Working Paper

P

"

1ehe

ONE AND TWO FACILITY NETWORK DESIGN REVISITED
By
Trilochan Sastry

W.P. No. D8-08-085
August 1998 \L’ éé

WP1466

lﬂ'l\gpll“

98/-08-05
(1466)

The main objective of the working paper serfes of the
[IMA is to help faculty members to test out their
research findings at the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD - 380 015
INDLA

Abstract

The one facility one commodity network design problem OFOC with flow
costs considers the problem of sending d units of flow from a source to a
destination where capacity is purchased in batches of C' units. The two
commodity problem T FOC is similar, but capacity can be®purchased either
in batches of C units or one unit. Flow costs are zero. These problems are
known to be NP-hard. We describe an exact O(n33") algorithm for these
problems based on the repeated use of a bipartite matching algorithm. We
also present a better lower bound ot Q(n?") for an earlier (n?*) algorithm
described in the literature where k = |d/C| and k¥* = min {k, |(n —2)/2]}.
The matching algorithm is faster than this one for k > [(n — 2)/2]. We
next consider an extended formulation of the problem, describe an efficient
heuristic based on this formulation, and use it to shovs that for problems with
up to five nodes, the formulation guarantees integer optimal solutions. We
also give an example of a six node graph for which the extended formulation
has a fractional solution. Finally, we provide another reformulation of the
problem that is quasi integral, i.e., every edge of the integer polytope is an
edge of the polytope associated with the linear pregramming relaxation of the
reformulation. This property could be useful in designing a modified version
of the simplex method to solve the problem using a sequence of pivots with
integer extreme solutions, referred to as the integral simpler method in the

literature.

Rey words and phrases: network design, exact algorithm, integer solutions,
quasi-integral.

1 Introduction

In this paper we consider the one-facility, one-commodity (OFOC) and the
two facility, one commodity (7' FOC) network design problems. The problem
OFOC can be stated as follows. Consider a directed graph G = (V, A) with
a source s and a destination ¢. Capacity on each arc can be purchased in
integer multiples of C units with each batch of C units costing w, > 0 on
arc a. There is a flow cost of p, > 0 per unit of flow on arc a. The total
cost of the flow is the flow cost plus the cost of purchasing capacity. The
objective is to design a minimum cost network to send d units of flow from
s to t. The two-facility one-commodity network design problem (T FOC) is
similar to O FOC where we assume that capacity can be purchased either in
batches of size 1 at a cost of w! > 0 or size C at a cost of w? > 0, and that
flow costs are zero.

A more general form of these problems with several sources and sinks arises in
the telecommunications and transportation industry. The problem TFOC
has been studied by Magnanti and Mirchandani(1993). They give an in-
equality description and report computational results for the problem. The
multi commodity problem has been considered by Magnanti, Mirchandani,
and Vachani(1995) and Chopra et al. (1995). Chopra, Gilboa and Sastry
(1997) show the problems OFOC and TFOC to be NP-hard. They use re-
sults characterizing optimal solutions to OFOC and TFOC to describe an
exact algorithm to solve OFOC and T FOC based on finding a shortest path
on an auxiliary graph with O(n2l¥¢!) nodes. They also obtain extended
formulations in each case and report computational results based on these
formulations.

We describe an integer programming formulation for OFOC. For each arc
(7,7), let fi; be the flow and y,; the batches of capacity installed (each batch
provides C units of capacity). Let d = kC + r for some integer k£ and
0 < r < C, where we define r = C if d is a multiple of C. OFOC can be

formulated as follows:
»

Min Y wiyi+ D pifi

(t.y)€A (1.7)€EA

—kC —r fori=s
ij.‘—Zf;,'-‘— kC+r fori=1t (1)
i J

0 otherwise
Cyi; — fi; 20 (2)
y, f > 0;y integer.
The problem TFOC has a similar description (see also Magnanti and Mir-

chandani (1993)). Let y}; and y?j denote the units of facility 1 and 2 respec-
tively installed on arc (z, 7).

Min Y (wly) +wly)

(i,7)€EA
s.t.
—kC~-r fori=s
S fi=Y fij=3 kC+r fori=t (3)
J J 0 otherwise
yilj + Cyizj - fi; 20 (4)

y, f > 0;y integer.

all arcs (., 7) are not restiictive. Otherwise, the problem is unbounded since
we can set y;; or y};,yZ to an arbitrarily large value. In the next section,
we describe an exact O(n33”) algorithm for the problem which performs
better than the algorithm described by Chopra, Gilboa and Sastry (1997)
for large k. We also show that we can bound ‘the quantity of flow that
goes on a shortest path from source to destination, and use it to derive a
better lower bound on the algorithm described by them. In Section 3 we use
an extended formulation of the problems to describe a dual based efficient
heuristic. We then derive conditions under which the dual heuristic and the
linear programming relaxation of the extended formulation guarantee integer
optimal solutions. We also prove that for problems with at most five nodes,
the formulation guarantees integer optimal solutions and give an example of
a six node problem with a fractional solution. In Section 4 we describe a
quast integral polytope for OFOC and TFOC such that every edge of the
integer polytope is an edge of the quasi integral polytope.

T'he assumptions that w,; > 0 for OFOC and w}j >0, w?j > 0 for TFOC for

2

2 An Exact Algorithm

We use a result of Chopra, Gilboa and Sastry (1997) characterising optimal
solutions of OFOC and TFOC to derive an algorithm for these problems.
Consider an optimal solution vector (y~, f*) where g is the capacity installed
on arc a and f] is the flow through arc a. Note that since w, > 0 and p, > 0
for OFOC, given the flow vector f* in any optimal solution, the optimal
capacity installed can be assumed to be given by y; = [f>/C]. Similarly,
since wl > 0, w? > 0 for TFOC, we can assume that y!* + Cy>* = f: if
yor > 0 and y2* = [f2/C] if y!* = 0. Given a solution (y~, f*), define an arc
a with f; < Cy; to be a free arc, and any connected set of free arcs (ignoring
direction) without cycles as a free path.

Theorem 1 (Chopra, Gilboa and Sastry (1997)) There ezists an opti-
mal solution to OFOC and TFOC with ezactly one free path from source
8 to sink t, such that free arés directed forward along the paih have a flow
from {IC +r}f,, and those directed backward have a flow from {IC —r}f,.
Further, all other flows equal pC for some integer p > 0.

Hereafter, we only consider optimal solutions with one free path as described
by Theorem 1. Any node i on the free path with a free forward and reverse
arc leaving it has at least C units leaving it, and hence, must have at least
C units entering it. Label node 7 as an in turn nodz. Similarly, any node :
with a forward and a reverse arc entering it has at least C units leaving it,
and is an out turn node. In addition, we define s to be an out turn node, and
{ to be an in turn node. Notice that there are an equal nuraber of in turn
and out turn nodes. Other than flows on the free path, there are k units of
full flow where each unit of full flow corresponds to. C' units. Thus we can
consider the optimal solution to consist of k units of full flow leaving node s,
and each such full flow either enters an in turn node i # t, or directly flows
to node ¢. Similarly, k units of full flow enter node ¢, where each unit either
starts at some out turn node : # s, or directly starts at node s. Since we
count the full flows separately, we consider the free path to have exactly r
units on forward arcs and C' — r units on reverse arcs. Since arc costs are
nonnegative and since there is one free path with r units leaving node s and
entering node t, we assume that no reverse arcs enter or leave nodes s and ¢.

