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ABSTRACT

In this paper we study the problem of universally reducing a multi-
stage vector optimization problem; to a one-stage vector
optimization problem. This paper draws heavily and modifies on
results obtained in Aizerman and Malishevski [1986]. Given the
importance of such problems as mathematical representations of real
world phenomena, particularly in economics and the management
sciences, the results reported here have great interest.

Our analysis is restricted to the case of finite sets of
alternatives, and thus has independent appeal from the stand point
of finite/discrete mathematics as well.



1. Introduction: In this paper we study the problem of
universally reducing a multi-stage vector optimization problem to
a one-stage vector optimization problem. This paper draws heavily
and modifies on results obtained in Aizerman and Malishevski
[1986]. Given the importance of such problems as mathematical
representations of real world phenomena, particularly in economics
and the management sciences, the results reported here have great

interest.

Our analysis 1is restricted to the case of finite sets of
alternatives, and thus has independent appeal from the stand point
of finite/discrete mathematics as well.

2. Notations and Definitions: Let N denote the set of natural

numbers. Given a, b € N, let a > b denote "a is greater than b", a
= b denote "a is equal to b" and a = b denote "either a > b or a =
b". Given n € N, let N denote the set of all functions from
{1,...,n} to N i.e., the set of all n-tuples of natural numbers.
Given a, b € N, we write:

a>b todenotea; >»b; Vie {1,...,n}
= b to denote a; =b; Vie {1,...,n}
a x b to denote "neither a > b nor b > a"

a > b to denote”’not a > b”

Let U be a given non-empty set consisting of N elements. Thus U is
assumed to finite. Let L denote the collection of all non-empty

subsets of U.
Let f: U~ N be a function for some neN - Given

XeX, argmax [f(x)] 1is defined to be equal to
X



lyeXx /3 xe Xwith £(x) » £(y)} This set is denoted by
Y(f, X).

A f-triad in U is an ordered triplet (u, v, w), u, v, w € U such
that £(u) 5 £(v), £(u) x £(w), £(v) x £(w).

The following result is essentially Lemma 1 in Aizerman and
Malishevski ([1986].

lemma 1: Given ., y_ N with pe¢ N, there exists 5. y- N

such that v xe Y, v(f, X) ={yve X/A xe X with g(x) > g(y)} if and

only if there does not exist any f-triad in U.

let f.y-Ne, g: U-N", n, me N be given. We let Y (f, g, X)

denote the set YI[g, Y(f,x)] where X € L.

The central problem in Section 4 is to obtain necessary and
sufficient conditions for the existence of

peNand a function h : U~ N¢ such that for all X in I,

Y (f:glx) = Y(h,X) .

The following results appear in Aizerman and Malishevski [1986].
Theorem 1: If n = 1, m = 1, then there exists j,py.N sSuch that Y

(f; g, X) =Y(h: -X) VXGE .



Theorem 2: If n = 1, m = 1, then there exists p ¢ N and h: U~-N°

such that Y (£, g, X) =Y (h, X) VXelX

Theorem 3: If n = 1, m = 1 and there does not exist any g-triad

(u,v,w) with £(u) = £(v) = £f(w), then there exists h : U~-N such

that Y (£, g, X) =Y (h, X) vyxeX

Hence, what really remains to be investigated is the case where n
2z 1. An answer to that question is available in Theorem 2 of
Aizerman and Malishevski [1986]. Here we provide a different
characterization using a slightly different approach.

3. Binary Relations: A binary relation on U is any set of ordered
pairs of elements in U. Let P be a binary relation on U. P is said

to be asymmetric if (u, v) € P implies (v, u ) ¢ P. Hence if P is
asymmetric (u, u) ¢ P. P is said to be transitive if (u, v) € P,
(v, w) € P implies (u, w) € P.

The following result is available in Aizerman and Malishevski
[1986], Aizerman and Aleskerov [1995], Donaldson and Weymark
[1998].

Theorem 4: Let P be any asymmetric and transitive binary relation

on U. Then there exists p e N and a function h:U~Np such that for

all u, v, in U, (u, v) € P if and only if j(u)>h(v).

