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Abstract

Primary Health Centers (PHCs), which are single doctor clinics and vital to health care in rural areas

of developing countries, often remain inoperative due to shortage of doctors. When doctors become

available, the health administrator needs to decide that which of the inoperative PHCs should the doctor

be assigned. For transparency and operational efficiency, the sequence in which the inoperative PHCs

will be assigned doctors needs to be decided in advance at the start of the planning horizon. Further,

the number of doctors that will become available in each period of the planning horizon is uncertain.

Moreover, the health guidelines set the capacity target, i.e. the maximum population a PHC can provide

service to.

We introduce and study the capacitated multi period maximal covering facility location problem under

server uncertainty. We provide a formulation for the problem based on the minimax regret approach.

Further, we solve the problem using CPLEX MIP solver and observe that it can only solve very small

instances. Hence, we provide Benders decomposition based solution methods and refinements thereof,

which is 100 − 5000 times faster and could solve practical size instances in reasonable time.

Keywords: OR in health services, Primary health centers, Benders decomposition, Uncertainty

1 Introduction and literature review

The Alma-Ata declaration by the members of World Health Organization (WHO) in 1978 expressed serious

concern at the existing gross inequality in the health status of the people, particularly between developed and

developing countries. It further articulated primary health care as the key to the attainment of the goal of

“Health for All” by the year 2000 (Lawn et al., 2008). However, “health for all” still remains an elusive dream

for most of the developing countries (Walley et al., 2008; Rohde et al., 2008). In 2008, the Commission on

Social Determinants of Health made a compelling call for close attention to health in all government policies,

in all sectors, and further reiterated the importance of primary health care towards the attainment of “Health

for All” (Lawn et al., 2008). Universal Health Coverage (UHC) is now a part of sustainable development

goals, a global political commitment adopted by the United Nations General Assembly in 2015 (Buse &

Hawkes, 2015; WHO, 2016). In accordance with the above declarations/commitments, many developing

countries, including India, have opened Primary Health Centers (PHCs), which are clinics, often managed

by a single doctor, to provide the basic health care services.
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The number of PHCs in India has grown over the years, especially since the National Health Policy

(1982) was sanctioned. However, despite the efforts for so many years, there is still a shortage of health

care facilities in rural areas. The problem is quite severe in several states, like Bihar, Chhattisgarh, Gujarat,

Madhya Pradesh, etc. To address this problem, the Government of India launched the National Rural Health

Mission for improving the health care delivery across rural India, and increased the Health funding for the

period 2005-2012. During this period, many PHCs were opened in these states. However, despite these

initiatives, many of these states still fall far behind the target of a PHC per 30,000 population. Further,

in many states where PHCs do exist, they remain inoperative due to shortage of doctors, as illustrated in

Table 1 (National Rural Health Mission, 2011). Under such a circumstance, the problem facing a health

Table 1: Shortfall of doctors in PHCs

State Required Shortfall % Shortfall

Bihar 1863 298 16.0%
Chhattisgarh 716 139 19.4%
Gujarat 1096 259 23.6%
Madhya Pradesh 1155 614 53.2%
Uttar Pradesh 3692 831 22.5%
All India 23673 2433 10.3%

administrator is to decide the sequence in which PHCs need to be assigned doctors as and when they become

available over a planning horizon. However, the number of doctors that will become available in future

periods is generally uncertain. Further, for transparency in policy making and operational effectiveness, it

is desirable that such a sequence be decided and declared apriori.

Motivated by the above discussion, in this paper, we address the problem of assigning doctors (servers)

to PHCs (facilities). A PHC becomes operational once a doctor is assigned to it. Hence, assigning a doctor

(server) to a given PHC (facility) is tantamount to opening a facility in the lietrature facility location problem

(FLP). However, the population (user demand) that needs to be served by the PHCs changes over time,

and so does the number doctors that become available from one period to the next. In such a scenario, an

optimal facility location (operational PHC) decision in one period may become sub-optimal in future periods,

and thus may need to be revisited. Revisiting facility location decision may involve relocating/closing an

open facility, which may be costly or prohibitive. So, it is desirable to plan ahead for the entire planning

horizon. Further, as discussed above, transparency in policy making also demands that such a decision be

taken and announced in advance. This results in a multi-period facility location problem (MFLP), wherein

the problem parameters (like demand, number of facilities to open) vary with time.

MFLP has been fairly well studied in the literature (readers are referred to the book chapter by Nickel

& da Gama (2015) for an extensive review). A subset of the literature on MFLP accounts for uncertainties

with respect to demand, cost/distance, etc. (Averbakh & Berman, 1997, 2000; Chen & Lin, 1998; Berman &

Wang, 2011). In our current study, demand corresponds to the population of villages, which can be estimated

fairly accurately using the current populations and the growth rates, which in turn can be estimated fairly

accurately. Hence, we do not account for demand uncertainty. However, uncertainties in MFLP may also

arise from the supply side (e.g., related to coverage capability and the number of servers available). This is

especially pertinent in the context of PHCs, wherein the availability of doctors (and hence the number of

facilities to open) in each of the future periods in the planning horizon is uncertain. Hence, this problem is an

MFLP with sever uncertainty (MFLPSU). Majority of the papers on MFLP under uncertainty account for
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the uncertainty in demand and cost/distance. Supply side uncertainties (related to coverage capability and

the number of available servers), on the other hand, has not received as much attention. Table 2 classifies the

MFLP literature based on different types of uncertainties. As evident from the Table, Maŕın et al. (2018);

Zarrinpoor et al. (2018); Vatsa & Jayaswal (2016) are the only few studies on MFLP that consider supply

side uncertainty. Maŕın et al. (2018) have studied a generalized version of multi-period covering problems

(set covering and maximal covering) under demand and supply side uncertainties. Uncertainty in their work

arises with respect to the demand and the capability of the service facilities to cover the demand nodes.

More recently, Zarrinpoor et al. (2018) have studied a two-level, multi-flow, hierarchical location-allocation

problem with service referral, arising in the context of health service network design. The uncertainty in

their work is associated with demand, service capability and geographical accessibility.

Uncertainty in the number of facilities to be sited (which may be due to the uncertainty in the number

of servers available) has been addressed by Current et al. (1998). However, their work pertains to a single

period FLP. Specifically, they study a p-median FLP, wherein the final value of p is uncertain and they find

the optimal set of locations to open in the initial siting decision.

Vatsa & Jayaswal (2016), to the best of our knowledge, is the only study in the MFLP literature to have

accounted for the uncertainty in the available severs (and hence the number of facilities to open) in each

period of the planning horizon, and hence closest to our work. However, Vatsa & Jayaswal (2016) study an

uncapacitated problem, without any limit on the demand that can be served by an open facility. However,

in the context of PHCs, there are clear guidelines on the maximum population to be catered by any PHC.

Specifically, India has, in line with Alma-Ata recommendations, set a target of having an operational PHC for

every 30,000 population (National Rural Health Mission, 2011). To the best of our knowledge, capacitated

version of MFLP with supply side uncertainty, specifically uncertainty in the number of facilities to open

(due to number of doctors becoming available) in each period, has not been studied. Hence, our work is the

first to study capacitated version of MFLP with server uncertainty. We make the following contribution to

the scarce literature on MFLP with uncertainty in server availability:

1. We present formulation for the capacitated maximal covering MFLP with an uncertainty in server

availability and discuss a useful special case of the problem.

2. We present a Benders decomposition based exact solution method, and refinements thereof, to solve

realistic problem instances.

The remainder of the paper is organized as follows. Section 2 describes the problem in detail, and provides

the problem formulation. Section 3 presents a Benders decomposition based solution approach, followed by

computational experiments in Section 4. The paper concludes with a summary and directions for future

research in section 5.