Example 1.

Consider Figure | which has 6 nodes. If s —1 -2 —3 -4 — ¢ is the free
path, then s,1,3 are out turn nodes and 2,4,¢ are in turn nodes. If £ = 3,
then 3 units of full flow start at node s and end at each of the nodes 2,4, 1.
Further, 1 unit of full flow starts at each of the nodes 1,3, and ends at node
t. Forward arcs (s,1),(2,3),(4,t) have a flow of r units each, and reverse
arcs (2,1),(4,3) have a flow of C — r units each.

INSERT FIGURE 1 HERE

Using the structure of the optimal solution, and the number of turn nodes,
we show that we can bound the amount of full flow that flows directly from
node s to node t. Let k* = min {k, [(n — 2)/2]}, and let a(z,), b(3,7) and
¢(z,7) be the length of the shortest distance between nodes i and j using
Wyy + CPyyy, Wuy + TPuy and wy, + (C — r)py, as arc costs for OFOC, and
w2, min {rw! , w2}, and min {(C — r)wl,, w2} as arc costs for TFOC.
Let the shortest paths between nodes ¢ and j of length a(i, 7),8(z, 1), c(z, 7)
be the a, 8 and é§ paths. Assume that there is a path from s to every node
J and from every node j to node t. Otherwise node j can be deleted from
the graph. We also assume that k& > 1: otherwise, the problem reduces to

finding the shortest 8 path of length b(s,t) without any turn nodes.

Lemma 1 There ezists an optimal solution to OFOC and TFOC such that
at least (k — k*)C units flow directly from s to t on the shortest a path of
length a(s,t).

Proof

Restrict attention to optimal solutions with exactly one free path. The num-
ber of in turn nodes and out turn nodes are equal, and hence, excluding
nodes s and ¢, there are at most [(n — 2)/2] in turn nodes on the free path.
Therefore, at most min {k, [(n — 2)/2|} units of full flow leaving s enter
these in turn nodes, at which they split into two flows of r and C — r. The
same number of full flows leave the out turn nodes and enter node t. The
remaining units of full flow can therefore go directly from node s to node ¢

on the shortest path.

Thus, if £ > 2 in Figure 1, then k£—2 units of full low can be sent directly from
node s to node ¢t. Chopra, Gilboa and Sastry describe an exact algorithm for
the problem which is a shortest path algorithm on an auxiliary graph with
n?+*! nodes, and hence takes ((n?*) time. We call this the multiple path

algorithm.

Corollary 1 The multiple path algorithm can be modified to solve OFOC
and TFOC in Q(n?*") iterations on an auziliary graph with n?*"t! nodes.

Proof

Lemma 1 implies that (k—k*)C units of flow can be sent directly from source
to sink on the shortest path of length a(s,t). The problem reduces to finding
a solution for k*C + r units of flow, and hence the auxiliary graph needs to
have only n?*" nodes.

O

We now show that if the free path is fixed, then the full flows can be obtained
by solving a bipartite matching problem on an auxiliary graph. For any
solution with exactly one free path, let / and O denote the set of in turn
and out turn nodes excluding s and ¢, and let k; = min {k, [/|}. Create k;
copies each of nodes s and ¢, denoted by s(1),...,s(ks) and t(1),....¢(k;).
Let all in turn nodes 7 U {{(1),...¢(k;)} form one partition of nodes, and let
all out turn nodes O U {s(1),...,s(ks)} form the other partition. There is a
directed arc from each out turn node 7 to each in turn node j of cost a(z,7).
Let Hjo(K) denote the bipartite graph with nodes OU {s(1),...,s(k/)} and
TU{t(l),...,t(k;)}, and arcs as defined. For the given set of in turn nodes
I C N, and out turn nodes O C N, the full matching problem is to find the
minimum cost perfect matching in the bipartite graph -H;o(K). Let K(I,0)
be the cost of the optimal matching plus (k — k;) * a(s,t), which is the cost
of sending the remaining (k — ky) units of full flow from s to t. Assume that
if (4,5) ¢ A, then w;; = oo for OFOC and w}; = w{, = oo for TFOC. Each
arc (z,7) in any full matching in Hjo(K) corresponds to a full segment of
arcs on the original graph G, which connect out turn node ¢ to in turn node
J. We say that a matched arc (i, j) in Hjo(K) passes through arc (u,v) in G
if (u,v) is on the full segment corresponding to the matched arc. The total
full flow on arc (u,v) equals the number of matched arcs in H;o(K) passing
through it.

Lemma 2 For a given free path, the optimal solution to OFOC and TFOC
can be obtained by solving the full matching problem.

Proof

Let TU{t}, OU {s} denote the set of in turn and out turn nodes on the free
path. Each arc (¢,7) € Hjo(K) in the full matching corresponds to one unit
of full flow leaving out turn node 7 and entering in turn node j in the original
graph G. It is easy to verify that we get a feasible solution.

Consider any minimum cost solution to OFOC or TFOC for the given free
path. Each in turn node j € I has one unit of full flow entering it which
splits into two free flows of r and C — r units after leaving 5. Similarly, each
out turn ¢ node has one unit of full flow leaving it which is formed from two
free flows of r and C — r units entering it. If we consider nodes s and ¢ to be
split into nodes s(1),...,s(kr) and ¢(1),...,t(ks), then there is a one to one
correspondence between nodes in the set O U {s(i),...,s(kr)} and nodes on
the set 7 U {¢(1),...,t(ks)} with one unit of full flow leaving a node in the
first set and entering a node in the second set. Clearly, any full flow between
an out turn node z and an in turn node j is on the shortest o path between :
and j of cost a(z,). Therefore, these k; units of full flow correspond to a full
matching in Hjo(K). The total cost K(I,0) of the optimal full matching in
Hio(K) therefore equals the cost of the full flows in G.

]

Next, we need to identify the optimal tree path. Given a set of in turn nodes
IU {s}, and out turn nodes O U {t}, we can number them in a natural order
as we go from s to t along the free path. Forward arcs between an in turn
node and the next out turn node form a forward segment, and reverse arcs
between an out turn node and the next in turn node form a reverse segment.
In addition, forward arcs between s and the first out turn node in O, and
forward arcs between the last in turn node in I and t also form forward
segments. Thus in Figure 1, if s — 1 — 2 —3 — 4 — t is the frce path, then
(s,1),(2,3),(4,t) are forward segments and (2,1), (4, 3) are reverse segments.
In this case the segments consist of one arc, but in general, each segment
consists of several arcs. Consider bipartite graph Hjo(F') induced by nodes
TU{s} and O U {t}, arcs between each in turn node and each out turn node,
and arcs between s and each out turn node j # s, and between each in turn
node ¢ # ¢ and t. The length of each arc (7,) in Hjo(F') equals b(z. 7). The

6

forward matching problem is to find the minimum cost perfect matching on
graph H;o(F). Let F(I,0) denote the cost of the optimal forward matching.
Notice that each arc (7,) of length b(:,j) in a forward matching in Hro(F)
corresponds to a forward segment of arcs between out turn node : and in
turn node j in graph G of the same length. The reverse matching problem
is defined similarly on bipartite graph H;o(R) with an arc between each in
turn node ¢ # t and out turn node j # s of length ¢(z, 7). Let R(I,O) denote
the cost of the optimal reverse matching. Here again, each arc in any reverse
matching in Hjo(R) corresponds to a reverse segment in G.

