0.6 7
0.5 0.00 2.6 8 0.00 0.7 8 0.00 0.7 8
1 0.00 2.7 9 0.00 0.7 8 0.00 0.7 8
2 0.00 5.1 14 0.00 0.8 9 0.00 0.8 9

10000 0.1 0 0.00 2.5 7 0.00 0.6 7 0.00 0.6 7
0.5 0.00 2.0 6 0.00 0.5 6 0.00 0.5 6
1 0.00 2.4 7 0.00 0.6 7 0.00 0.6 7
2 0.00 2.4 7 0.00 0.6 7 0.00 0.6 7

0.5 0 0.00 2.2 6 0.00 0.5 6 0.00 0.6 6
0.5 0.00 2.7 7 0.00 0.6 7 0.00 0.6 7
1 0.00 2.5 7 0.00 0.7 7 0.00 0.7 7
2 0.00 3.2 9 0.00 0.7 9 0.00 0.7 9

1.0 0 0.00 2.7 7 0.00 0.6 7 0.00 0.6 7
0.5 0.00 2.6 7 0.00 0.7 7 0.00 0.6 7
1 0.00 3.8 9 0.00 0.8 9 0.00 0.8 9
2 0.00 4.3 12 0.00 0.8 9 0.00 0.8 9

2.0 0 0.00 3.4 10 0.00 1.0 10 0.00 0.9 10
0.5 0.00 3.0 9 0.00 0.8 9 0.00 0.7 9
1 0.00 3.4 10 0.00 0.8 8 0.00 0.7 8
2 0.00 6.5 15 0.00 0.9 10 0.00 0.8 10

1000 1000 0.1 0 0.00 5.8 6 0.00 0.7 6 0.00 0.7 6
0.5 0.00 5.9 6 0.00 0.8 6 0.00 0.8 6
1 0.00 6.5 7 0.00 0.9 7 0.00 0.8 7
2 0.00 9.4 7 0.00 1.0 7 0.00 0.9 7

0.5 0 0.00 8.3 8 0.00 1.1 8 0.00 1.0 8
0.5 0.00 7.8 8 0.00 1.0 8 0.00 1.0 8
1 0.00 8.4 8 0.00 1.1 8 0.00 1.0 8
2 0.00 8.6 9 0.00 1.2 9 0.00 1.1 9

1.0 0 0.00 8.7 8 0.00 1.0 8 0.00 1.0 8
0.5 0.00 9.4 8 0.00 1.1 8 0.00 1.0 8
1 0.00 8.1 8 0.00 1.1 8 0.00 1.0 8
2 0.00 10.2 10 0.00 1.2 9 0.00 1.1 9

2.0 0 0.00 9.8 8 0.00 1.1 8 0.00 1.0 8
0.5 0.00 9.0 9 0.00 1.1 9 0.00 1.1 9
1 0.00 9.2 10 0.00 1.2 9 0.00 1.1 9
2 0.00 16.2 16 0.00 1.4 11 0.00 1.3 11

10000 0.1 0 0.00 9.2 7 0.00 0.9 7 0.00 0.9 7
0.5 0.00 8.4 7 0.00 0.9 7 0.00 0.8 7
1 0.00 9.5 7 0.00 1.0 7 0.00 1.0 7
2 0.00 9.4 8 0.00 1.1 8 0.00 1.0 8

0.5 0 0.00 11.3 8 0.00 1.1 8 0.00 1.0 8
0.5 0.00 9.1 9 0.00 1.2 9 0.00 1.1 9
1 0.00 10.7 9 0.00 1.2 9 0.00 1.1 9
2 0.00 12.7 10 0.00 1.2 10 0.00 1.2 10

1.0 0 0.00 9.4 9 0.00 1.1 8 0.00 1.0 8
0.5 0.00 8.9 9 0.00 1.0 9 0.00 1.0 9
1 0.00 11.5 10 0.00 1.3 10 0.00 1.2 10
2 0.00 12.9 12 0.00 1.4 11 0.00 1.4 11

2.0 0 0.00 11.0 9 0.00 1.2 9 0.00 1.2 9
0.5 0.00 13.1 10 0.00 1.3 11 0.00 1.3 11
1 0.00 10.0 10 0.00 1.2 10 0.00 1.2 10
2 0.00 19.9 16 0.00 1.3 11 0.00 1.3 11
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Table 2: Comparison between GBD and Piecewise Linearization with initial cuts (AOA1)
and without initial cuts (AOA2) for weakly correlated data and large problem
instances

