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Abstract

In the financial markets, asset returns exhibit collective dynamics masking individual impacts on the rest
of the market. Hence, it is still an open problem to identify how shocks originating from one particular
asset would create spillover effects across other assets. The problem is more acute when there is a large
number of simultaneously traded assets, making the identification of which asset affects which other assets
even more difficult. In this paper, we construct a network of the conditional volatility series estimated
from asset returns and propose a many-dimensional VAR model with unique identification criteria based
on the network topology. Because of the interlinkages across stocks, volatility shock to a particular asset
propagates through the network creating a ripple effect. Our method allows us to find the exact path
the ripple effect follows on the whole network of assets.
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1 Introduction

Financial networks representing concurrent evolution of asset returns and volatilities across time, show
non-trivial aggregate dynamics that arise out of individual dynamic of all underlying assets. Assessing
contributions of individual assets to the aggregate behavior is difficult because assets returns do not evolve
over time in silos. They are affected by and in turn affect other asset returns. Thus, quantification of the
effects of a volatility shock emanating from a given epicenter percolating through the network would depend
on the topology of the network denoting linkages across asset returns as well as the shock structure. In this
paper, we propose an algorithm to characterize such ripples on large-scale financial networks.

There has been considerable development in the theoretical and empirical literature in the aftermath
of the recent US financial crisis which brought forward the importance of connections across economic and
financial entities (Acemoglu et al. (2015), Acemoglu et al. (2012), Barigozzi and Hallin (2017b), Dessaint
et al. (2018), Diebold and Yilmaz (2015a), Pozzi et al. (2013), Tumminello et al. (2010), Barigozzi and
Hallin (2017a), Geraci and Gnabo (2018), Tumminello et al. (2007)). The idea that spillover effects can be
of sizable magnitude came to the forefront almost immediately as has been demonstrated by the remark by
the then chief executive of Ford Motors, A. Mullaly in the congressional hearing (Mullaly (2008)) during the
crisis: “If any one of the domestic companies should fail, we believe there is a strong chance that the entire
industry would face severe disruption.” One stream of the literature took the path of understanding the
shock propagation mechanism through input-output architecture (see Acemoglu et al. (2016) for a review
of the literature). In the financial markets however, the shock propagation channel can take many forms.
Plosser (2009) noted that: “due to the complexity and interconnectivity of today’s financial markets, the
failure of a major counterparty has the potential to severely disrupt many other financial institutions, their
customers, and other markets.” We focus on the second stream of literature which attempts to address
such phenomena from a statistical point of view where one has to construct and/or estimate the network
from underlying process and data. Essentially, we do not provide a structural reason for shock propagation.
This is in line with the reduced-form approach taken by Demirer et al. (2017).

Modeling spillover of shocks across a large number of stocks presents two challenges. First, since all
stocks are traded at a very high frequency, the daily data reflect the collective dynamics and each individual
return series comprise own dynamics as well as impacts of other assets’ dynamics. Thus identification of
which asset affects which other assets cannot be deduced by considering stocks separately. We accommodate
the information of joint evolution by constructing network of stocks and for modeling the time domain
information, we utilize a vector autoregression (in short, VAR) framework with an identification restriction
obtained from the underlying network topology. This leads to the second problem about the robustness of
the identification criteria. In particular, given the rapid evolution in the financial markets, finding a criteria
that produces time-consistent result is difficult. In the following, we show that the criteria that we derive
from topology of the network based on observed return correlation matrix is quite stable across time.

In terms of methodology, we first construct the conditional volatility series from stock return data using
a generalized autoregressive conditional heteroschedastic (in short, GARCH) framework. We allow the lags
to vary between a range and by using information criteria, we select the best lag combinations for each of
the stock return series. Since the number of stocks are large and not all pairs of stocks would be strongly
connected, we carry out a sample selection procedure by fitting a sparse VAR model (Lasso estimator;
Tibshirani (1996)) to the full set of stocks volatility series to identify a subset of strongly connected stocks
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using an exogenously tunable threshold. The surviving set of stocks constitute the maximally connected
component.

Once the set of connected stocks is identified we construct a network based on observed return correlation
matrix. Since the correlation values can be negative, it does not satisfy the criteria for a metric. Hence,
the correlation values cannot directly be used for creating a network. Following Mantegna (1999), we
take a nonlinear transformation (see Sec. 2.2.2) to convert the correlation matrix into a distance matrix.
Then we extract the minimum spanning tree (MST herewith) from the same, which is ultra-metric in
nature (Mantegna (1999)). The MST provides the minimal structure on which we demonstrate the shock
propagation mechanism in the form of ripple effects.