The optimal forward and reverse matchings may not induce one free path, but
may have a free path with a set of cycles as in Figure 2, which shows only the
free arcs. These free cycles have alternate forward and reverse segments. The
forward matching consists of {s,1],[2, 3], [4, 5], (6, t] each carrying r units of
flow, and the reverse matching consists of [2, 5], [4, 3] and [6, 1], each carrying
C — r units of flow. Thus, there is a free cycle 2 — 5 —4 — 3 — 2, and a free
path s — 1 — 6 — t where arc (6,1) is a reverse free arc. The solution to the
full matching problem with 7 = {2,4,6} and O = {1,3,5} would however
give a feasible solution since nodes 2,4 and 3,5 would each have C units of
flow entering and leaving. If the reverse matching was [2,1],[4,3],[6, 5], we
would have a free path with no cycles.

INSERT FIGURE 2 HERE

Lemma 3 For a given set of in turn nodes I and out turn nodes O such
that |I| = |0| and IN O = ®, solving the full, forward and reverse matching
problems gives a feasible solution to OFOC or TFOC, with ezactly one free
path and perhaps some free cycles. '

Proof

Suppose we first solve the forward and reverse matching problems. We show
that there is exactly one free path. Each node 2 € I has one free forward arc
and one free reverse arc leaving it. Similarly, each node : € O has one free
forward arc and one free reverse arc entering it. However, node s has exactly
one free forward arc leaving it, and node ¢ has exactly one free forward arc
entering it. If we proceed from node s along free arcs, ignoring arc directions,
we must eventually reach node ¢ since each node on the path has degree two.
If the free path does not visit all turn nodes, then the turn nodes not on the

free path form free cycles. If we now solve the full matching problem, it is
easy to establish that we obtain a feasible solution.

]

Let the full, forward and reverse matchings comprise the three matching
solution (f,y)i0. Let M(I,0) = K(1,0) + F(I,0) + R(I,0O) denote the
cost of the solution obtained by solving the three matching problems. Clearly,
M(1,0) equals the minimum cost for the given nodes I, O if the forward
and reverse matchings form a connected path between s and ¢ without any
cycles. Otherwise, let I C I, O C O denote the in turn and out turn nodes
on the free path, and I \f , O\é the nodes which form free cycles. The tree
cycles formed by nodes in I\ and O\O correspond to a total of p < |I\[|
units of full flow between s and ¢, where p is an integer equal to the total
amount of full flow between s and in turn nodes I\I. For instance, in Figure
2, one unit of full flow may enter each of the nodes 2 and 4 from node s,
and one unit of full flow leave each of the nodes 3 and 5 and enter node t.
This corresponds to sending 2 units of full flow from s to t. Thus, these p
units of full flow can be sent on the shortest path between s and f of length
a(s,t) without increasing cost. The remaining |/ \I| — p in turn nodes and
|O\O| — p out turn nodes correspond to feasible flows that are separate from
the free path defined by I,0. For instance, in Figure 2, if p = 0, then one
unit of full flow may leave each of the nodes 3 and 5, and enter nodes 2 and 4.
These feasible flows have nonnegative cost, and hence, M(I,0) < M(I1,0).
Therefore, if we find M (1, O) for all possible disjoint subsets 7,0 of nodes
such that |I| = |O| and 1N O = ¢, we would also find the solution for 1,0,
and obtain the optimal solution. Let (f,y)s 4 denote the optimal solution if
there are no reverse segments in the feasible solution, i.e, if we send kC units
along the shortest o path and r units along the shortest 8 path. An exact
algorithm can be described as follows.

The Three Match Algorithm

begin

find a(z, 7), b(z,), c(2,) for all pairs of nodes
I"=0"=® M= kxa(s, 1)+ b(s,t)

(f&y) — (fay)¢‘¢

forall LOCN:{I|=|0|,IN0O =¢do
begin

solve the matching problems on Hio(F'), Hio(R), Hio(K) and obtain (f,y)ro
if M(I,0) < M then do
begin
M=M(I1,0)
(fry) — (v
r=10"=0
end
end
end

It takes O(n?) iterations to find a(z, j), b(, 5), (4,) for all ¢, € N. For each
subset U O C N of cardinality 2¢q < n, there are 2C, ways of splitting
the 2¢ nodes into two sets I and O of equal cardinality, where »C), is the
number of ways of choosing ¢ items from n. There are *C3, subsets 7 U O of
cardinality 2q. For each pair of subsets I, 0 of cardinality q each, we solve
three bipartite matching problems which takes p(n,m) time where p(n, m)
is a polynomial in n and m. The compexity of the algorithm is therefore

0.5n 0.5n
Z(nCZQ 2qu)p(n, m) S P(Tl, m) Z (nczq)22q
g=1 g=1

< p(an)f__:(lJr?)"
= 0(3"p(n,m))

Bipartite matching can be solved by the Hungarian method in O(n3) time.
The running time, O(n33") of algorithm three match is better than the Q(n?*)
multiple path algorithm described by Chopra, Gilboa and Sastry if k is large.
However, Lemma 1 implies that the multiple path algorithm can be improved
to Q(n%*"). Even in this case, algorithm three match is better than the

multiple path algorithm for k > (n — 2)/2.

The three match algorithm can be speeded up in practice as follows, although
the worst case performance does not improve. Suppose that for a given I,
O, the free path visits only nodes I C I and O C O. Then since M(I,0) <
M(1,0), we need not check any subsets Q; C I, Qo C O such that IcaQ,
O C Qo since M(I,0) < M(Q;,Qo). Therefore, the algorithm can start
with [I| = |O} = |(n ~2)/2] and then decrease the cardinality of / and O.
If at any stage, |I| < ||, we can ignore subsets Q; of I such that |7 C Q.

9

3 Integer Optimal Solutions

Chopra, Gilboa and Sastry describe an extended reformulation of OFOC,
and show that it represents a valid formulation for the problem. We describe
a slightly modified version EF of the formulation which is valid for OFOC
and TFOC where we eliminate the fixed charge variables y;;, y; and yZ.
Define w;;(h) = wi; + Cpy;, wij(e) = wi; + rpij, wij(g) = wyj + (C —7)py;
for OFOC and w;j(h) = min {w}, Cw}}, wij(e) = min {w}, rw}}, and
wij(g9) = min {w}, (C —r)w};} for TFOC.

$3?

Min Y [wi;(h)hi, + wij{e)ei; + wi;(9)gi;)]

(17)eA
s.t.
-1 fori=s
i 0 otherwise
-k fori=s
Z(h]‘,’ + 95 — h,‘j — gij) = k fOI’ 1=t (6)
J 0 otherwise
€irs h,'_,, 9i5 Z 0, integer

In this formulation, variables e;;, g;;, h;; denote the forward, reverse and full
flows in a feasible solution. Define the polytopes,

EP = {(e,g,h) > 0|(e, g, h) satisfies (5),(6)},

EIP = {(e,g,h) € EPle,g € {0,1}, h integer}.