GBD AOA1 AOA2

Nodes R a cv Gap(%) CPU(s) Iter Gap(%) CPU Iter Gap(%) CPU Iter
5000 1000 0.1 0 0.00 56.9 8 0.00 2.2 7 0.00 2.4 8

0.5 0.00 56.0 7 0.00 2.3 8 0.00 2.0 7
1 0.00 58.9 8 0.00 2.4 8 0.00 2.2 8
2 0.00 73.8 9 0.00 2.8 9 0.00 2.6 9

0.5 0 0.00 62.1 9 0.00 2.8 9 0.00 2.7 9
0.5 0.00 68.7 9 0.00 2.8 9 0.00 2.6 9
1 0.00 69.0 9 0.00 2.9 10 0.00 2.7 9
2 0.00 76.8 10 0.00 3.1 11 0.00 2.9 10

1.0 0 0.00 70.7 10 0.00 2.8 10 0.00 2.8 10
0.5 0.00 72.8 10 0.00 3.2 11 0.00 2.9 10
1 0.00 72.1 11 0.00 3.1 11 0.00 3.1 10
2 0.00 81.0 11 0.00 3.4 12 0.00 3.2 11

2.0 0 0.00 72.4 10 0.00 3.2 10 0.00 3.1 11
0.5 0.00 73.9 11 0.00 3.1 10 0.00 3.0 11
1 0.00 80.8 11 0.00 3.3 11 0.00 3.3 11
2 0.00 85.6 13 0.00 3.6 12 0.00 3.6 12

10000 0.1 0 0.00 77.0 9 0.00 2.6 9 0.00 2.5 9
0.5 0.00 71.2 9 0.00 2.7 9 0.00 2.7 9
1 0.00 64.4 9 0.00 2.7 9 0.00 2.5 9
2 0.00 78.0 10 0.00 2.9 10 0.00 2.8 10

0.5 0 0.00 80.4 10 0.00 2.9 10 0.00 2.7 10
0.5 0.00 89.0 11 0.00 3.3 11 0.00 2.8 10
1 0.00 84.6 11 0.00 3.1 11 0.00 2.9 11
2 0.00 95.5 11 0.00 3.2 12 0.00 3.2 12

1.0 0 0.00 93.1 11 0.00 3.2 11 0.00 3.1 11
0.5 0.00 103.6 11 0.00 3.2 11 0.00 3.0 11
1 0.00 86.6 12 0.00 3.3 12 0.00 3.2 12
2 0.00 93.3 12 0.00 3.9 13 0.00 3.4 12

2.0 0 0.00 100.4 11 0.00 3.6 12 0.00 3.3 12
0.5 0.00 95.0 12 0.00 3.5 12 0.00 3.1 11
1 0.00 88.9 12 0.00 3.5 12 0.00 3.2 12
2 0.00 107.4 14 0.00 3.8 13 0.00 3.4 13

10000 1000 0.1 0 0.00 177.3 8 0.00 4.5 8 0.00 4.1 8
0.5 0.00 222.3 8 0.00 5.0 8 0.00 4.6 8
1 0.00 191.4 8 0.00 3.9 8 0.00 4.1 8
2 0.00 222.3 9 0.00 5.4 9 0.00 5.1 9

0.5 0 0.00 237.7 9 0.00 5.5 9 0.00 5.0 9
0.5 0.00 234.3 10 0.00 5.6 9 0.00 5.2 10
1 0.00 220.2 9 0.00 6.1 10 0.00 5.1 9
2 0.00 253.4 11 0.00 6.6 11 0.00 6.0 11

1.0 0 0.00 225.7 9 0.00 5.9 10 0.00 5.4 10
0.5 0.00 241.0 10 0.00 6.2 10 0.00 5.4 10
1 0.00 256.1 10 0.00 6.2 10 0.00 5.7 10
2 0.00 253.6 11 0.00 6.5 11 0.00 6.2 11

2.0 0 0.00 244.6 10 0.00 6.1 10 0.00 5.7 11
0.5 0.00 254.6 11 0.00 6.8 11 0.00 6.2 11
1 0.00 264.9 12 0.00 6.7 11 0.00 6.1 12
2 0.00 292.7 12 0.00 6.6 12 0.00 5.9 12

10000 0.1 0 0.00 196.6 9 0.00 4.1 9 0.00 4.4 9
0.5 0.00 215.0 10 0.00 4.7 9 0.00 4.1 9
1 0.00 206.3 9 0.00 4.7 9 0.00 4.2 10
2 0.00 258.9 10 0.00 4.9 10 0.00 4.7 10