2 Problem Description

The problem described in this paper pertains to assigning doctors, as they become available over time in

a planning horizon, to PHCs in a given district. To describe the problem setting, we assume a planning

horizon consisting of discrete time periods t ∈ T = {1, 2, ..., |T |}. Furthermore, we consider the population
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Table 2: Uncertainty related to parameters in MFLP literature

Papers Demand Cost/
Distance

Coverage
Capability

No. of
facilities
to open

Capacitated

Averbakh & Berman (1997) X
Chen & Lin (1998) X X
Vairaktarakis & Kouvelis (1999) X X
Averbakh & Berman (2000) X
Killmer et al. (2001) X X X
Burkard & Dollani (2002) X X
Albareda-Sambola et al. (2011) X X
Berman & Wang (2011) X
Baron et al. (2011) X
Vatsa & Ghosh (2014) X
Vatsa & Jayaswal (2016) X
Maŕın et al. (2018) X X
Zarrinpoor et al. (2018) X X

requiring PHC services to be centered at each village of the district, which we refer to as a demand node

i ∈ I = {1, 2, ...,m}, with a demand (population) dit in period t. Let Jb be the set of PHCs already

operational at the beginning of the planning horizon (i.e., at t = 0), while J = {1, 2, ..., n} be the set of

candidate facility locations to be opened (i.e., currently without any doctor assigned) in the planning horizon.

Let δij be the distance between a demand node i ∈ I and a facility (either operational or a candidate for

opening) j ∈ J ∪ Jb. If the distance δij ≤ δmin, then the demand node i ∈ I can be fully covered by the

facility j ∈ J ∪ Jb. On the other hand, δij ≥ δmax implies the demand node i cannot be covered at all by

the facility j. For intermediate values of the distance (i.e., δmin < δij < δmax), the coverage of node i by

facility j can be partial. If aij ∈ [0, 1] denotes the extent of coverage facility j ∈ J ∪ Jb can provide to node

i, then aij can be described as:

aij =


1 if δij ≤ δmin,

f(δij) if δmin < δij < δmax, where 0 < f(δij) < 1

0 if δij ≥ δmax,

where f(δij) is a linear, step or any other function of δij (Karasakal & Karasakal, 2004; Berman et al., 2010;

Vatsa & Ghosh, 2014; Vatsa & Jayaswal, 2016). Let Ni := {j ∈ J : δij < δmax} and N b
i := {j ∈ Jb : δij <

δmax}. Further, each facility j has a capacity restriction of capj .

The number of doctors(servers) that will become available in each period t ∈ T is uncertain. We represent

this uncertainty using a set of server availability scenarios s ∈ S. The uncertainty is with respect to parameter

pts which is the number of new servers that become available at time t under server availability scenario

s ∈ S.

If the district administration would have known the exact number of doctors (servers) that will become

available in each period of the planning horizon, they would have assigned the doctors to PHCs so as to

maximize the total population that can be served in the complete planning horizon. Let ζ∗s be the maximum

coverage that could have been attained in scenario s. Then, regret from a proposed solution in any scenario
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is the difference between the maximum coverage that could have been attained and the coverage actually

achieved using the proposed solution i.e. ζ∗s − ζs.

In presence of uncertainty, minimizing the maximum regret from the proposed solution is one of the plau-

sible objective (Kouvelis & Yu, 1996; Snyder, 2006). For PHCs without doctors, the district administration

would like to find a sequence in which they should be assigned doctors so as to minimize the maximum regret

associated with any such sequence across all scenarios. We refer to the resulting problem as Capacitated

Multi-period Maximal Covering Location Problem under Server Uncertainty (CMMCLPSU). We summarize

below the list of notations used to define the problem:

T : Set of time periods in the planning horizon, t ∈ T

S: Set of all possible server availability scenarios, s ∈ S

pts: Number of new servers that become available at time t under scenario s

I: Set of demand nodes, i ∈ {1, 2, ...,m}

dit: Demand of demand node i in time period t

J : Set of candidate facility locations, j ∈ {1, 2, ..., n}

Jb: Set of initially open facilities

δij : Distance between demand node i and candidate facility j

δmin: Covering distance within which a candidate facility j can completely cover node i, i.e. aij = 1 if

δij ≤ δmin

δmax: Covering distance outside which a candidate facility j cannot cover node i, i.e. aij = 0 if δij ≥ δmax

Ni: Set of candidate facilities that are within the maximum covering distance δmax from demand node i

N b
i : Set of facilities open at the beginning of the planning horizon that lie within the maximum covering

distance δmax from demand node i

aij : Level of coverage provided by the facility at j to the demand node i

capj : Capacity limitation at candidate location j

ζ∗s : Maximum demand that can be covered in scenario s over the complete planning horizon

To mathematically model the problem, we define the following decision variables:

zjk: 1 if candidate facility j is one of the first k facilities in the the sequence, 0 otherwise

xijts: Demand at node i assigned to facility location j in period t and scenario s

Note that we could have used a binary decision variable yjts to indicate if a candidate facility has been

opened in time period t and scenario s. However, as shown by Vatsa & Jayaswal (2016) for the uncapacitated

problem, the formulation using zjk is tighter and smaller.

The facilities that have been opened (within planning horizon or prior to it) are assumed to remain open.

Hence, to know if a facility is open in any period and scenario (i.e yjts value) we only need to know how
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many candidate facilities have been opened till period t in scenario s (i.e. k =
∑
t′≤t

pt′s) and if the facility j

is one of the first k facilities in the sequence.

Further, even though demand from far away nodes can be assigned to facility at j, not all of them

necessarily take service. In other words there is demand leakage when the demand node is far from the

facility it has been assigned to. The reason being, when a demand node is assigned to a far away facility

(that provides partial coverage), some demand of that demand node will not prefer getting service from the

assigned facility (will choose other alternatives). Therefore, all the assigned demand will not contribute to the

workload of an open facility. We provide the following formulation for the Capacitated Multi-period Maximal

Coverage Location Problem under Server Uncertainty with Partial coverage (CMMCLPSU-P) based on the

stronger formulation given by Vatsa & Jayaswal (2016) for uncapacitated problem:

[CMMCLPSU-P:]

Min θ (1)

s.t. θ ≥ ζ∗s −
∑
i∈I

∑
j∈Ni∪Nbi

∑
t∈T

aijxijts ∀s ∈ S (2)

∑
i∈Nj

aijxijts ≤ capjzjk ∀j ∈ J ∪ Jb, t ∈ T, s ∈ S : k =
∑
t′≤t

pt′s (3)

∑
j∈Ni∪Nbi

xijts ≤ dit ∀i ∈ I, t ∈ T, s ∈ S (4)

xijts ≤ ditzjk ∀i ∈ I, j ∈ Ni,∀t ∈ T, s ∈ S : k =
∑
t′≤t

pt′s (5)

zjk ≥ zj(k−1) ∀j ∈ J, k ∈ {1, 2, ...n} (6)∑
j∈J

zjk = k ∀k ∈ {0, 1, 2, ...n} (7)

xijts ≥ 0 ∀i ∈ I, j ∈ Ni ∪N b
i , t ∈ T, s ∈ S (8)

θ ≥ 0 (9)

zjk ∈ {0, 1} ∀j ∈ J, k ∈ {0, 1, 2, ...n} (10)

(1) and (2) help linearize the objective of minimizing the maximum regret. ζ∗s is the maximum coverage

possible in a given scenario s ∈ S obtained by solving Capacitated Multi-period Maximal Covering Location

Problem with Partial coverage(CMMCLP-P) as given in (11) through (18). Constraint set (3) specify the

capacity restriction on the facilities. Notice that in (3), a fractional aij implies that not all demand at node

i that has been assigned to facility at j, will contribute to the workload of the facility (some demand leakage

will be there). Whereas, aij = 1, ensures that all the demand at node i that has been assigned to facility at

j will contribute to its workload. Constraint set (4) is specify demand at each node while the constraint set

(5) ensures that demand nodes are assigned only to open facilities. Notice that while the constraint set (5)

is redundant, it makes the formulation stronger. Constraint set (6) ensure that if any facility is one of the

k − 1 open facilities, it is also one of the k open facilities. Constraint set (7) restricts total open facilities to

k. Constraints (8), (9) and (10) are the non-negativity and binary constraints.