We show that EP always gives integer optimal solutions for graphs with at
most 5 nodes. We also give an example of a 6 node graph with a fractional
solution. Hence, E P guarantees integer optimal solutions for graphs,with at
most 5 nodes. To establish the result, we describe a dual based algorithm Free
Tree that provides a heuristic solution for OFOC. The algorithm identifies
a tree with a free path connecting s to every node. Assume that if (z,j) ¢ A
for any node pair ¢, j, then w;;(h) = wij(e) = w;ij(g) = 0. Since no reverse
arcs enter or leave nodes s and ¢, assume that no g flow enters or leaves nodes

10

s and t, and hence g,; = g;, = 0, g;; = ¢g;, = 0 for all nodes j. The dual
DEF of the LP-relaxation of EF is for OFOC is

Max(a; — a,)k + 5 —

subject to:
a_,' — Q; S w,'_,‘(h)
Bi— B < wij(e)
-8+ 8 < wjl(g)
a;, /Bi Z 0.

The algorithm first fixes a set of a; values satisfying the dual constraints
a; —a; < w;;(h). It then finds a free path based on these a; values by using
a shortest path label correcting type of procedure to ensure that the dual
constraints §3; — 3; < w;j(e) and a; — a; — B; + B < w;j(g) are satisfied.
It then adjusts the values of a; and finds a possibly better free path, and
iterates until dual feasibility is attained. The number of iterations can be
arbitrarily fixed at some number, say u. The free path obtained from the
label correcting procedure is called the standard free path.

The a; values are adjusted at the end of each iteration based on the full
matching associated with the standard free path having turn nodes I,0.
However, unlike the exact algorithm which always maintains primal feasibil-
ity, we assume that each of the nodes s and ¢ is split into |/| while solving
the full matching. Let Hj,(K) denote the corresponding graph. Suppose
nodes iy, 71}, [¢2,72],- -, [%4,Jq), [2,7] are matched in the full matching, where
{i1,.- 112} COU {s} and {j1,...,jq, 7} C 1U {t}. An alternating path
between s and any out turn node : matched to node] 88— J1—2 —Jo—13—
..—J)q—tq—J) —t Where full segments s —7,, 21 —J2, ...) are traversed in
the forward direction and full segments 7, ——]1, 1y —]2, .eylg—7Jg, t—} in the
reverse direction. Full segments traversed in the forward dlrectlon correspond
to unmatched nodes in Hjo(K'), and full segments traversed in the reverse
direction correspond to matched nodes in Hjo(K). The cost of this alter-
nating path is defined as a(s, j1) — a(41, 1) + a(21,j2) — - .- + a(iq, 1) — a(z, 7).
Let m(z) be the minimum cost of all alternating paths to out turn node :.

There are at least two possible rules for adjusting these a, values. First, for
each out turn node z, we set a; = a(s,t) — a(i,t). Another possible rule is to

11

set o; = m(z) for all out turn nodes. However it reqiires more work to set
a; values using this rule. For all other nodes we set o; = min {o; + a(7,7) :
1 € OU {s}}. Let LB denote the value of the lower bound on the optimal
cost equal to the dual optimal solution k * (& — a,) + (B¢ — B,)-

The Free Tree Algorithm

Initialize.

for all i € V let «; = a(s,1), Bi = b(s,1), pred(i) —- s.
Ir=0"=4®,count=0,LB=0

while count < p do

begin

call free path

if LB < kxa(s,t)+ B, and count < y — 1 then
begin

LB =kxa(s,t) + B, (I",0") = (1,0)

solve full matching on Hj,(K)

for: € 0, a; = m(3)

for j ¢ 0, ¢; = min {a; +a(i,5) :1 € O, a(s,j)}

end
count = count + 1
end{while}

procedure free path
B; =b(s,j)forall jEN
while some arc (2, 7) satisfies 8; > 3; + w;;(€) or
Bi > B; + wij(9) + o — o; do
begin
if 8; > B; +w;;(e) then \ * (7, 7) is a possible forward arcx\
begin :
B; = B: + wi;(e)
pred(j) «—1
end
if 3; > B; + wij(9) + @ — a; then \ *(z,7) is a possible reverse arcx\
begin
Bi= B+ wi(g) + i — o
pred(i) «— j
end

12

end

uging pred(i) values trace free path and find 7,0
return 3;, [,0

end{ free path}

It is easy to obtain an upper bound on the optimal cost. Solve the full
matching problem on Hjo(K) assuming k; = min {|I|, k} where I,0 are
the in turn and out turn nodes on the standard free path obtained from the
algorithm, and let the cost be M(I,0). However, M(I,0) may equal oo if
a full matching is not feasible as in Figure 1 with ¥ = 1 and a free path
§—=1—-2-3—-4—1t If M(/,0) is finite, set e;; = 1 for all forward arcs
and g;; = 1 for all reverse arcs on the standard free path. Let the cost of
the free path be F(I,0) + R(1,0), and let HEUR = min {k * a(s,t) +
b(s,t), M(1,0)+ F(I,0)+ R(I,0)}. We thus obtain an upper bound on
the optimal solution, whereas free tree gives a lower bound LB = k* a, + ;.
We have not tested the heuristic since the computational results of Chopra,
Gilboa and Sastry show that the extended formulation EP gives optimal
integer solutions for OFOC and T FOC in all instances tested. However, the
heuristic is used here to derive conditions on the cost under which we get
integer solutions, and to prove that for problems with up to five nodes, EP
always guarantees integer solutions.

Example 2

We use problem OFOC and Figure 1 to illustrate algorithm free tree which
shows a graph with 6 nodes where fixed costs w;; are shown above the arcs
and the variable costs p;; are shown below the arcs. If a particular cost on
an arc is not shown, then it is zero. Let C = 10, r = 1, and k& =1 i.e,
d=10k+1=11. :

At initialisation, a; = a(s,?) and B; = b(s,1) for all nodes, and o, = 25.
After the first call to procedure free path, the free pathis s —1—-2—-3—-4—1
and the f; values are

/38 20’61 = 15/3‘2“_"' I’ﬂ3=2aﬂ4:23ﬂt = 3.

This gives a lower bound LB = 25 % k + 3. The full matching is [s, 2], [s, 4],
[1,t] and [3,1], and the o; values are adjusted to

a, =0,ay =5,a;, =10,a3 = 15,04 = 20,y = 25

13

whether we use the rule o; = m(7) or a, = a(s,t) — a(i,¢) for all out turn
nodes. After the next call to procedure free path, the free path remains
unchanged and the §; values are

ﬂ8=01ﬂ1 = la/B'l =63ﬂ3: 77,34: 12,,3t = 13-

The algorithm does not provide any further improvement in the lower bound
and terminates with a lower bound of LB = 38 and an upper bound of
HEUR = 41 = a(s,t) + b(s,t) if k = 1, which in this case equals the cost of
the optimal solution.

Lemma 4 Algorithm free tree gives a dual feasible solution.

Proof

We first show that for any two out turn nodes i,u € O, o; + a(i,u) > a,,
and hence, the re-set a values for out turn nodes satisfy the dual constraint
a, — o; < a(i,u) < wiy(h). Uf we use the rule a; = m(z), and node u is
matched to node v, then a;+a(z, u) = m(:i)+a(i,u) > m(i)+a(i,v)—a(u,v) >
m(u) where the last inequality follows from the fact that m(z)+a(z,v)—a(u,v)
is an upper bound on the cost of an alternating path to node u that passes
through node i. Notice therefore that a; + a(z,s) > a(s,s) = 0 for every
node ¢ € O when we re-set the values after the first iteration. Hence, a, =
min {a, + a(i,s), a(s,s)} = 0. This holds true after every iteration, and
hence, a, always equals zero. Similarly, o; = a(s,t) after every iteration.