In order to analyze shock propagation, we estimate a VAR model on the stocks belonging to the max-
imally connected component, with suitable lags chosen by information criteria. The model is identified by
imposing an ordering on the matrix representing contemporaneous movement of the volatility variables, by
the eigenvector centrality of the observed return correlation matrix. This identification choice reflects two
mechanisms. First, the dominant eigenvalue of the observed return correlation matrix represents the so-
called market factor (Plerou et al. (2002)). The name arises from the fact that the corresponding eigenvector
contains the extent of participations of the stocks in the aggregate movement. Thus a high value of a stock
in the dominant eigenvector represents higher participation of the stock, which provides information about
relative exogeneity of the assets in the market. Since volatility spillovers will occur from a more exogenous
stock to relatively less exogenous stocks, the dominant eigenvector is a natural choice for ordering criteria.
Second, we note in this connection that the dominant eigenvector has an alternative interpretation in network
theory. It represents eigenvector centrality (in short, EVC) which measures degree of influence of nodes in
a graph in a recursive manner. We note that eigenvector centrality also turns out to be a limiting case of
Katz-Bonacich centrality as we explain later in the paper, making eigenvector centrality a natural candidate
for the analysis. Therefore, in a nutshell, eigenvector centrality allows us to create an unique hierarchy of
stocks within the maximally connected component, which also provides an ordering criteria for estimation
of unique impulse response functions obtained from VAR.

In principle, one could also use the eigenvector centrality of the volatility correlation matrix as an ordering
criteria for identification. However, we see two strong rationale to use eigenvector centrality of the return
correlation matrix (c¢9 henceforth). First, it is fairly stable across time. We divide the total sample which is
16 years long (2002-2017), into four equally non-overlapping wide windows ranging over 4 years viz. 2002-05,
2006-09, 2010-13 and 2014-17 and observe the evolution of c£9 in these four time window (table 1). It
is evident that the correlation values of pairs of ¢¢%9 across time are greater than 0.5 in 5 out of 6 cases.
We also note that the corresponding values for 2% is considerably low (table 2). Second, definition and
measurement of return is unique whereas volatility can be measured in multiple ways. More importantly,
the volatility estimates obtained from different methods depend on the specification of the structure of the
underlying model. For example, as opposed to the simple GARCH structure, Engle and Figlewski (2014)
presents a different model of dynamic linkages in implied volatility (EGARCH/DCC) which is less suitable
for modeling large number of assets. Hence, identification criteria based on ordering of volatility centrality
would be sensitive to model specification and hence, non-robust. In comparison, c¢% is uniquely defined and
hence, more credible as an identification criteria.

We represent propagation of the volatility shocks over time in the network using orthogonalized impulse
response function of the estimated VAR model. Impulse response function allows us to observe the path
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and intensity of the shock propagation for any given origin (i.e. shocks originating in any given node of the
network).

Finally, we provide analytical reasons for using c¢9 and also explore the explanatory factors of the c¢%.
Note that c¢9 is a purely statistical measure based on asset returns. We use the bounds of Maréenko-Pastur
distribution from random matrix theory (Mar¢enko and Pastur (1967)), to show that ¢ corresponds to a
statistically significant eigenvalue. Earlier work has noted that for sectoral indices, ¢ is strongly correlated
with size of the sector measured by market capitalization, revenue as well as employment (Sharma et al.
(2017)). In the current paper, we analyze the relationship between %9 and log of assets, return on assets,
credit rating and number of analyst covering the stock. These variables represent size effect, profitability,
financial health and popularity respectively. c¢9 shows strong association with size after controlling for
return on asset, credit rating and number of analysts (Sec. 4.2). The coefficient sign of the control variable
in the panel regression also supports the common wisdom. Profitable firms are in the core of the network
and while financial firm with bad ratings are on the periphery.

Our paper is part of a growing literature that analyzes the mechanism of shock propagation on financial
networks. However, we note that our methodology can be suitably applied to other networks as well. Recent
empirical work in this area has two related but distinct developments. One, a range of methods have
been proposed to construct the network from asset prices. Two, once the network has been constructed
then the analysis is done to characterize shock propagation. To construct the asset network, two natural
candidates are the return series and the volatility series. Some authors have constructed and analyzed the
return network. For example, Geraci and Gnabo (2018) proposed a measurement of connections based on a
Bayesian vector autoregression model on the return series. There is also a prior tradition of modeling asset
networks based on the realized return correlation matrix (e.g. Mantegna (1999), Tumminello et al. (2010),
Pozzi et al. (2013), Sharma et al. (2017)). We adopt this approach to construct our asset network. However,
since we analyze shock propagation in this paper, we have modeled the evolution of volatility shock diffusion
on the network.