[CMMCLP-P:]

Max ζs =
∑
i∈I

∑
j∈J

∑
t∈T

aijxijts (11)
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s.t. xijts ≤ dityjts ∀i ∈ I, j ∈ Ni,∀t ∈ T (12)∑
i∈Nj

aijxijts ≤ capjzjk ∀j ∈ J ∪ Jb, t ∈ T, s ∈ S : k =
∑
t′≤t

pt′s (13)

∑
j∈Ni∪Nbi

xijts ≤ dit ∀i ∈ I, t ∈ T (14)

yjts ≥ yj(t−1)s ∀j ∈ J, t ∈ T\{1} (15)∑
j∈J

yjts =
∑
t′≤t

pt′s ∀t ∈ T (16)

xijts ≥ 0 ∀i ∈ I, j ∈ Ni ∪N b
i , t ∈ T (17)

yjts ∈ {0, 1} ∀j ∈ J, t ∈ T (18)

All the constraints of CMMCLP-P are also implied in CMMCLPSU-P. Here, constraint set (15) ensures that

a facility once opened remains open throughout the planning horizon. Such a constraint is redundant in

CMMCLPSU-P, as it is already implied by the use of sequence variable zjk.

For any given scenario, with infinite capacity limit and binary aij , the above problems reduce to a Multi-

period Maximal Covering Location Problem (MMCLP), which is the multi-period version of the MCLP.

MMCLP is NP-hard since its single period version, MCLP is known to be NP-Hard (Drezner & Hamacher,

2001). We observed that CPLEX MIP solver fails to solve any practical size instances of this problem. Hence,

we provide the Benders decomposition based solution method in the next section to solve the practical size

problems.

3 Benders decomposition based solution method

Benders decomposition is a partition based solution technique where an original problem is partitioned into

a sub problem and a master problem (Benders, 1962). The complicating variables from the original problem

is identified and the master problem typically contains these variables and their associated constraints. In a

MIP problem, integer variables are typically the complicating variable. Further, in each iteration a relaxed

master problem is solved and we obtain a lower bound (for minimization problem) of the objective function

value. This master problem solution is used to solve the sub problem, which provides the upper bound.

Further, the dual solution to the sub problem also provides a Benders cut which is added back to the master

problem. This iterative process continues till the upper bound and lower bound converge.

The Benders decomposition based solution technique has been widely applied in facility location (Wentges,

1996), hub location (de Camargo et al., 2009, 2011; Contreras et al., 2011) etc. Costa (2005) provides a

detailed review of application of Benders decomposition to solve some of the above problems.

In the CMMCLPSU-P, by fixing the binary variables zjk as z̄jk we obtain the following primal sub-

problem :

[CMMCLPSU-P-PSP:]

Min θ (19)
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s.t. θ ≥ ζ∗s −
∑
i∈I

∑
j∈Ni∪Nbi

∑
t∈T

aijxijts ∀s ∈ S (20)

∑
i∈Nj

aijxijts ≤ capj z̄jk ∀j ∈ J ∪ Jb, t ∈ T, s ∈ S : k =
∑
t′≤t

pt′s (21)

∑
j∈Ni∪Nbi

xijts ≤ dit ∀i ∈ I, t ∈ T, s ∈ S (22)

xijts ≤ ditz̄jk ∀i ∈ I, j ∈ Ni,∀t ∈ T, s ∈ S : k =
∑
t′≤t

pt′s (23)

xijts ≥ 0 ∀i ∈ I, j ∈ Ni ∪N b
i , t ∈ T, s ∈ S (24)

θ ≥ 0 (25)

Note that the constraint sets (21) and (22) make constraint set (23) redundant in CMMCLPSU-P-PSP.

Further, this primal problem is an LP problem, and including (23) does not make the formulation any

stronger. However, Van Roy (1986); Wentges (1996) have shown that for the capacitated facility location

problelm (CFLP), this constraint set helps to generate stronger Benders cuts. Let αs, βjts, γits and ρijts be

the dual variables associated with the constraint sets (20), (21), (22), and (23) respectively. The dual of

CMMCLPSU-P-PSP is formulated as follows:

[CMMCLPSU-P-DSP:]
Max

∑
s∈S

ζ∗sαs −
∑
i∈I

∑
t∈T

∑
s∈S

ditγits −
∑
j∈J

∑
t∈T

∑
s∈S

capjβjtsz̄jk: k=
∑
t′≤t

pt′s

−
∑
i∈I

∑
j∈Ni

∑
t∈T

∑
s∈S

ditρijtsz̄jk: k=
∑
t′≤t

pt′s

(26)

s.t. aijαs − aijβjts − γits − ρijts ≤ 0 ∀i ∈ I, j ∈ Ni ∪N b
i , t ∈ T, s ∈ S (27)∑

s∈S
αs ≤ 1 (28)

αs, βjts, γits, ρijts ≥ 0 ∀i ∈ I, j ∈ J ∪ Jb, t ∈ T, s ∈ S (29)

Let H denote the set of all extreme points of CMMCLPSU-P-DSP. For each extreme point h ∈ H, we

denote the corresponding values of the dual variables as αhs , β
h
jts, γ

h
its, ρ

h
ijts, and the corresponding values

of the primal variables as xhijts, θ
h. Let Nj be the set of demand nodes that can be covered completely

or partially by any candidate facility j, i.e., Nj = {i ∈ I : aij > 0}. Then, the master problem can be

formulated as follows:

[CMMCLPSU-P-MP:]

Min η (30)

s.t. zjk ≥ zj(k−1) ∀j ∈ J, k ≥ 1 (31)∑
j∈J

zjk = k ∀k ∈ {0, 1, ..., n} (32)

η ≥
∑
s∈S

ζ∗sα
h
s −

∑
i∈I

∑
t∈T

∑
s∈S

ditγ
h
its

−
∑
j∈J

∑
t∈T

∑
s∈S

capjβ
h
jtsz̄jk −

∑
j∈J

∑
t∈T

∑
s∈S

∑
i∈Nj

ditρ
h
ijts

 z̄jk ∀h ∈ H : k =
∑
t′≤t

pt′s (33)
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zjk ∈ {0, 1} ∀j ∈ J, k ∈ {0, 1, .., n} (34)

Proposition 1. The primal sub-problem CMMCLPSU-P-PSP is always feasible and bounded for any z̄jk

feasible to CMMCLPSU-P-MP.

Proof. A solution z̄jk of CMMCLPSU-P-MP is essentially a facility opening sequence. Once this sequence

is known, we can always determine which all facilities are open in any given period t and scenario s. Conse-

quently, we can always find the overall coverage and regret associated with each scenario s. Hence, maximum

regret (which is bounded), associated with any master problem solution z̄jk can always be obtained.

The efficiency of the Benders decomposition solution method depends to a large extent on how efficiently

the sub-problem can be solved. Hence, for a given z̄jk, we decompose CMMCLPSU-P-PSP, for each time

period t ∈ T and scenario s ∈ S. The decomposed problem for each t ∈ T and s ∈ S is stated as:

Max ζ ′ts =
∑
i∈I

∑
j∈Ni∪Nbi

aijxijts (35)

s.t.
∑
i∈Nj

aijxijts ≤ capj z̄jk ∀j ∈ J ∪ Jb, k =
∑
t′≤t

pt′s (36)

∑
j∈Ni∪Nbi

xijts ≤ dit ∀i ∈ I (37)

xijts ≥ 0 ∀i ∈ I, j ∈ Ni ∪N b
i (38)

Regret associated with scenario s is ζ∗s −
∑
t∈T

ζ ′ts and the maximum regret across scenarios (θ), is given

by θ = max
s∈S

(
ζ∗s −

∑
t∈T

ζ ′ts

)
. The above problem (35)-(38) is a LP problem which can be solved efficiently.

For the special case aij ∈ {0, 1}, i.e. for the problem with complete coverage, the above problem (35)-(38)

takes a network flow problem structure. Such a problem can be solved much more efficiently compared to a

general LP problem using a network flow algorithm.