If we use the rule o; = a(s,t) — a(z,t), then a; + a(z,u) = a(s,t) — a(s,t) +
a(z,u) > a(s,t) — a(u,t) = o,. Arguments similar to those used in the
previous case establish that o, = 0 and o; = a(s,t) after every iteration.

Next, we show that we do not have any negative cost free cycles at the start
of any iteration in procedure free path. This ensures that the procedure
terminates, and hence algorithm free tree terminates. Consider any cycle
®. Suppose we go around the cycle in a clockwise direction. Let @7 (%)
denote the set of arcs in the forward (reverse) direction. Let wy(e) (ws(g))
denote the total cost of arcs in @/ (®%). Let w;(h) (ws(h)) denote the total
cost of arcs in ®/ (®*) if C units are sent on these arcs. Procedure free path
measures the cost of any reverse arc (j,¢) as 8; — 8; = a; —a; +wji(g). Hence
the total cost K around the cycle for procedure free path is

K =ws(e) + wy(g) + Y (o —).
kled®

14

Hence K > 0 if and only if

Y (= ax) S wy(e) + wi(g).

kled®
Since the a; labels are updated at the end of every iteration and always
satisfy the constraints a; — a; < w;;(h),

Z (a, —_ Clk) S wb(h), and

kled®

Z (01 - ak) S wf(h).

klcdf

S (ar—ar)= Y (a—),
kled® kieds
Z (a4 — ag) < min {wy(h), wy(h)}.
kic®b
Taking a convex combination of wy(h) and wy(h) with weights r/C and
(C — r)/C shows that min {ws(h), ws(h)} < rws(h)/C + (C = r)ws(h)/C.
In problem OFOC, rw;;j(h)/C = r(wi; + Cp;;)/C < wi; + rpij = wjj(e). In
problem TFOC, assume w} < Cwj;: otherwise, we need not consider facility
2 while finding an optimal solution. Therefore, w;;(e) = min {rwj;, wi} >
rw?/C > rw;;(k)/C. Similarly, (C — r)w;;(h)/C < w;j(g) for both OFOC
and TFOC. Therefore, 3, cqv(a; — ar) < wy(e) + wy(g). It follows that
K > 0. The same arguments hold if we go around the cycle in a counter
clockwise direction.

Since

Since we do not have any negative cost cycles, the procedure free path will
terminate. For all arcs, the inequalities 8, —3; < w;;(e) and a;—a; —B;+ ;i <
w;;(g) are therefore satisfied since otherwise the procedure will not terminate.
The labels a, are changed at the end of every iteration, while ensuring that
the constraints a; — a; < a(i, J) < w;;(h) are satisfied. We therefore have a
dual feasible solution.

O
We say that algorithm free tree satisfies the a maiching condition if a; =
a;+a(z,) for every matched pair of nodes i and j in the optimal full matching

in Hio(K') such that : € OU {s} and j € T U {t}.

15

Lemma 5 [f a standard free tree satisfies the a matching condition then
algorithm free tree solves OFOC and TFCO.

Proof.
Construct a primal solution as follows. Set e;; = 1 for forward arcs and
gi; = 1 for reverse arcs on the standard free path. Set k;; equal to the

number of full matchings passing through arc (z,7) in G. It is easy to verify
that we obtain a feasible solution to EF.

We show that this solution satisfies complementary slackness conditions. If
ei; = 1, then arc (z,7) is a forward arc on the standard free path and hence
B; — Bi = wij(e). If gi;j = 1, then arc (2,7) is a reverse arc on the free path.
Hence a; — o; — B8; + B; = w;j(g). If arc (7,7) carries h flow from an out
turn node to an in turn node, then it is on a full segment corresponding to
a matched arc (i",j*) in Hjo(K). Clearly, this full segment is a shortest
a path between nodes i* and j* in G of length a(:*, ;). Therefore, a; —
a; = w;;(h) for all arcs (¢,) through which the matched arc (:*, j*) passes.
Therefore complementary slackness conditions are satisfied, and hence we get
an optimal integer solution.

a

For instance, in Figure 1 and Example 2, the o matching condition is satisfied
if £ = 2. Algorithm free tree gives the same dual solution as in Example 2,
which now costs 63. The optimal primal solution with free path s — 1 —2 —
3 — 4 — t and full matching [s, 2], [s, 4], [1,] and [3,¢] also costs 63. We now
establish further conditions for obtaining integer optimal solutions from free
tree. Algorithm free tree finds a free path with an associated set of turn
nodes 1,0 after a call to procedure free path. Immediately after this, the
algorithm re-sets the o; values for all nodes based on the turn nodes I and
O. It then calls procedure free path again and finds another free path based
on the revised a; values. Let I*,0* denote the revised set of turn nodes.
If the a; values are re-set based on the minimum cost alternating distance
m(z), and I* = I, O* = O, then the free path fits the turn nodes 1, 0.

Lemma 6 If a free path fits a set of turn nodes I and O, then algorithm free
tree gives an integer optimal solution.

Proof.
We show that the o matching condition is satisfied. If a; = a; + a(i,))

16

for every in turn node j € I U {t} matched to out turn node : € O U {s},
then we are done. Suppose on the contrary, o; < o; + a(z,j) for some in
turn node j matched to out turn node i. Since a, = 0, it follows that
o; = min {a, +a(u,j) : u € OU{s}}. If a; = o, + a(u,) for some u # i,
u € OU {s}, then a, = m(u), a; = m(2) and m(u) + a(u, j) — a(z,7) < m(z).
Hence, we can find an alternating path to node : of lower cost via node
u. However, this is a contradiction since m(z) is the cost of the minimum
alternating path.

a

Theorem 2 If graph G has at most 5 nodes, then EF always gives integer
optimal solutions for OFOC and TFOC.

Proof
If G has at most 5 nodes, then it has at most one in turn node other than node

t. We use a modified version of free tree where we initially set a, = a{s,u)
for every node and then re-set a; for any out turn node ¢ # s on the free
path to

@ = max {§s,2) +a(s,7) + e(J,1) = b(s,j), a(s,7) + ¢(j,2) + b(3,1) — b3, 1),
a(s,t) — a(3,1), a(s,j) — a(3,)}

after every call to procedure free path. The value of a, for other nodes u
is re-set using the relation a, = min {¢; + a(z,u), a,}. We show that we
get an optimal integer solution in at most three calls to procedure free path.
Suppose there are no turn nodes on the standard free path after a call to free
path. Then the a matching condition is trivially satisfied. Hence, Lemma 5
implies that free tree solves OFOC and TFOC.

We now consider cases where I = {j}, O = {1}, INO = ®, 1 # s,t; j # s,t
after the first call to procedure free path, and there are turn nodes other
than s and ¢ on the free path after the second and third calls. Let s,z,j,u,t
be the 5 nodes and let ¢, a,, a;, denote the values when we re-set them
after the first call, and o, a2, a? the values when we re-set them after the
second call. Notice that for any in turn node j, a; + a(i,j) > a(s,7) and
hence, a; = a(s,j). Let I*,O* denote the in turn and out turn nodes after
the second call to free path. Let b(z,j) and a; — a; + (7,) denote the cost of
a forward arc (7,3) and a reverse arc (J,1) respectively since procedure free

17

path sets 3, — ; equal to these quantities for any arc on the free path. For
any free path iy — i3 — ... — i, let ¢/(¢; — iz — ... — i,,) denote the cost of
the path after the /th call to procedure free path for { = 1,2,3. We say that
path iy — 73 — ... — 7, has no turn nodes if none of the intermediate nodes
t2—...—~1m_1 18 an in turn or out turn node. There are six cases to consider.