0.5 0 0.00 249.0 10 0.00 5.6 11 0.00 4.9 11
0.5 0.00 279.9 11 0.00 5.5 11 0.00 4.9 11
1 0.00 274.0 11 0.00 5.6 11 0.00 5.6 11
2 0.00 286.7 12 0.00 5.8 12 0.00 5.8 12

1.0 0 0.00 244.3 11 0.00 5.6 11 0.00 5.8 11
0.5 0.00 257.7 11 0.00 5.3 11 0.00 5.4 11
1 0.00 288.9 12 0.00 6.3 12 0.00 5.6 12
2 0.00 370.3 13 0.00 6.2 12 0.00 6.2 13

2.0 0 0.00 301.5 12 0.00 6.4 12 0.00 5.8 12
0.5 0.00 297.7 12 0.00 6.7 12 0.00 5.3 12
1 0.00 345.7 12 0.00 6.2 13 0.00 6.0 13
2 0.00 322.5 14 0.00 6.6 13 0.00 6.1 13
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Table 3: Comparison between GBD and Piecewise Linearization with initial cuts (AOA1)
and without initial cuts (AOA2) for strongly correlated data and small problem
instances

GBD AOA1 AOA2

Nodes R a cv Gap(%) CPU(s) Iter Gap(%) CPU Iter Gap(%) CPU Iter
500 1000 0.1 0 0.00 5.4 10 0.00 2.0 10 0.00 1.8 10

0.5 0.00 4.3 9 0.00 1.8 10 0.00 1.8 10
1 0.00 4.6 10 0.00 1.9 10 0.00 1.8 10
2 0.00 4.8 11 0.00 1.9 10 0.00 1.9 10

0.5 0 0.00 4.6 11 0.00 1.9 10 0.00 1.9 10
0.5 0.00 4.5 11 0.00 1.8 10 0.00 2.0 10
1 0.00 9.1 17 0.00 2.3 11 0.00 1.9 11
2 0.00 12.9 21 0.00 3.6 12 0.00 3.3 12

1.0 0 0.00 8.7 17 0.00 2.1 11 0.00 1.9 11
0.5 0.00 14.7 18 0.00 2.1 11 0.00 1.9 11
1 0.00 12.3 19 0.00 3.1 12 0.00 3.5 12
2 0.00 18.4 28 0.00 3.5 12 0.00 2.9 12

2.0 0 0.00 11.5 19 0.00 3.3 12 0.00 2.7 12
0.5 0.00 11.0 20 0.00 4.2 12 0.00 2.9 12
1 0.00 14.0 24 0.00 3.7 12 0.00 3.0 12
2 0.00 21.4 33 0.00 3.7 13 0.00 4.0 13

10000 0.1 0 0.00 6.9 12 0.00 1.6 12 0.00 1.6 12
0.5 0.00 7.6 13 0.00 1.9 13 0.00 1.8 13
1 0.00 6.9 12 0.00 1.7 12 0.00 1.6 12
2 0.00 8.3 15 0.00 1.8 13 0.00 1.7 13

0.5 0 0.00 8.4 16 0.00 1.9 13 0.00 1.7 13
0.5 0.00 9.2 17 0.00 1.8 13 0.00 1.8 13
1 0.00 20.1 22 0.00 2.0 14 0.00 1.9 14
2 0.00 19.4 27 0.00 2.1 15 0.00 1.9 15

1.0 0 0.00 19.5 22 0.00 2.1 14 0.00 2.0 14
0.5 0.00 19.8 23 0.00 2.0 14 0.00 1.9 14
1 0.00 18.9 25 0.00 2.0 14 0.00 1.9 14
2 0.00 28.8 35 0.00 2.1 16 0.00 2.0 16

2.0 0 0.00 18.3 25 0.00 2.1 15 0.00 2.0 15
0.5 0.00 19.6 26 0.00 2.1 15 0.00 2.0 15
1 0.00 23.3 32 0.00 2.1 15 0.00 2.0 15
2 0.00 34.2 41 0.00 2.1 16 0.00 2.1 16

1000 1000 0.1 0 0.00 7.2 9 0.00 4.0 9 0.00 3.8 9
0.5 0.00 7.5 9 0.00 2.9 9 0.00 3.3 9
1 0.00 10.0 9 0.00 4.1 9 0.00 3.1 9
2 0.00 8.2 11 0.00 3.5 10 0.00 3.1 10