We now provide algorithms to solve the sub problem. For a given master problem solution z̄jk, let j ∈
OPENts and j ∈ CLOSEts represent the set of open and closed facilities respectively in period t and scenario

s, i.e., OPENts = {j ∈ J ∪ Jb : z̄jk = 1, k =
∑
t′≤t

pt′s} and CLOSEts = {j ∈ J : z̄jk = 0, k =
∑
t′≤t

pt′s}. We

will solve the decomposed problem (35)-(38) and use the results to solve CMMCLPSU-P-DSP to optimality.

Algorithm 1 provides one of the alternate solutions for CMMCLPSU-P-DSP without considering redundant

constraint (23), i.e with ρijts values set as 0. The solution algorithm is given as follows:

Proposition 2. For a given solution z̄jk to CMMCLPSU-MP, Algorithm 1 gives an optimal solution to

CMMCLPSU-DSP.

Proof. First, we prove that Algorithm 1 gives a feasible solution to CMMCLPSU-P-DSP. Clearly, steps 1

and 2 give an optimal solution to CMMCLPSU-P-PSP. The solution to CMMCLPSU-P-DSP is obtained in

steps 3 to 5 using complementary slackness conditions between CMMCLPSU-P-PSP and CMMCLPSU-P-

DSP.
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Algorithm 1 Solution algorithm for CMMCLPSU-P-DSP without redundant constraint (23)

1: for all t ∈ T and s ∈ S solve (35)-(38) to obtain xijts, ζ
′
ts, and dual solution γ′its ∀i ∈ I and β′jts ∀j ∈

OPENts;

2: θ ← max
s∈S

(
ζ∗s −

∑
t∈T

ζ ′ts

)
, ξ ← argmax

s∈S

(
ζ∗s −

∑
t∈T

ζ ′ts

)
, ties are broken arbitrarily; ;

3: set αξ ← 1, αs ← 0 ∀s ∈ S\ξ;
4: set γitξ ← γ′itξ ∀i ∈ I, t ∈ T , and βjtξ ← β′jtξ t ∈ T, j ∈ OPENtξ, set γits ← 0, βjts ← 0 ∀s ∈ S\ξ;
5: for all t ∈ T , s ∈ S and j ∈ CLOSEts set βjts ← max{0,max

i∈Nj
(αs − γits/aij)} when aīj > 0, βjtξ ← 0

when aīj = 0;
6: output αs, βjts, γits ∀i ∈ I, j ∈ Ni, t ∈ T, s ∈ S.

In step 1, we obtain γ′its from the dual solution of (35)-(38). Applying complementary slackness condition

to (20) gives: (θ +
∑
i∈I

∑
j∈Ni∪NbI

∑
t∈T

ditxijts − ζ∗s )αs = 0 ∀s ∈ S. This, together with (28) gives as feasible

solution αξ = 1, where ξ = argmax
s∈S

(ζ∗s −
∑
i∈I

∑
j∈Ni∪Nbi

∑
t∈T

aijxijts) and αs = 0 ∀s ∈ S\ξ in step 3. γitξ is

obtained in step 4 from γ′itξ values, γits = 0 ∀s ∈ S\ξ. Similarly, βjtξ is obtained in step 4 from β′jtξ values,

βjts = 0 ∀s ∈ S\ξ. Furthermore, βjts for closed facilities j ∈ CLOSEts is obtained in step 5 using the

values of αs and γits in (27).

We now show that this solution is an optimal solution to CMMCLPSU-P-DSP. With this solution obtained

using Algorithm 1, CMMCLPSU-P-DSP objective function (26) is expressed as:

ζ∗ξ −
∑
i∈I

∑
t∈T

ditγitξ −
∑
j∈J

∑
t∈T

capjβjtξ z̄jk: k=
∑
t′≤t

pt′ξ
(39)

For a given scenario ξ and time t, the dual objective function of (35)-(38) can be expressed as
∑
i∈I

ditγitξ −∑
j∈J

capjβjtξ z̄jk: k=
∑
t′≤t

pt′ξ
. Hence, the last two terms of (39) evaluate to the total demand covered with

scenario ξ. Consequently, CMMCLPSU-P-DSP and CMMCLPSU-P-PSP objective function value are same

(equal to θ) and hence the Algorithm 1 solves the CULLPSU-P-DSP to optimality.

Van Roy (1986); Wentges (1996) discuss that the convergence of Benders decomposition for Capacitated

Facility Location Problem (CFLP) is poor when the sub-problem solution found by Algorithm 1 is used for

the Benders cut. The constraint set (23) in CMMCLPSU-P-PSP can be used to strengthen the Benders

cut. When z̄jk = 0 for any scenario s and time t, i.e. when the facility j is closed, changing the βjts and

ρijts for j ∈ CLOSEts does not change the objective function value of CMMCLPSU-P-DSP. However, while

changing their values, we need to ensure that βjts and ρijts satisfy constraint set (27). We present the

algorithm based on Van Roy (1986). For all j ∈ CLOSEtξ, in order to get stronger Benders cut, βjtξ, ρijtξ

values is obtained from the following linear program:

Min capjβjtξ +
∑
i∈Nj

ditρijtξ (40)

s.t. aij − aijβjtξ − γitξ − ρijtξ ≤ 0 ∀i ∈ I (41)

βjtξ, ρijtξ ≥ 0 ∀i ∈ I (42)
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The above formulation can be expressed as follows:

Min capjβjtξ +
∑
i∈Nj

dit max{0, aij − aijβjtξ − γitξ} (43)

βjtξ ≥ 0 (44)

Proposition 3. (43)-(44) can be solved to optimality using Algorithm 2.

Algorithm 2 Benders cut strengthening based on Van Roy (1986)

1: sort I = {1, 2, ..,m} in descending order of the values aij − γitξ, set I∗ ← φ;
2: find the demand node ī ∈ I with the highest value of aij − γitξ, i ∈ I;
3: if aīj − γītξ ≤ 0 or

∑
i∈I∗∪{ī}

aijdit ≥ capj then go to step 6;

4: else set I∗ ← I∗ ∪ {̄i}, I ← I\{̄i} and go to step 2;
5: end if
6: if I = φ then set βjtξ ← 0;
7: else set βjtξ ← max{0, 1− γītξ/aīj} when aīj > 0, βjtξ ← 0 when aīj = 0;
8: end if
9: set ρijtξ ← max{0, aij − aijβjtξ − γitξ};

10: output βjtξ, ρijtξ ∀i ∈ I.

Proof. Van Roy (1986); Wentges (1996) discuss a similar algorithm for CFLP and we extend that algorithm

for CMMCLPSU-P-DSP. The objective function (43) can be expressed as:

[βjtξ(capj − a1jd1t − a2jd2t − ....− ai′jdi′t)] + [d1t(a1j − γ1tξ) + d2t(a2j − γ2tξ) + ......

+...di′t(ai′j − γi′tξ)] (45)

where i′ ∈ I is such that ai′j − ai′jβjtξ − γi′tξ > 0. Clearly, for minimum value of the above expression

, βjtξ should be given a value 0 if (capj − a1jd1t − a2jd2t − .... − ai′jdi′t) is positive (i.e. in step 6 or

when aīj − γītξ ≤ 0 in step 3). βjtξ should be given a maximum possible value as indicated in step 7, if

(capj − a1jd1t − a2jd2t − ....− ai′jdi′t) is negative.

Proposition 4. The Benders cut (33) can be expressed as:

η ≥ ζ∗ξh −
∑
i∈I

∑
t∈T

ditγ
h
itξh −

∑
j∈J

∑
t∈T

capjβ
h
jtξh z̄jk −

∑
j∈J

∑
t∈T

∑
i∈Nj

ditρ
h
ijtξh

 z̄jk

∀h ∈ H : k =
∑
t′≤t

pt′ξh (46)

where, ξh associated with the extreme point h ∈ H, is found in step 2 of Algorithm 1.