Case I. [=TI = {3} and O = O* = {3}.

In this case the free path remains the same before and after the second call
to procedure free path. If o; = a(s,t)—a(s, t), then a(s,t)—a(i,t) > a(s,j)—
a(i,7) and hence the optimal full matching is [s, j], [, t] since its cost a(s, j)+
a(i,t) is at most equal to the cost of the other full matching [s,t], [z, j]. Since
a, =0, a; = a(s,j) and o, = a(s,t), the a matching condition is satisfied.
Hence we get an integer optimal solution. A similar argument establishes
that if o; = a(s,j) —a(¢, j), then the optimal full matching is {s, t], [¢, j], and
hence, the a matching condition is satisfied.

Ifa; = b(s.7)+a(s,j)+c(j,i)—b(s,), then b(s,1,+a(s,j)—ai+ec(j, 1) = q2(s—
1 —7) = b(s,7) where 7 is an out turn node. Hence we have a minimum cost
free path s—j—t without any turn nodes since path s—¢—} with out turn node
¢ costs as much as the path s—j without any turn node. Hence, we are done.
A similar argument establishes that if o; = a(s,) + ¢(j,?) + b(j,t) — b(z, 1),
then s — i — ¢t is a mimnimum cost path without any turn nodes.

Case 2. I* = {u} and O™ = O.

Since s — i1 — j —t is the intitial free path, g;(: — 7 —t) < q1(¢ —u —¢). There
is a change in the cost of paths ¢ — j — ¢t and ¢ — u — t before and after the
second call if and only if the a value at node 7 changes. The change in the
cost in both cases equals a(s,?) — a;, and hence ¢(i —j —t) —q1(1 —j — 1) =
g2(t —u—1t)— q(1 —u—1). Adding the inequality ¢;(i —j—1) < g:(: —u—1)
to this equation establishes that ¢(: — j — t) < ¢2(i'— u — t). But since
s—i—u—tis the free path after the second call, g2(¢ —u~t) < g2(s — j — ¢t),
and hence both paths s — 7 —j — ¢t and s — ¢ — u — { have equal cost after the
second call. This reduces to Case 1.

Case 3. I" = {u} and O* = {j}.

The free path after the first call is s—z—j—t which changes to s —j —u—t after
the second call. Therefore, b(s,j) < ga(s—i—7) = b(s,i)+a(s, j)—a;+¢(7,1).
The definition of ; implies that a; > b(s,i)+a(s,j)+¢(J,) — b(s, 7). Hence,

18

b(s,1) = q2(8—i—7j). Similarly, since o, < a(s,u) and a; = a(s, j), it follows
that g1(7 —u—¢) < g(j —u —t). Since s —i — j — t is the free path after the
first call, b(j,t) < ¢1(j —u —t), and since s—j —u—t1 is the free path after the
second call, ¢2(7 —u—t) < b(;,t). Hence, ¢1(j —u—1) = g2y —u—t) = by, t).
Since b(s,7) = q2(3—2—7) and g2(j —u—1t) = b(j, t), it follows that s—2—j—1
remains a minimum cost free path. This reduces to Case 1.

Case 4. I" = {i} and O* = {j}.

The revised free path after the second call to procedure free path is s—j—i—t.
If o; > a(s,7)+¢(7,2) + b(J,t) — b(z,) after re-setting then b(z,t) > a(s,j) —
a; +¢(7,1)+b(7,1), i.e., the path : — j — ¢ with out turn node ¢ costs less than
the path z —¢, with no turn nodes. However, in that case, s —j —z —t cannot
be the revised free path. Therefore, a; = a(s,7) + c(j,¢) + b(3,t) — b(z,).
A similar argument establishes that o; = b(s,2) + a(s,j) + ¢(5,2) — b(s, 7).
Therefore, b(s,:)+b(i,t) = b(s,7)+b(j,t), and any free path with turn nodes
costs at least as much as free paths s —i —t and s — j — ¢ with no turn nodes.
Hence, s — 1 — ¢t without any turn nodes is a free path after the second call.

Case 5. I* = {j} and O* = {u}.

The free path after the second call is s—u—j —¢. In this case, we re-set the o
values after the second call, and run procedure free path again for the third
time. Let I2,0? denote the in turn and out turn nodes after the third call.
If I? = {3}, O? = {u}, then it reduces to Case 1 where the turn nodes do not
change after a call. If I? = {u}, O? = {j}, then it reduces to Case 4 where
the in turn and out turn node are interchanged after a call to procedure free
path.

Case 5a. Suppose I* = {1}, O? = {u}.

The three free paths are s —1—j—t, s—u—j—t and s—u—1—t after the three
calls to procedure free path. If o = ¢; then g3(u — j = t) —qa(u—j - t) =
g3(u—1—1t) —ga(u—1i—1). Adding the inequality g;(u — 7 —t) < go(u—1i —1)
to this equation establishes that ¢3(u — 7 — ¢) < ¢gs(u —: — ¢t). But then
s —u —t—tis the minimum cost free path after the third call, and hence
8—u—j—tis also a minimum cost free path. Therefore, s — u — 7 —t remains
a minimum cost free path before and after the third call. This reduces to
Case 1. If @? < @, then o} = o? + a(u,t). Then free path s —u — 7 — ¢
after the third call with full matching [s,?], [u,?] satisfies the o matching
condition.

19

Case 5b. I* = {j}, O* = {i}.

Consider four cases. First, if o; = a(s,t) — a(z,t), then o + a(u,i) >
a(s,t) — a(u,t) + a(u,i) > a(s,t) — a(z,t). Hence o? + a(u,:) > «;, and
therefore, a? = a;. Second, if a; = a(s,j) — a(3,j), a similar argument

establishes that «; does not change, i.e., a? = ;. Therefore, these two cases
reduce to Case 1 where the out turn and in turn nodes i and j do not change
after a call to free path. Third, suppose a; = b(s,?) +a(s,7)+<(j,2) — (s, 7).
Then b(s,j) = b(s,2) + a(s,j) ~ai +e(j,i) = (s —1—j) S@(s—21—J) <
g3(s —u —j) where the first inequality follows from the fact that o? < o; and
a; = o} = a(s, §), and the second inequality from the fact that s —i—j is the
shortest cost path after the third call. Further, it follows from the fact that
al > a(s,j)+c(j,u)+b(s,u) —b(s, ;) that ga(s —u—j) < b(s, j). Therefore,
b(s,7) =qa(s —t—j)=¢qs(s—2—j) =q3(s —~u—j). Hence path s —j — ¢
without any turn nodes is a minimum cost free path after the third call.
Similarly, if &; = a(s,j) + ¢(7,2) + b(j,t) - b(3,), then b3, t) = q2(2 — j — t).
Since a? < a;, q2(i — j —t) < ga(i — 7 —t). But ga(z — j —t) < b(z,t) since
¢t — 7 —t is a free path after the third call. Therefore, b(z,t) = g3{¢ — 7 — t)
and hence, free path s — 7 — ¢t without any tura nodes is a minimum cost free
path after the third call.