0.5 0 0.00 7.8 11 0.00 3.8 11 0.00 3.6 11
0.5 0.00 9.3 12 0.00 15.6 11 0.00 11.8 11
1 0.00 12.6 15 0.00 3.6 11 0.00 3.6 11
2 0.00 22.9 20 0.00 3.9 12 0.00 3.3 12

1.0 0 0.00 27.0 14 0.00 3.7 11 0.00 4.3 11
0.5 0.00 40.2 17 0.00 15.1 11 0.00 15.3 11
1 0.00 21.6 19 0.00 3.7 12 0.00 3.8 12
2 0.00 57.6 26 0.00 4.1 13 0.00 3.8 13

2.0 0 0.00 18.0 20 0.00 4.2 12 0.00 4.2 12
0.5 0.00 27.1 19 0.00 4.0 12 0.00 4.5 12
1 0.00 24.5 23 0.00 6.0 13 0.00 5.6 13
2 0.00 50.3 32 0.00 4.5 14 0.00 5.8 14

10000 0.1 0 0.00 12.7 12 0.00 2.1 12 0.00 2.0 12
0.5 0.00 12.9 12 0.00 2.1 12 0.00 2.1 12
1 0.00 13.5 12 0.00 2.2 12 0.00 2.1 12
2 0.00 16.4 14 0.00 2.4 14 0.00 2.3 14

0.5 0 0.00 14.7 14 0.00 2.4 14 0.00 2.3 14
0.5 0.00 14.2 15 0.00 2.4 14 0.00 2.3 14
1 0.00 25.2 19 0.00 2.4 14 0.00 2.4 14
2 0.00 37.7 27 0.00 2.5 15 0.00 2.5 15

1.0 0 0.00 23.3 19 0.00 2.5 14 0.00 2.4 14
0.5 0.00 34.1 22 0.00 2.5 15 0.00 2.4 15
1 0.00 42.2 26 0.00 2.5 15 0.00 2.5 15
2 0.00 59.9 34 0.00 2.7 16 0.00 2.7 16

2.0 0 0.00 106.1 26 0.00 2.6 15 0.00 2.5 15
0.5 0.00 41.1 26 0.00 2.6 15 0.00 2.5 15
1 0.00 46.1 29 0.00 2.6 16 0.00 2.6 16
2 0.00 97.7 41 0.00 2.8 17 0.00 2.8 17
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Table 4: Comparison between GBD and Piecewise Linearization with initial cuts (AOA1)
and without initial cuts (AOA2) for strongly correlated data and large problem
instances

GBD AOA1 AOA2

Nodes R a cv Gap(%) CPU(s) Iter Gap(%) CPU Iter Gap(%) CPU Iter
5000 1000 0.1 0 0.00 7.3 8 0.00 1.2 9 0.00 1.1 9

0.5 0.00 7.0 9 0.00 1.2 9 0.00 1.2 9
1 0.00 7.7 9 0.00 1.3 9 0.00 1.2 9
2 0.00 8.1 10 0.00 1.5 10 0.00 1.3 10

0.5 0 0.00 8.3 10 0.00 1.5 10 0.00 1.3 10
0.5 0.00 8.3 11 0.00 1.5 10 0.00 1.4 10
1 0.00 9.8 12 0.00 1.6 11 0.00 1.5 11
2 0.00 19.4 19 0.00 1.8 12 0.00 1.7 12

1.0 0 0.00 9.1 12 0.00 1.5 11 0.00 1.5 11
0.5 0.00 10.2 13 0.00 1.6 11 0.00 1.5 11
1 0.00 17.0 17 0.00 1.6 12 0.00 1.5 12
2 0.00 23.4 22 0.00 2.0 13 0.00 1.8 13

2.0 0 0.00 16.9 17 0.00 1.7 12 0.00 1.5 12
0.5 0.00 20.2 19 0.00 1.8 12 0.00 1.6 12
1 0.00 22.5 21 0.00 1.8 13 0.00 1.7 13
2 0.00 34.4 28 0.00 2.0 14 0.00 1.9 14

10000 0.1 0 0.00 59.3 12 0.00 3.0 12 0.00 3.0 12
0.5 0.00 62.1 12 0.00 3.1 12 0.00 3.1 12
1 0.00 145.9 12 0.00 3.1 12 0.00 3.0 12
2 0.00 64.8 13 0.00 3.4 13 0.00 3.3 13

0.5 0 2.60* 849.93* 12.56* 0.00 3.4 13 0.00 3.4 13
0.5 0.00 63.1 14 0.00 3.5 14 0.00 3.4 14
1 0.00 658.2 15 0.00 3.5 14 0.00 3.4 14
2 0.19* 1687.03* 23.67* 0.00 3.8 15 0.00 3.8 15