Proof. This follows directly from substituting the values of dual variables in (33), using zjk as a variable,

and rearranging the terms.

Wentges (1996) further argue that in such cases where a demand node is serviced most efficiently only by

one unique facility, Benders cut will be stronger if it captures this information. Let j(i) ∈ OPENtξ represent
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the facility, demand node i is assigned to (after solving (35)-(38)). If there is no other facility that gives

such good coverage to node i as given by facility j(i), γitξ can be decreased by the extra coverage that node

i gets from j(i), and ρij(i)tξ can be raised by a similar amount. Clearly, these changes do not alter the dual

objective function value given by expression (26). Wentges (1996) show the pareto optimality of the modified

Benders cut for CFLP. Clearly, even for CMMCLPSU-P, it is evident from (46) that such modifications will

give a Benders cut that is no weaker than Benders cut (46). We incorporate these improvements suggested

by Wentges (1996) for the CFLP in our capacitated problem CMMCLPSU-P:

Algorithm 3 Benders cut strengthening based on Wentges (1996)

1: perform Algorithm 2 to find the dual variables βjtξ, ρijtξ for j ∈ CLOSEtξ;
2: for all i ∈ I do
3: find the highest(H1

i ) and second highest(H2
i ) value of the set {aij−aijβjtξ : j ∈ OPENtξ}. It follows

H1
i = aij(i) − aij(i)βj(i)tξ = γitξ for some j(i) ∈ OPENtξ.

4: find the highest element Hc of the set {aij − aijβjtξ : j ∈ CLOSEtξ}
5: set ∆i ← max{0,min{H1

i −H2
i , H

1
i −Hc}}, set ρijtξ ← 0 ∀j ∈ OPENtξ, j 6= j(i);

6: if ∆i > 0 then set γitξ ← γitξ −∆i, ρij(i)tξ ← ∆i;
7: else γitξ ← γitξ, ρij(i)tξ ← 0;
8: end if
9: end for

10: once again apply Algorithm 2 to find the final values of dual variables βjtξ, ρijtξ for j ∈ CLOSEtξ;
11: output βjtξ, ρijtξ ∀i ∈ I.

4 Computational study

In this section we discuss the data generation scheme that was used for our computational experiments.

Further, we also report and discuss the results obtained in our experiments. We report our results for the

CMMCLPSU-P and the special case of complete coverage wherein aij ∈ {0, 1}. We refer to this special case

as CMMCLPSU.

4.1 Data generation

In our study, we have conducted experiments with different problem sizes. The number of demand nodes

that have been considered in our experiments are m ∈ {100, 200, 300, 400, 500}. We have used Xi and Yi

as the coordinates of demand nodes i ∈ I. Further we generated these coordinates as Xi ∼ U [0, 100] and

Yi ∼ U [0, 100].

The number of candidate facilities n ∈ {5, 10, 15} for CMMCLPSU and n ∈ {5, 8, 10, 15} for CMMCLPSU-

P. We have randomly selected this list of n candidate facilities from the set I of demand nodes. In our exper-

iments, we have taken set Jb = φ, i.e. none of the facilities were open at the start of the planning horizon.

Further, we have used the X and Y coordinates to generate the Euclidean distance δij between demand node

i and candidate facility location j, i.e. δij =
√

(Xi −Xj)2 + (Yi − Yj)2. We have considered the covering

distance in CMMCLPSU as δ0 = 20. Maximum and minimum covering distances in CMMCLPSU-P are

fixed as δmax = 30 and δmin = 20. Further the coverage function in CMMCLPSU-P assumed to be linearly
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decreasing between δmin and δmax as indicated below:

aij =


1 if δij ≤ δmin,

1− δij−δmin
δmax−δmin =

δmax−δij
δmax−δmin if δmin < δij ≤ δmax,

0 if δij > δmax.

The demand at a demand node i in all periods has been generated using the first period demand di1 ∼
U [50, 1500] and a constant (over all periods) demand growth rate gi ∼ U [−0.04, 0.10] i.e., dit = di(t−1)(1 +

gi) ∀t ∈ {2, 3, .., |T |}. This data generation scheme has been motivated from the population and growth

rates of villages in Dang district of Gujarat, India. Further, length of the planning horizon in all experiments

is assumed to be 4 periods, i.e. |T | = 4. Server availability scenarios are generated using the same scheme

as Vatsa & Jayaswal (2016). Further, we use the capacity limit of 30,000 for all candidate facilities. This

capacity limit is motivated from the health guideline that recommends a PHC for every 30,000 population

(National Rural Health Mission, 2011).

4.2 Computational results

We perform the computational study on the data generated with the above mentioned scheme. All the

experiments are run on a personal computer with Intel Core i5 (3.30 GHz) processor; 4 GB RAM; and

windows 64-bit operating system. Solution algorithms are coded in C++ (Visual Studio 2010) and we

use IBM ILOG CPLEX as the MIP solver. Further, in all our experiments, the maximal coverage ζ∗s for

each scenario s ∈ S is obtained by solving CMMCLP for complete coverage and CMMCLP-P for gradual

coverage using CPLEX MIP solver. Tables 3 and 4 report the total time taken to obtain ζ∗s for each scenario

by solving CMMCLP and CMMCLP-P respectively. These times are much smaller than the CPU time taken

by CPLEX MIP solver to solve CMMCLPSU and CMMCLPSU-P, respectively. Hence, we do not include

these times in the total CPU times reported in all our further experiments. Further, after finding ζ∗s for all

scenarios, we check which scenarios can be ignored for any further consideration. All those scenarios that

are dominated (by some other scenario), will not influence the optimal solution and can be removed from

the problem. This step leads to a huge reduction in the problem size and consequently in the solution times.

The scenario dominance rules used by us are motivated from Vatsa & Ghosh (2014) who use similar scenario

dominance rules for the uncapacitated problem.

Table 3: Total CPU time to solve CMMCLP for each scenario

Ins. CPU(s)

n = 5 n = 10 n = 15

Ins.\m 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

1 0.8 1.6 2.1 2.6 4.1 11.8 28.6 43.0 110.8 110.2 79.7 351.5 453.2 1131.7 2130.2
2 0.7 1.3 1.9 2.3 4.1 11.8 26.5 63.9 52.7 172.7 90.0 251.6 582.0 1260.8 1797.8
3 0.8 1.1 1.8 2.7 2.9 12.6 22.5 82.2 83.5 107.3 131.1 181.7 725.5 1101.0 781.3
4 0.7 1.1 2.7 3.9 3.0 12.7 19.9 55.6 91.5 68.9 73.8 169.3 354.8 953.1 568.6
5 0.8 1.2 2.0 3.4 5.0 13.4 24.2 46.2 140.1 124.9 116.0 260.1 408.2 2217.7 2083.6
6 0.7 1.3 3.3 3.0 3.8 13.6 20.3 92.1 88.6 92.3 116.4 159.9 1410.7 1436.5 1945.9
7 0.8 1.2 2.0 3.6 4.6 13.1 21.4 122.4 119.5 143.7 184.1 158.5 1125.3 2418.3 1142.3
8 0.9 1.2 1.9 3.9 4.2 14.2 26.7 33.3 95.3 104.2 139.7 372.7 724.3 790.2 1180.0
9 0.7 1.4 2.1 3.7 3.6 12.1 31.6 70.4 194.9 128.0 103.6 212.2 627.1 1885.6 2016.0
10 0.8 1.2 2.0 2.8 3.3 12.3 20.4 90.7 90.4 120.5 87.5 136.3 893.2 898.6 1575.6

Avg. 0.8 1.3 2.2 3.2 3.8 12.8 24.2 70.0 106.7 117.3 112.2 225.4 730.4 1409.4 1522.1
Max. 0.9 1.6 3.3 3.9 5.0 14.2 31.6 122.4 194.9 172.7 184.1 372.7 1410.7 2418.3 2130.2
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Table 4: Total CPU time to solve CMMCLP-P for each scenario