Case 5c. Suppose I* = {u}, O* = {i}.

The three free paths are s —1—j —¢, s—u—j—1 and s—i—u—1 after the three
calls to procedure free path. Since o? > a(s,j) + c(j,u) + b(j,t) — b(u,1),
and b(u,t) < gs(u — j — t), it follows that b(u,t) = g3(u — ; — t), and hence
path s — ¢ —u — j — t with out turn node ¢ and in turn node j is a free path
after the third call. Hence q3(s —i —u — 7 —t) < ¢g3(s —i — j — t) where the
righthand side is the cost of the path with out turn node i and in turn node
J. This implies that ¢(j,u) + ¢(u,2) < ¢(7,7). Since all costs are nonnegative,
this implies that ¢(j,u)+ ¢(u, 1) = ¢(j,:) and hence s —1 — j — ¢ is a shortest
path after the third call. This reduces to Case 5b.

Case 5d. I* = {1} and O* = {;j}.

From the definition of o2 it follows that ¢s(s — u — j) < b(s,7) where path
$ —u — 7 has out turn node u. Since s — j —i — ¢ is a minimum cost path
after the third call, b(s,j) < ¢3(s — u — j). Hence, b(s,j) = ga(s —u — j).
Therefore, path s —u — j — ¢ — ¢ is a minimum cost free path with out turn
node u and in turn node : after the third call. This reduces to Case 5a.

20

Case 6. I* = {i} and O* = {u}.

The intitial free path is s—z—j —¢, and after the second call, it is s—u—7—1.
Therefore, b(7,t) < (¢ — j — t) = a(s,7) — a; + ¢(7,7) + b(7,t). It follows
from the definition of a; that b(:,t) = ¢2(¢ — 7 — t). Hence, after the second
call, we can consider path s —u —: — j — t as the free path with u as an out
turn node and 7 as an in turn node. This reduces to Case 5.

0

The next example shows that the linear programming relaxation of EF for
a 6 node graph gives a fractional solution.

Example 3

Consider OFOC in Figure 1. If k = 1, then Example 2 shows that algorithm
free tree does not give the optimal solution. The linear programming relax-
ation EP gives an optimal solution with an objective function value of 39.5.
The variables have the following values:

€s1 = g21 = €33 = G43 = €4¢ = 0.5, €, = 0.5, hyy = hyg = h1y = ha, = 0.5.

The integer optimal solution has no turn nodes, whereas free tree has two
out turn and in turn nodes other than s and t.

]

We have thus shown that the polytope EP in the extended formulation
guarantees integer optimal solutions for graphs with at most 5 nodes. It
does not give the convex hull for graphs with 6 nodes or more as shown in
Example 3. Lemma 2, Lemma 5 and Lemma 6 also provide some insight
into the reason why Chopra, Gilboa and Sastry (1997) report such excellent
computational results for the extended formulation EF: at any stage of the
heuristic, if a free path is repeated, or if we get a free path without any turn
nodes, we get an optimal solution. Example 3 does have a gap between the
linear programming solution and the integer solution. But this gap equals
only 1.5 while the problem has a cost structure unlikely to be encountered in
practice since nearly all arcs either have a fixed cost or a flow cost, but not
both.

21

4 A Quasi Integral Formulation

We describe another extended formulation for OFOC and T FOC and show
that the polyhedron associated with the linear programming relaxation of
this formulation is quasi-integral, i.e., every edge of the convex hull of feasi-
ble integer solutions is also an edge of the polyhedron. This property could
be useful in designing a modified version of the simplex method to solve
the problem using a sequence of pivots with integer extreme solutions. This
method is referred to as the integral simplex method by Yemelichev, Ko-
valev and Kravtsov (1984). Hellstrand, Larsson and Migdalas (1992) have
shown that the polyhedron associated with the uncapacitated network design
problem is quasi-integral. They also provide references to other research on
quasi-integral polytopes.

Consider the extended formulation £F. Define an e-cycle (g-cycle, full cycle)
to be a cycle of arcs (ignoring direction) with e;; > 0 (g,; > 0, hi; > 0) on
each arc (¢,7) in the cycle. The next result follows from Theorem 1.

Theorem 3 If (e,g,h) is an extreme point of EP then
(i) e, g € {0,1}, h integer
(it) there are no e,g or full cycles.

Index k&* = min {k, [(n —2)/2|} units of full flow from 1 through k*, and for
m=1,...,k% let

B 1 if one unit of full low numbered m is on arc (z,J)
g 0 otherwise

A full flow numbered m ending in in-turn node z # t splits into a g-flow num-
bered m and an e-flow, both leaving node i. Similarly, afull flow numbered
m starting in out turn node 1 # s is formed from a g-flow numbered m and an
e-flow, both entering node :. Define g} for each arc (¢,j) and m =1,..., k"
The remaining k — k* units of full flow is denoted by A?;. For simplicity we
assume that k > k*. Otherwise we can drop the variables ;. By Theorem 3
an extreme point of EP has no full cycles. Hence any of the £™ units of full
flow starting in node s and ending in node ¢ and the remaining k& — k* units
flow from s to ¢ on one directed path (see Figure 3).

INSERT FIGURE 3 HERE

22

In this figure, the total demand d = kC + r for some k > 3,and 0 < r < C.
Since there are 8 nodes, k* = 3. The flow values are shown on the arcs, and
represent an extreme point. Consider the following extended reformulation

EF(k).

Min Z [euwu(e) + Z{h ‘w;; (A +guwu(g)} + (k — k™)h; th(h)]
(ij)€eA

s.t.

k41 for i = ¢t (7)

0 otherwise

ke —(k*+1) fori=3s
ZemLzh —e;— D hE) =
m=1

m=1

-1 fori=s,m=1,...,k
(AT + g7 - - 977) = 1 for i =t (8)
3 0 otherwise
-1 fori=3s
Z(h?{ - k) = 1 for:=t (9)
7 0 otherwise

e, g, h €{0,1}.
For technical reasons we introduce the additional constraints

Ee,-j S 1 (10)
7

Z R <1 (11)

Z hm < 1 (12)

Zgij <1 . (13)
J

If the total cost of sending one unit of e, g or full flow around a cycle is non-
negative, there is always an optimal solution that satisfies these conditions.
Define the polytopes,-

EP(k) = {(e,g,h) > 0|(e, g, h) satisfies (7),...,(13)},
EIP(k) = {(e,g,h) € EPO(k)|e,g,h € {0,1}}.

23

This formulation has O(mn) constraints and O(mn) 0-1 variables. The next
result is easy to establish and implies that EIP(k) is a valid extended for-
mulation for £/ P, and hence, for OFOC and TFOC.

Theorem 4 Any vector (e*,g*, h*) € EIP if and only if there exists a vector
(e,g9,h) € EIP(k) such that e = €ij, 95; = L9 and i, = 3, h7; for
every arc (2,7) € A.

We show that polytope EP(k) is quasi-integral.

Definition 1 . A graph is simple if either the out-degree or the in-degree
of each node is less than or equal to one.