4. Preliminary Results: Given  r.y -N? and g:u~-N* WwWith n, m e



N an f-g complex in U is an ordered triplet (u, v, w) such that:

a) (u, v, w) is a f-triad in U
b) g(w) > g(v) and g(u) > g(w)

c) either g(v) 4, g(w) or g(w) 5 g(u).

Theorem 5: Given £:U~N? and g: U~N® with n, m ¢ N, there exists

peNandh: U~ N¢ such that Y(f, g, X) =Y¥(h, X) yxeX if and

only if there does not exist any f-g complex in U.

Proof: Let 4 . p- N satisfy Y (£, g, X) = Y (h, X} yyeX -

Towards a contradiction assume that (u, v, w) is a f-g complex in
U. Let X = {u, v, w}. Thus v ¢ Y (£, g, X). Thus either h(u) , h(v)
or h(w) 5 h(v).

Suppose h(w) 5, h(v). Let X' = {v,w}. Now g(y) > g(v)- implies v €

Y (£, g, X'). However, h{(w) 4 h(v) implies v ¢ Y(h, X'). Hence

hA(w) > h(v) - Thus h(u) 5, h(v).

Now g(w) , g{u) implies u ¢ Y(f, g, X)
2 {w} = Y(£, g, X) =Y (h, X)
Since h(u) , h(v), and u ¢ Y(f,g,X) we must have h(w) , h(u).

But this implies h(w) , h(v) contradicting the previous step. Thus

gl > g(u) - Hence g(v) 5, g(w). Thus, (v) =Y (f, g, X'). But
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then h(v) , h(w) and hence h(u) , h(w). But this combined
f(u) x £(w) implies g(u) , g(w) which contradicts that (u, v,
is a f-g complex in U. Thus, there does not exist any f-g compl

in U.

Now suppose there does not exist any f-g complex in U. Define &
binary relation P on U as follows

(u,v) € P if and only if either (a) f(u) 5, £f(v) or (b)

f(u) f£(v) and g(u) 5 g(v).

Clearly P is asymmetric. Let us show that P is transitive. Thus,
let (u,v) € P, (v,w) € P.

Cagse 1: f(u) , f(v) and f(v) f(w).

Then g(u) , g(v) and g(v) , g(w). Thus g(u) , g(w). Since f(w) ,
f(u) would make (w, u, v) a (f,g)- complex, we must have

f(w) > f(u) - Thus, (u,w) € P.

Cage 2: f(u) , £(v) and £(v) 4 £(w). Then f(u) 5 f(w) and hence
(u,w) € P.

Cage 3: f(u) f(v) and f(v) 5 f£(w).

Then g(u) , g({v). If £f(u) x £f(w) then (u,w) ¢ P implies

g(u) > g(w)

Now (v, w, u) is a f-triad.

Further g(u) 3 g(w) and g(v) > g(u) and g(u) » g(v). . Hence, (v, w,
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u) is a f-g complex contradicting hypothesis. Thus f(u) x f(w)
implies (u,w) € P.

If f(w) 5 £(u), then f£(v) , f(u), contradicting f(u) f£(v).

Thus (u, w) € P.

Case 4: f(u) 4 £(v) and f(v) x f(w). Then g(v) , g(w).

If £(w) 5 £(u), then f(w) , f(v) contradicting Fr(yv) 3 f(w) - Thus
f(w) > f(u) - Suppose f(w) x f(u). Now (u,w) ¢ P implies
glu) 3 g(w) - Now (u,v,w) is a f-triad g(v) , g(w) implies

g(w) > g(v) - We also have g(y,) 3 g(w) - In addition g(v) , g(w).

Thus, (u, v, w) is a f-g complex contradicting our hypothesis. Thus
(u,w) € P. Also f(u) , f(w) implies (u,w) € P. Thus, (u,w) € P in
this case too.

Hence, P is transitive. By Theorem 4, there exists p € N and

h: U~ N such that for all u, v in U, (u, v) ¢ P if and only if

h (u) , h(v).

Since Y (f,g,X) =lyeXx /B xeXwith (x,y) € P} + we get
Y(f,g,X) = Y(h,X) VXelX - Q.E.D
Corollary 1: If in Theorem S, m = 1, then

Y(£f,g,%X) =Y(h,X) VXeX with /. yp- N for some p € N if and

only if there is no f-triad in U with g(u) s g(w) s g(v) and with



one of the inequalities being strict.