Ins. CPU (s)

n = 5 n = 8

Ins.\m 100 200 300 400 100 200 300 400

1 1.4 4.4 5.0 4.7 7.5 43.2 63.7 42.3
2 1.3 3.1 5.9 4.9 6.5 44.5 55.7 37.8
3 1.3 2.1 4.6 6.1 9.1 15.1 63.3 165.5
4 1.2 1.6 6.4 5.9 7.7 14.9 55.4 99.4
5 1.5 2.3 3.9 8.0 8.4 14.5 43.2 68.4
6 1.3 2.5 6.0 6.6 9.8 31.8 91.5 55.0
7 1.3 2.7 4.4 8.4 8.1 13.7 42.3 62.8
8 1.4 2.2 3.7 7.8 9.3 26.0 65.5 57.5
9 1.2 3.3 4.9 7.7 7.4 23.6 64.0 54.8
10 1.6 2.5 4.6 6.6 11.0 21.4 91.3 56.8

Avg. 1.3 2.7 4.9 6.7 8.5 24.9 63.6 70.0
Max. 1.6 4.4 6.4 8.4 11.0 44.5 91.5 165.5

n = 10 n = 15

Ins.\m 100 200 300 400 100 200 300 400

1 21.5 113.9 228.1 128.2 121.4 866.3 1324.1 1827.3
2 18.9 126.3 239.4 146.6 113.6 809.0 2355.6 3755.8
3 21.9 60.8 267.2 502.2 130.5 397.4 1665.2 6113.3
4 22.3 58.5 177.0 347.0 115.3 457.3 1620.3 4554.1
5 24.5 85.8 165.5 233.3 126.2 452.3 2555.8 3621.6
6 26.1 74.7 369.9 203.6 158.4 526.2 3261.2 4325.6
7 24.6 37.8 235.0 235.1 166.9 416.7 2547.2 4549.9
8 29.7 80.6 120.4 189.8 163.8 799.9 2584.8 2212.0
9 20.0 62.3 268.3 351.5 104.7 577.6 3914.4 3263.0
10 32.4 61.5 367.0 264.3 137.2 373.9 3754.1 2563.6

Avg. 24.2 76.2 243.8 260.2 133.8 567.6 2558.2 3678.6
Max. 32.4 126.3 369.9 502.2 166.9 866.3 3914.4 6113.3

We conduct our computational experiments with 10 instances for each of the problem sizes described in

section 4.1. For CMMCLPSU, Table 5 reports the objective function value (Obj), time taken by CPLEX MIP

solver (CPLEX CPU(s)), time and number of cuts required by the callback versions of Benders decomposition

method while incorporating Algorithm 2 (BD-VR) and Algorithm 3 (BD-Wen). Clearly, BD-VR and BD-

Wen out-perform the CPLEX MIP solver. For example, the computation time taken by the CPLEX MIP

solver for the problem size of n = 10,m = 300 is on average more than 250 times the time taken by BD-

VR and BD-Wen. Further, CPLEX solver could not solve CMMCLPSU instances beyond problem size

n = 10,m = 300 within the time limit of 20 hours. Benders-VR and BD-Wen, on the other hand, could solve

most of the problem instances till n = 15,m = 500 in less than 1 hour on average. At the same time, we

notice that the number of cuts, and hence the CPU time, required by BD-VR and BD-Wen increases with

the problem size. We notice that even though BD-Wen takes fewer number of cuts on average compared to

BD-VR, the difference is not that significant.

Table 6 provides a comparison between CPLEX MIP solver, BD-VR and BD-Wen for CMMCLPSU-P.

We report results with n ∈ {8, 10, 15} and m ∈ {100, 200, 300, 400} as we find that with n = 5 or with

m = 500 most of the instances give zero regret solution with the data used in our experiments. With a large

number of demand nodes compared to number of facilities, and allowing for higher covering distance, the full

capacity of all the open facilities will be used. Hence, the regret with any of the facility opening sequence

will be zero. Further, from Table 6, it is evident that BD-VR and BD-Wen solve much larger instances of

CMMCLPSU-P compared to CPLEX MIP solver within the time limit of 20 hours. For example, CPLEX

MIP solver could not solve instances of problem size n = 8,m = 300 and n = 10,m = 200 within the 20 hour

limit, while BD-VR could solve all instances even of size n = 15,m = 300 in close to 2 hours on average.

Further, for the larger instances that CPLEX MIP solver could solve within the time limit, BD-VR is of the
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order of 100 times faster. Moreover, comparing the results in Table 5 and 6, we notice that the BD-VR

is much faster for CMMCLPSU, compared to CMMCLPSU-P. This is due to the resulting network flow

structure in the decomposed sub-problems of CMMCLPSU, which we are able to exploit.

We observe that the number of instances with zero regret solution is higher for the capacitated problems

compared to the uncapacitated problems reported by Vatsa & Jayaswal (2016). Moreover, we also see that

objective function value is zero for most of the instances with m = 500. The reason is, with a large number

of demand nodes (and demand values) compared to number of facilities the full capacity of all the open

facilities will be used. Hence, the regret with any of the facility opening sequence will be zero. This also

suggests that the decrease in capacity limit will result in higher number of instances with zero regret solution.

5 Conclusion

In this paper, we identified a gap in the capacitated facility location literature with an uncertainty related to

server availability. This problem is motivated from the real world problem of assigning doctors to Primary

Health Centres (PHCs), which are single doctor clinics and have capacity limits. In developing countries

there is a shortage of doctors and many of the PHCs (facility) remain inoperative. The district administration

wants to find a sequence of opening these PHCs so that doctors can be assigned to them as an when they

become available over the planning horizon. Since, the number of doctors becoming available in each period

of the planning horizon is uncertain, the district administration would like to consider such a sequence that

minimizes the maximum regret across all scenarios of doctor availability.

We provided a formulation for this problem. However, we observed that CPLEX MIP solver was unable

to solve even the medium size instances within time limit of 20 hours. Consequently, we provided Benders

based solution method which enables us to solve larger size instances in reasonable time. We further found

that one of the special case of the problem, where any demand node is either fully covered or not covered

(complete coverage), can be solved much faster than the general case. Moreover, for the instances that

CPLEX MIP solver could solve within a time limit of 20 hours, our proposed solution method turned out

to be of the order of 100− 5000 times faster for the problems with complete coverage, and around 100− 500

times faster for gradual coverage.

Future research may consider uncertainty in demand along with the uncertainty in the number of servers.

Furthermore, instead of minimax regret as used in our work, other regret criterion can be used.
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Table 5: Computational results with CMMCLPSU

Ins. Obj CPLEX BD-VR BD-Wen Obj CPLEX BD-VR BD-Wen

CPU(s) CPU(s) Cuts CPU(s) Cuts CPU(s) CPU(s) Cuts CPU(s) Cuts
n = 5,m = 100 n = 5,m = 200

1 0.0 2.3 0.2 4 0.2 4 1004.6 12.7 0.8 9 0.8 9
2 0.0 2.0 0.2 6 0.2 5 0.0 5.8 0.3 6 0.3 7
3 0.0 2.8 0.3 8 0.2 5 0.0 4.2 0.2 1 0.2 1
4 0.0 2.9 0.2 6 0.2 4 115.0 3.4 0.9 13 0.9 12
5 0.0 2.7 0.2 7 0.2 6 0.0 5.4 0.7 9 0.6 6
6 0.0 1.7 0.4 12 0.4 12 159.0 3.7 0.8 15 0.8 15
7 0.0 2.7 0.3 7 0.3 6 0.0 4.3 0.3 3 0.4 4
8 16.6 3.0 0.3 8 0.3 8 0.0 5.4 0.8 12 0.8 12
9 0.0 2.3 0.3 9 0.3 8 6772.5 5.6 0.6 9 0.5 9
10 0.0 3.1 0.5 17 0.3 6 0.0 4.8 0.4 7 0.3 5