The polyhedron E'P(k) can be transformed into an equivalent simple graph
as follows. Split each node : into 4k* + 4 nodes. Flow A7} (g7;) can enter
node :™(h) (:™(g)) for m = 1,...,k*. Each of these nodes is spht into two
and is connected by variables zg‘(h) (z%(g)). Arc u?(hg) (ul7(gh)) can send
flow from node i™(h) to :™(g) (:™(g) to :™(h)). Arc u??(he) (u??(eh)) can
send flow from node i™(h) to i(e) (i(e) to i™(h)). Flow hY; can enter node
i°(h), and flow ¢;; can enter node i(e). (See Figure 4).

INSERT FIGURE 4 HERE

The constraints of EP(k) correspond to the following constraints in the

24

equivalent simple graph formulation.
3 A% — 25 (h)
J
- Z h?]-
J
k'
Z 6_,',' + E u:‘(he) —_ :L‘,',"(e)
) m=1

k*

z;i(e Zeu — 3" ul(eh)

m=1
Zhﬁ+u" gh) — z72(h)
h—Zm*qw)
S+ uleh) = 22
-}:h;';—u
Zy}’: + uJZ‘(hy) —z37(9)
z7(g) - Zg.J — uf}(gh)

i

I fori=1t

0 otherwise
—1 fori=3s
0 otherwise
1 fori=1t

0 otherwise
-1 fort=s
0 otherwise
1 fori=1

0 otherwise
-1 fori=s
0 otherwise
1 forz=1t

0 otherwise
-1 forz=s
0 otherwise

0

o

These constraints together with the following constraints define the polytope

SG(k).
l‘,‘,‘(e)
z5i(h)
z3i(h)
zii(9) <

IAINAIA

1
1
1

1

These constraints ensure that there are no cycles of flow and therefore flow
on all arcs is either 0 or 1. Notice that these constraints imply contraints
10, 11, 12 and 13. Given any point (e,g,h) € EP(k), there is a unique
corresponding point (e, g, h,z,u) € SG(k) and vice versa. This establishes

the next result.

Lemma 7 There is a unique correspondence between the vertices of EP(k)

and SG(k).

25

We show that the polytope SG(k) is quasi integral.

Definition 2 (Yemelichev, Kovalev and Kravtsov (1984)). Let Q be a poly-
tope, and @, the set of its integer points. The polytope Q is said to be
quasi-integral if every edge of the cenvez hull of @), is also an edge of Q).

A sufficient condition for a polytope to be quasi-integral is given in the fol-
lowing theorem. An integral face is a face with only integer vertices.

Theorem 5 (Yemelichev, Kovalev and Kravtsov (1984)). Suppose Q. be-
longs to the set of vertices of Q. Then, given any two integer vertices of the
polytope @, if there 1s an integral face containing them, Q 13 quasi-integral.

Based on this result we show that EP(k) is quasi-integral.
Theorem 6 The polytope SG(k) is quasi-integral.

Proof

Since SG(k) is contained in a 0-1 hypercube, SG.(k), the set of integer
points, belongs to the set of vertices of SG(k). Let 2! = (€', g*, h?, 2!, u?)
and 22 = (e?, g%, h?%, 2, u?) denote any two integer vertices of SG(k). Define
the index sets

No={l:zl =2} =0}, Ny={l: 2} =22 =1}, and N; = {l : 2} # 2}}.
Consider the family of hyperplanes z; = 0 for all [€ Ny and 2 = 1 for all
1 € N,, each of which supports the polytope SG(k) and the set
F={2€8G(k): z1=0,1€ Ny; z1 =1, l € Ny}

which constitutes a face of SG(k). Let B denote the constraint matrix
of the simple graph polytope SG(k). It suffices to show that the matrix
By, = (b;), | € N, is totally unimodular. This is the matrix obtained when
all columns corresponding to variables sharing a common_ value in both z!
and z? have been deleted. There are three cases to consider.

Case 1. A node is not used by either z! or z2?, or both use the same set of
incoming and outgoing arcs. The corresponding rows of B; are zero rows.
Case 2. Flow enters (leaves) node i™(h) (:™(g),i(e),°(h)) for z! and 2% on
different arcs. Since the graph is simple, the outgoing (incoming) arc is com-
mon for 2! and z?. Therefore the corresponding row in B, has two non-zero
elements, both +1 (-1).

Case 3. Flow enters (leaves) node i™(h) (:™(g),i(e),1°(k)) for either z! or 22
but not for both. Then, the corresponding row of B, has two elements, one

26

+1 and the other —1.

The case where :™(h) (i(e),i°(h)) equals s™(h) (s(e), s°(h)) or t™(h) (t(e), t°(h))
is a special instance of case 1 or 2. The rows of B; therefore have 0, 1 or 2
elements. Delete all rows with zero elements. Consider the following parti-
tion of the columns of B,.

Dy = { columns of B, corresponding to z} =1 and z = 0}

D, = { columns of B; corresponding to z} =0 and 2} = 1}

Each row contains at most two non-zero elements, and each row of D; and
D, has either one non-zero element or two with opposite signs. Therefore, F’
is an integer face and hence, SG(k) is quasi-integral.

Theorem 7 The polytope EP(k) is quasi-integral.

Proof . .

Let 2' = (é',4',h') and 2* = (&%, 4%, h®) be two arbitrary integral vertices of
EP(k). Construct the face F' as in Theorem 7. The unique corresponding
vertices of SG(k) are z! = (e!, g, k', 2", u') and 22 = (e?,¢% h%, 2%, u?). I F
is not an integer face, then there is some fractional vertex on this face. Then
by Lemma 7, there is a fractional vertex on F corresponding to it. But this

is a contradiction since F is an integer face.

5 Conclusions and Further Research

We describe a bipartite matching based exact algorithm for solving OFOC
and TFOC. This type of algorithm could solve other problems as well. For
instance, consider the uncapacitated two commodity network design prob-
lem with fixed and flow costs, where each commodity flow alternates between
segments of arcs which either share or do not share flow with the other com-
modity. It is not known whether the problem is easy or hard, but a similar
matching type algorithm solves the problem. We also describe an efficient
heuristic and use it to show that for problems with at most five nodes, an ex-
tended formulation guarantees integer optimal solutions. Finally, we describe
a quasi integral formulation for OFOC and TFOC. The literature suggests
that the quasi integrality property could in principle be used to design a
simplex based algorithm where pivots are restricted to integer vertices.

27

6 References

1. J.Hellstrand, T.Larsson and A.Migdalas, ”A characterization of the unca-
pacitated network design polytope,” OR Letters 12, 159-163 (1992).

2. S.Chopra, D.Bienstock, O.Gunluck, C.Y.Tsai, "Minimum cost capacity
installation for multicommodity networks,” Research Report, Northwestern
University, January 1995.

3. S.Chopra, 1.Gilboa and S.T.Sastry, ”Source sink flows with capacity in-
stallation in batches,” to appear in Discrete Applied Math. (1997).

4. T.L.Magnanti and P.Mirchandani, ”Shortest Paths, single origin-destination
network design and associated polyhedra,” Networks, vol. 23, No.2 (1993)
103-121.

5. T.L.Magnanti, P.Mirchandani and R.Vachani, "Modeling and solving the
two facility capacitated network loading problem,” Oper. Res. 43 142-157
(1995).

6. V.A.Yemelichev, M.M.Kovalev and M.K.Kravtsov, "Polytopes, Graphs
and Optimization,” translated from Russian by G.H.Lawden, Cambridge
University Press, Cambridge 1984.

28

C=10,r=1

FIGURE 1

29

FIGURE 2

30

FIGURE 3

31

FIGURE 4

32