1.0 0 0.00 67.6 15 0.00 3.6 14 0.00 3.5 14
0.5 0.00 104.2 16 0.00 3.7 14 0.00 3.6 14
1 0.10 1033.1 20 0.00 3.7 15 0.00 3.7 15
2 0.84 1641.3 27 0.00 4.1 17 0.00 4.1 17

2.0 0 10.25 2345.2 18 0.00 3.8 15 0.00 3.8 15
0.5 0.74 3633.9 21 0.00 3.9 15 0.00 3.8 15
1 1.50 2281.5 24 0.00 3.8 16 0.00 3.7 16
2 2.06 1608.2 33 0.00 4.3 17 0.00 4.2 17

10000 1000 0.1 0 0.00 7.0 8 0.00 1.3 8 0.00 1.3 8
0.5 0.00 7.4 9 0.00 1.4 9 0.00 1.4 9
1 0.00 7.8 9 0.00 1.5 9 0.00 1.4 9
2 0.00 8.1 10 0.00 1.6 10 0.00 1.6 10

0.5 0 0.00 8.2 10 0.00 1.6 10 0.00 1.6 10
0.5 0.00 8.8 10 0.00 1.7 11 0.00 1.7 11
1 0.00 9.9 11 0.00 1.7 11 0.00 1.7 11
2 0.00 19.4 17 0.00 1.9 12 0.00 1.9 12

1.0 0 0.00 9.4 11 0.00 1.7 11 0.00 1.7 11
0.5 0.00 10.1 12 0.00 1.8 11 0.00 1.8 11
1 0.00 14.9 15 0.00 1.9 12 0.00 1.9 12
2 0.00 27.7 21 0.00 2.1 13 0.00 2.0 13

2.0 0 0.00 14.7 15 0.00 1.9 12 0.00 1.8 12
0.5 0.00 20.0 17 0.00 1.9 12 0.00 1.9 12
1 0.00 24.8 20 0.00 2.0 13 0.00 2.0 13
2 0.00 35.9 26 0.00 2.2 14 0.00 2.1 14

10000 0.1 0 0.00 286.0 11 0.00 4.1 11 0.00 4.1 11
0.5 0.98 995.9 11 0.00 4.3 12 0.00 4.2 12
1 0.00 158.5 12 0.00 4.5 12 0.00 4.5 12
2 10.00 1028.2 13 0.00 4.9 13 0.00 4.7 13

0.5 0 0.00 274.5 13 0.00 5.0 13 0.00 4.8 13
0.5 4.90 824.4 13 0.00 5.0 13 0.00 4.8 13
1 0.00 189.7 15 0.00 5.2 14 0.00 4.9 14
2 10.60 3503.9 18 0.00 5.6 15 0.00 5.2 15

1.0 0 0.00 154.3 15 0.00 5.4 14 0.00 5.1 14
0.5 0.00 190.2 15 0.00 5.4 15 0.00 5.3 15
1 0.15 1602.7 18 0.00 5.5 15 0.00 5.3 15
2 12.91 5130.7 19 0.00 6.0 16 0.00 5.6 16

2.0 0 10.21 2258.1 15 0.00 5.7 15 0.00 5.6 15
0.5 10.54 3122.0 18 0.00 5.7 16 0.00 5.4 16
1 11.47 3814.8 20 0.00 5.7 16 0.00 5.4 16
2 7.52 4520.1 23 0.00 6.1 17 0.00 5.9 17

*average computed only over 9 instances since 1 instance terminated with the error message
“integer solution contains unscaled infeasibilities”
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optimality in seconds. However, for larger problem instances of the size 5,000 and 10,000

nodes (see Tables 2 & 4), while AOA (both AOA1 and AOA2) is still very efficient, solving

all instances in less than 10 seconds on average, GBD starts to struggle for many instances,

leaving a substantial optimality gap even after 2 hours of CPU time. Further, GBD finds

strongly correlated instances (see Tables 3 & 4) significantly more difficult (as reflected in

larger CPU times or optimality gaps) than weakly correlated instances (see Tables 1 & 2).

This is consistent with the general findings in the literature on NKPs (Martello et al., 2000).

However, AOA (whether AOA1 and AOA2) exhibits little change in performance between

weakly and strongly correlated instances. Further, for NKPCS, use of initial set of cuts of

the form (31) has little impact on the performance of AOA. This is in contrast with the

observation by Elhedhli (2005) for NKPs (without capacity selection decision).
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