Avg. 2.5 0.3 8.4 0.3 6.4 5.5 0.6 8.4 0.6 8
Max. 3.1 0.5 17 0.4 12 12.7 0.9 15 0.9 15

n = 5,m = 300 n = 5,m = 400

1 652.8 17.0 1.3 12 1.4 13 0.0 8.3 0.3 2 0.3 2
2 0.0 7.0 0.1 0 0.1 0 0.0 6.9 0.5 6 0.4 5
3 0.0 6.8 0.6 6 0.5 6 0.0 6.9 0.6 6 0.7 8
4 174.0 9.9 2.4 16 1.7 11 850.0 64.7 1.0 7 1.0 7
5 0.0 7.5 0.4 4 0.4 4 0.0 11.1 0.3 2 0.3 2
6 0.0 30.7 0.2 2 0.2 2 0.0 9.5 0.5 5 0.4 4
7 0.0 5.6 1.0 7 1.0 8 0.0 12.3 0.2 2 0.2 2
8 0.0 11.2 0.5 6 0.5 6 0.0 14.6 0.4 4 0.4 4
9 0.0 6.8 0.8 10 0.6 7 0.0 96.4 0.2 0 0.2 0
10 434.0 9.7 0.8 10 0.8 10 318.0 7.6 0.4 4 0.4 4

Avg. 11.2 0.8 7.3 0.7 6.7 23.8 0.4 3.8 0.4 3.8
Max. 30.7 2.4 16 1.7 13 96.4 1.0 7 1.0 8

n = 10,m = 100 n = 10,m = 200

1 159.6 138.8 14.4 33 11.5 32 6176.4 24487.1 71.1 108 74.2 87
2 0.0 444.1 13.2 47 17.1 43 7509.0 7894.8 24.7 52 28.0 47
3 1532.4 1045.4 7.3 28 6.0 21 19828.6 2880.7 49.6 54 64.6 53
4 3822.3 1257.9 7.4 32 8.8 32 115.7 827.9 44.1 50 42.1 39
5 3643.9 3022.6 9.3 33 9.7 44 0.0 1851.9 39.0 39 32.1 33
6 6197.2 5240.4 38.9 85 26.4 74 8758.8 1848.8 52.7 76 70.7 63
7 2507.9 1449.2 15.0 46 13.1 38 0.0 1170.8 13.1 20 13.6 19
8 2911.0 1954.1 23.1 55 22.0 49 0.0 14223.0 38.0 51 47.1 50
9 2442.2 610.7 31.9 78 35.7 72 13179.4 11653.6 13.5 41 18.6 33
10 249.7 754.1 8.6 34 10.5 38 0.0 1368.7 14.7 16 33.2 36

Avg. 1591.7 16.9 47.1 16.1 44.3 6820.7 36.0 50.7 42.4 46
Max. 5240.4 38.9 85 35.7 74 24487.1 71.1 108 74.2 87

n = 10,m = 300 n = 10,m = 400

1 8557.7 8266.2 179.5 170 188.8 127 2632.9 * 49.9 46 55.5 43
2 336.4 80763.9 23.9 60 34.6 49 1246.0 * 23.1 23 38.6 21
3 245.0 29232.4 105.4 97 94.1 98 395.0 * 50.9 65 117.5 78
4 2395.9 2922.4 65.1 66 83.9 53 1763.1 * 60.2 36 59.2 33
5 4951.6 17290.9 42.2 32 57.4 37 0.0 * 29.6 32 36.1 23
6 211.4 3153.9 31.4 58 45.2 68 0.0 * 41.3 44 26.6 14
7 7830.8 37922.4 170.6 125 216.7 129 1634.0 * 189.3 109 184.5 123
8 0.0 2853.6 34.1 46 77.5 77 12091.9 * 27.4 25 36.7 26
9 347.8 63384.8 52.9 60 52.6 48 10502.1 * 77.5 76 150.5 83
10 1518.5 5378.5 51.5 62 107.1 51 4009.8 * 30.8 56 33.6 37

Avg. 25116.9 75.7 77.6 95.8 73.7 58.0 51.2 73.9 48.1
Max. 80763.9 179.5 170 216.7 129 189.3 109 184.5 123
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Table 5 (continued)

Ins. Obj CPLEX BD-VR BD-Wen Obj CPLEX BD-VR BD-Wen

CPU(s) CPU(s) Cuts CPU(s) Cuts CPU(s) CPU(s) Cuts CPU(s) Cuts
n = 10,m = 500 n = 15,m = 100

1 7325.2 * 498.9 149 245.0 149 159.6 * 109.8 69 97.1 59
2 172.2 * 410.8 314 724.1 317 73.7 * 206.5 117 158.7 100
3 3599.7 * 146.3 144 203.6 84 6075.3 * 143.7 97 126.4 71
4 0.0 * 20.3 10 25.6 10 18.8 * 64.4 52 80.6 50
5 0.0 * 59.2 30 48.5 27 3221.5 * 63.6 38 55.4 34
6 0.0 * 9.2 3 134.4 3 5471.8 * 351.9 257 272.0 177
7 466.3 * 109.4 99 178.2 73 7631.9 * 377.6 211 354.1 182
8 0.1 * 70.3 29 86.0 31 4106.3 * 139.2 100 162.5 109
9 4081.7 * 357.6 65 414.8 57 3293.7 * 194.7 130 239.3 134
10 10637.1 * 85.4 41 86.1 32 249.7 * 90.0 49 82.5 47

Avg. 176.8 88.4 214.6 78.3 174.1 112 162.9 96.3
Max. 498.9 314 724.1 317 377.6 257 354.1 182

n = 15,m = 200 n = 15,m = 300

1 13335.4 * 1602.5 581 2016.9 558 1757.4 * 422.9 90 710.1 81
2 7509.0 * 475.4 140 609.0 166 6734.8 * 747.6 268 663.0 202
3 4833.0 * 594.4 176 1018.2 162 10131.0 * 2061.9 369 1632.0 236
4 9274.4 * 535.6 226 668.1 200 2526.5 * 819.7 278 598.3 135
5 3608.8 * 443.1 122 426.5 119 6623.3 * 613.0 138 516.6 95
6 904.0 * 991.9 225 1051.3 229 5176.2 * 541.4 275 511.6 164
7 3215.5 * 498.0 160 499.4 146 6379.9 * 2526.9 413 2494.8 367
8 6263.6 * 2663.7 460 2824.8 460 10606.9 * 778.6 160 619.2 150
9 16059.5 * 570.8 112 406.9 106 12108.7 * 646.6 125 671.4 137
10 0.0 * 236.3 72 186.7 49 3155.2 * 1122.4 262 1160.2 281

Avg. 861.2 227.4 970.8 219.5 1028.1 237.8 957.7 184.8
Max. 2663.7 581 2824.8 558 2526.9 413 2494.8 367

n = 15,m = 400 n = 15,m = 500

1 8141.8 * 1145.1 158 1209.7 145 6318.6 * 6309.0 592 5052.6 521
2 829.2 * 1550.9 346 469.2 90 2482.1 * 4224.6 487 4649.6 536
3 4182.5 * 1637.4 265 2081.8 322 0.0 * 330.3 27 325.4 28
4 12039.8 * 1739.0 210 1254.7 145 8844.9 * 593.8 52 514.5 53
5 10404.5 * 4705.2 747 3553.8 620 2876.8 * 2652.6 108 2346.9 105
6 1494.8 * 1552.5 339 1299.8 245 0.0 * 3323.4 121 6474.1 155
7 8624.1 * 1824.4 360 2325.8 422 1765.0 * 1968.4 89 1291.4 50
8 4567.3 * 167.5 30 250.6 43 21.6 * 4201.7 206 4059.3 214
9 11109.8 * 7632.6 488 6788.1 434 3684.3 * 3299.3 106 2476.4 78
10 4009.7 * 438.2 78 1964.3 86 12214.2 * 6928.5 257 4887.2 206

Avg. 2239.3 302.1 2119.8 255.2 3383.2 204.5 3207.7 194.6
Max. 7632.6 747 6788.1 620 6928.5 592 6474.1 536
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Table 6: Computational results with CMMCLPSU-P