Note: Theorem 3, now follows as an easy Corollary of Theorem §5,
since if n=1, we cannot have any f-triad and hence no (f,qg)-

complex.

5. Multi-S ot imi . {71 {0 Results:

Let keN, k22 andletmeN for i=1...,K. For each i e

{1,...,K}, 1let f,: U~ N be given . Given xeYy , let

Y, (X) ={xeXx/BAyeXxwithf, (y) >f (x}

Having defined Y, (X), 1 s k<K, keN,

define, y  (X) =ixe Y, (x) /Bye Y, (X) with £,,, (¥) > £., (x)} -

We are interested in knowing a set of necessary and sufficient

conditions which will ensure the existence of p e yand » . - NP

such that y (x) = y(h,xVXxe X

Let u, v, w ¢ U. The ordered triple (u, v, w) will be called a

{(f}., - complex in U if there exists k, r, s ¢ N, K2s 21 > k

such that



f(u) x £,(v), £;(u) x £i,(w), £,(v) x £,(w) for i=1,...,k-1

fi(u) > £.(v), £ (u) x £,(w), £ (v) x £, (w)

f(uw) x £,(v), £,(u) x £f,(w), £,(v) x £;(w) for i = k+1,...,r-1

and either

I,--.,K

1) £f.(w) > £,(w), £,(w) > £,(v) for i
or

ii) fF.(w) > £,(u), F,(W) 5 £,(v) Ffor.i

r,...,sand £ (v) > £ (w)

or

iii) fi(u) > £,(w), and £,(v) > £, (w) fori=1r,...,K

or
iv) f(w) > £,(w), £,(v) > £, (w) for i =r,...,8 and £ (w) > f_(u).
where in the above, i = t, ..., u with u < t implies that the step

is automatically satisfied.

Note: If a {f}f., complex does not exist in U, then a (f)2

complex does not exist in U, for K 2 n = 2.

Note: If a (f)f, complex in U exists, then there does not exist

any p e Nand p . yp- N such that y (x) = y(h,X) VxeX - For if

otherwise, then by taking X = {u, v, w} we get Y, (X) = {u, w} and
w e Y, (X) and by taking X' = {v,w} we get Y, (X') = {v, w} and v
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€ Y, (X'). Now if in the above (i) or (ii) holds, then u ¢ Y, (X),
so that ¥, (X) = {w} and thus either h{(w) 4 h(v) or h(u) 5 h(v).
If h{(u) 5, h(v) then we must have h(w) , h(u) since u ¢ Y, (X).
Thus, h(w) , h(v). Purther if (i) or (ii) holds v € Y, (X') and

hence jh(w) > h(v) Which is a contradictions. If (iii) or (iv)

holds, then w ¢ Y, (X') and hence h(v) , h(w). However, w € Y, (X)

and 80 jp(v) 3 h(w) Which is a contradiction.

Theorem 6: There exists p € N and pj . pygp- N such that

Y (X) =Y(h,X) VXeX if and only if there does not exist any
(£);., complex in U.

Proof: Necessity has been shown above and sufficiency for k = 2,
has been proved in Theorem 5.

Let us assume sufficiency for K = n € N and consider now the case

where K = n + 1. By the induction hypothesis and since no (£, -

complex exists in U there exists q € N and g: U~ N? such
that Y, (X) = Y(g,X) VXxeX - Hence

Y, (X) = Y(f g Y(g,X)) = Y(g, £y, X). - Now a necessary and

n
sufficient condition for p € N to exist along with a h:U - N such

that v(g,£f,,, X) =Y(h X) VxeX 1is the non existence of a



10
@ fa)) complex in U. However, (u, v, w) is a (G: £na)
complex if and only if

I

glu) 5 g(v), g(u) x g(w), g(v) x g(w

£ou{) 3 £,, (W, £,,,(w) 5 £, (v) and either
a) £ (w) x £, (u)

or' b) £, (V) x £,., (W)

or c) both (a) and (b).