Ins. Obj CPLEX BD-VR BD-Wen Obj CPLEX BD-VR BD-Wen

CPU(s) CPU(s) Cuts CPU(s) Cuts CPU(s) CPU(s) Cuts CPU(s) Cuts
n=8, m=100 n=8, m=200

1 4052.4 148.5 32.9 34 29.6 39 12279.6 18512.5 83.1 42 54.9 31
2 0.0 224.6 23.5 20 14.0 11 1348.8 7547.5 62.5 38 39.6 30
3 3115.1 121.8 26.3 15 22.7 15 79.1 1887.5 79.5 48 50.2 37
4 3170.0 1410.5 20.3 17 25.2 16 457.9 1522.8 41.7 21 31.8 19
5 29.2 219.8 24.2 21 18.6 17 0.0 648.7 46.9 21 37.6 18
6 6144.5 821.0 69.5 49 44.7 36 9979.7 7038.5 77.3 33 66.2 40
7 38.8 93.1 25.2 25 27.6 34 3079.5 1612.3 61.3 31 53.6 34
8 0.0 2417.3 32.7 33 31.7 38 1127.2 2841.0 68.3 31 54.8 32
9 0.0 246.4 19.7 14 16.7 13 2667.2 746.8 41.0 22 33.8 25
10 2419.9 532.7 57.0 43 48.0 41 927.8 5183.0 64.3 33 59.8 34

Avg. 623.6 33.1 27.1 27.9 26 4754.1 62.6 32 48.2 30
Max. 2417.3 69.5 49 48.0 41 18512.5 83.1 48 66.2 40

n=8, m=300 n=8, m=400

1 108.8 * 46.6 21 37.4 17 0.0 * 46.8 6 38.2 5
2 0.0 * 25.9 1 24.9 1 0.0 * 39.2 6 40.2 11
3 0.0 * 33.2 10 32.9 12 1614.4 * 234.9 74 203.9 71
4 350.5 * 35.7 13 33.7 16 813.6 * 183.4 96 153.4 90
5 0.0 * 24.7 6 25.7 9 0.0 * 38.1 1 33.5 1
6 0.0 * 47.3 15 45.6 18 2461.3 * 201.6 82 194.8 93
7 0.0 * 36.0 10 29.7 5 0.0 * 39.0 2 34.3 2
8 820.8 * 73.4 47 56.8 36 0.0 * 48.1 8 42.0 9
9 0.0 * 37.5 12 31.0 8 0.0 * 38.7 2 33.1 2
10 1141.6 * 72.3 22 73.9 27 0.0 * 38.7 2 32.9 2

Avg. 43.3 15.7 39.1 14.9 90.9 27.9 80.6 28.6
Max. 73.4 47 73.9 36 234.9 96 203.9 93

n=10, m=100 n=10, m=200

1 280.6 426.9 103.7 50 100.6 48 12279.6 * 206.1 74 205.0 71
2 7.3 1414.9 90.9 40 94.4 40 2107.6 * 154.1 45 142.3 43
3 3908.7 412.1 53.1 24 53.1 23 10549.3 * 283.2 54 396.0 38
4 3262.5 2046.2 64.1 35 73.4 41 1913.1 * 161.4 42 179.9 44
5 1920.6 14923.5 124.9 44 85.3 33 637.6 * 93.2 22 136.8 39
6 10066.3 11460.0 180.4 70 178.0 62 4497.8 * 262.3 58 284.5 67
7 8496.6 3407.5 84.2 32 105.5 40 3079.5 * 137.2 45 106.8 33
8 5663.0 5899.7 110.6 50 91.1 40 2901.2 * 276.2 53 263.5 48
9 10.0 1042.9 89.7 38 99.2 47 4972.4 * 75.9 25 72.8 24
10 5097.5 9381.6 126.0 55 133.5 59 3390.4 * 186.4 46 170.5 41

Avg. 5041.5 102.8 43.8 101.4 43.3 183.6 46.4 195.8 44.8
Max. 14923.5 180.4 70 178.0 62 283.2 74 396.0 71

n=10, m=300 n=10, m=400

1 0.0 * 155.1 17 140.5 15 1198.1 * 167.6 9 155.5 9
2 0.0 * 223.9 29 201.7 25 0.0 * 116.4 5 107.8 6
3 0.0 * 181.6 27 183.5 26 0.0 * 519.4 68 430.3 54
4 7217.6 * 205.4 31 200.4 31 813.6 * 1349.9 220 1210.9 216
5 0.0 * 178.4 33 172.5 31 0.0 * 162.0 7 120.0 4
6 1614.3 * 411.8 73 453.8 85 2461.3 * 267.7 24 383.4 48
7 888.7 * 510.3 93 379.3 70 1412.6 * 403.2 35 408.6 45
8 0.0 * 177.8 49 117.7 24 1740.3 * 336.7 31 275.5 28
9 0.0 * 232.6 32 161.3 18 186.0 * 784.7 108 718.4 114
10 6266.3 * 860.7 120 773.9 109 2.3 * 336.4 24 280.9 21

Avg. 313.8 50.4 278.5 43.4 444.4 53.1 409.1 54.5
Max. 860.7 120 773.9 109 1349.9 220 1210.9 216
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Table 6 (continued)

Ins. Obj CPLEX BD-VR BD-Wen Obj CPLEX BD-VR BD-Wen

CPU(s) CPU(s) Cuts CPU(s) Cuts CPU(s) CPU(s) Cuts CPU(s) Cuts
n=8, m=100 n=8, m=200

1 5162.9 * 694.6 60 864.3 81 18970.4 * 4480.8 302 3392.6 226
2 4025.5 * 751.9 86 789.3 93 3989.2 * 1786.9 126 1815.3 127
3 4336.9 * 564.4 59 570.9 57 5026.7 * 4247.0 121 6501.7 191
4 1478.7 * 564.4 65 510.0 59 5997.5 * 3571.0 136 3538.0 127
5 10212.4 * 475.9 57 344.8 39 12606.1 * 1309.0 70 1498.0 83
6 10131.6 * 1504.9 197 1198.6 159 4887.0 * 2739.6 119 3100.0 137
7 11693.0 * 1069.2 114 735.5 80 3686.8 * 2851.2 132 2641.4 120
8 3226.9 * 587.4 74 586.6 78 5826.2 * 5506.4 122 7703.1 174
9 0.0 * 392.6 47 189.6 16 7687.6 * 1252.3 62 1138.0 51
10 9443.1 * 764.6 92 670.8 79 3907.2 * 3741.5 162 3807.9 167

Avg. 737.0 85.1 646.0 74.1 3148.6 135.2 3513.6 140.3
Max. 1504.9 197 1198.6 159 5506.4 302 7703.1 226

n=15, m=300 n=15, m=400

1 6063.4 2756.0 100 2924.6 113 5740.2 * 4628.5 77 4830.0 87
2 5546.6 14229.1 440 16792.9 522 7146.1 * 12596.0 262 15067.6 321
3 279.7 6651.6 141 7977.7 165 * * * * * *
4 2575.9 5710.0 119 5465.8 105 2539.2 * 48221.7 686 46278.1 665
5 10088.5 4009.9 185 6667.8 317 568.0 * 9959.9 213 9200.3 195
6 869.4 6121.6 260 5296.5 215 5518.4 * 88650.5 1486 87067.1 1458
7 4541.9 15304.2 345 10207.8 227 2426.4 * 5953.5 154 5423.6 141
8 7841.6 9212.1 360 6207.4 241 4668.2 * 4727.7 122 4609.2 118
9 401.5 3327.5 119 2673.7 92 598.4 * 12233.1 256 11560.3 240
10 7181.4 6465.0 263 5160.1 207 558.8 * 4138.7 68 3957.5 64

Avg. 7378.7 233.2 6937.4 220.4 21234.4 369.3 20888.2 365.4
Max. 15304.2 440 16792.9 522 88650.5 1486 87067.1 1458
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