Now g(u) 4 g(v) implies that there exists k € N, n 2 k, such that

flu) x £,(v) for i =1,...,k-1 and £ (u) x £, (v) i g{u) x g(w)

implies £,(u) x £;(w) for i =1,...,n; g(v) x g(w) implies
£,(v) x £, (w) for i = 1,...,n. But then (u,v,w) is a (£31 -

complex in U, which is ruled out by hypothesis. Hence there exists j . 7y - NP

such that y(g, £ .,X) = y(h,X) VxeX - Since sufficiency is true

for K = 2 and it has been shown to be true for K = n+l1 if it is
assumed true for K = n, it follows by induction that it is true for
all K € N. Q.E.D.

The situation above lends itself to a direct result if m;y = 1 for
i=1,...K.

Theorem 7: If m = 1 for i=1,...K, then there exists . p- N
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such that vy, (x) = y(h,X) VXeXL -

Proof: Once again we apply induction and appeal to Theorem 1.
' Q.E.D.

Theorem 8: Given a multi-stage vector optimization problem there
exists j ., y- N such that Y,(X) = Y(h,X) VXe X if and only
i) there does not exist any (£)f., - cowplex in U

ii) there does not exist any u, v, w €¢ U and k € N, k = K such

that £ (u) x £,(w) x £,(v) for i = 1,...,K, £, () x £ (v)
for i =1,...,k-1 and £, (u) , £, (v).

Proof: A neceésary and sufficient condition for a function

g: U-oNP,ch.tO exist so that Y,(X) =Y(g.X) VXeX is that

there does not exist away (f )X, —wccmplex in U. A necessary and

sufficient for a function h : U - N to exist such that

Y(g,X) = Y(h,X) Y XeX 1is that there is no g-triad in u, which is

equivalent to (ii).
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Appendix
In this appendix we prove the following result which appears in the
main text of the paper.

Theorem:- Let n = 1, m 2 1. Then there exists p . yy- N such that

Y(f, gX) = Y(h,X) VXeX Aif and only if there does not exist any

g-triad (u, v, w) in u with £(u) = f(v) = f(w).

Proof: Suppose (u, v, w) is a g-triad in u with f(u) = f(v)= £(w).

Suppose towards a contradiction y(f, gx) =Y(h,X) VXeX Where

h: U-N -

Let X = {u, v, w}. Thus Y(f, g, X) = {u.w). Hence h(u) = h(w) >
h(v). Now let X' = {v, w}. Then Y(f, g, X') = {v, w} and so h(v) =
h(w) which contradicts the previous result.

Now suppose there exists no g-triad (u, v, w) in U with f(u) = £f(v)
= f(w). Given v, € U, say that (u, v) € P & either f(u) > f(v) or
f(u) = f£(v) and g{u) , g(v). It 'is easy to check that P is
transitive.

let gy ={uev/Aveuwith (v, u) e B

and having defined U,, s ¢ N, s 2 1, let

Uy =luev\|J) U,/3ver\|J v, with (v,u) e B

s+1
i=1 J=1

k
Since U is finite, there exists k € N such that - U o - Let

i=1
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h{u) =k - 8 + 1, if u € U,. If (u, v) € P, then u € U, and Vv €

U, implies r < 8. . h(u) > h(v).
Now Suppose, h(u) > h(v).

If (v,u) € P, then h(v) > h(u) which is not possible. Thus, suppose
(v, u) ¢ Pand (u,v) ¢ P. Let u € U, and v € U,.

Thus r < 8. By transitivity of P, we may assume that there exists
w € U, such that (w,u) € P. Clearly, (w,u) ¢ P and (u,w) ¢ P. Thus
f (u) f(v) = £(w), g(w) 5 g(v), g(v) x g(u), g(w) x g(u). Thus,
(w, v, u) is a g-triad with f£(w) = £(v) = f(u), contradicting our

hypothesis. Thus, (u, v) € P.

Thus h(u) > h(v) e either f(u) > £(v)
or f(u) = £(v) and g(u) , g(v).
Thus, Y(f, gX) =Y(h,X) VXeX where h : U » N is defined

above. | Q.B.D.

Note: Since y(g, X) = Y(f,9,X) VXeX . whenever, £ : U-> N is a

constant function, it follows from above that

(g, X) =Y(h,X) VXeX where h : U > N is some function if and

only if there is no g-triad in U.
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