An important methodological point is that the volatility is not observed and has to be estimated from
the data. Most notably Diebold and Yilmaz in a series of articles (Diebold and Yilmaz (2014), Diebold
and Yilmaz (2015b), Demirer et al. (2017)) have developed a method to construct the implied volatility
network from asset returns using long-range variance decomposition technique in a vector autoregression set
up. The network itself characterizes contributions of individual entities to the others’ volatilities. Diebold
and Yilmaz (2015a) contains a series of applications of the method to different sorts of financial data. How-
ever, the tenability of some the assumption made in this approach is questionable. For example, Diebold
and Yilmaz (2014) used a generalized variance decomposition which requires normally distributed shocks.
Given the distributional characteristics of the stocks, this assumption is not tenable. In their work, they
carried out estimation of volatility using the intra-day return data using the formula proposed by Garman
and Klass (1980). In the present context, for simplicity and data availability we use a generalized autore-
gressive conditional heteroschedasticity or GARCH model to estimate the volatility process. Other modeling
techniques like the one proposed by Engle and Figlewski (2014) uses a EGARCH/DCC model to estimate
the time-varying correlations between implied volatilities of stocks. Implied volatilities contain information
about expected future volatility as well as risk premia. Since we focus on realized spillover effects across
stocks, we maintain that the volatility estimation can be done with past empirical volatility. The other big
departure from this literature is that we do not jointly estimate all volatility series as in DCC model. This
approach is quite prevalent in the literature on shock propagation (Diebold and Yilmaz (2015a)). However
we differ significantly from this literature in terms of network construction. We utilize a minimum span-
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ning tree filtered from the return correlation-based network rather than using network constructed from
long-range variance decomposition. In the methods section (Sec. 2), we discuss the benefits of this choice.
Finally, we estimate a many-dimensional vector autoregressive model on the estimated volatility series with
identification restrictions implied by the return network. This last step allows us to actually estimate the
impulse response functions.

The idea that there are spill over effects in the financial markets is known in the finance literature.
Dessaint et al. (2018) presented strong evidence that in presence of noise shock (which is of non-fundamental
nature) to the peer firms’ stock prices, firms make changes in their investment decisions due to the limited
ability of the managers to filter out information component only from the observed stock prices. Foucault
and Fresard (2014) quantified that 1% increase in peer valuation in the stock market impacts the corporate
investment of the following firms by about 5.9%. Thus financial information obtained through stock prices
have real effects. The opposite has also been documented. Cohen and Frazzini (2008) showed that return
predictability exists between firms that are economically linked. Here in our paper, we do not explore the
connection between stock market to economic fundamentals and vice versa. Instead we focus solely on
quantification of the spill overs within the financial time series.

For us the most relevant work is Barigozzi and Hallin (2017a) who have utilized a sparse vector autoregres-
sion framework. They used eigenvector centrality obtained from the residuals in the GARCH specification
to identify the long run variance decomposition network. Our work differs significantly in terms of identifica-
tion criteria and the robustness thereof. We utilize the eigenvector centrality obtained from the ultra-metric
graph of the stock network (Mantegna (1999)) to rank order the stocks as an identification strategy. We
show that the rank-ordering criteria can be constructed easily from the observed return correlation matrix
upon non-linear transformation. More importantly, we analyze the rank order of stocks in four different time
windows and the rank order is quite stable. As an alternative strategy, we considered eigenvector centrality
obtained from the conditional volatility series (obtained form GARCH estimation) correlation network as
well. The corresponding rank order is found to be quite unstable across different time windows compared to
the one obtained from return network. Thus we show that the proposed identification criteria is considerably
robust across time and performs better than the one based on volatility estimation.

The rest of the paper is structured as follows. In Sec. 2, we describe the data and the econometric
methodology. This section ends with a step-by-step description of the method proposed for implementation
purpose. In the next section, we conduct analysis with impulse response functions over the network to
characterize the ripple effects. In Sec. 4, we provide justification of the identifying restrictions. Sec. 5
summarizes the paper and concludes.

2 Empirical data and methodology

In the following, we provide the complete description to characterize the shock propagation across the asset
network. The background of each of the methods used have been described. In Sec. 2.3 we provide a concise
set of steps that encapsulates the entire analysis.

]
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2.1 Data description

We have collected data on N = 100 stocks with largest market capitalization in the New York Stock Exchange
over a period of 16 years (2002-2017).5 We denote the entire time period by T. All stocks are chosen such
that they have existed throughout the entire time period. We will divide the time period into four equally
wide windows ranging over 4 years viz. 2002-05, 2006-09, 2010-13 and 2014-17 (notationally, we use T3, 75,
T5 and Ty; see tables 4, 5, 6 and 7 for stock names, ticker symbols and sectoral affiliations). The first window
covers the time when the US economy was in a boom, the second window captures the time of financial
crisis, the third captures the time period after crash when the economy was still recovering and the fourth
captures a period of relatively stability.

2.2 Return and volatility series

Each stock price is denoted by {pi:}icn e, where j = 1, 2, 3 and 4. Return series is defined as the first
difference of the log price series

rit = log(pit) — log(pit—1) (1)

for i € N,t € Tj where j = 1, 2, 3, 4. Next, we construct conditional volatility series from return series.
There is a plethora of methods that can be used for constructing the latent volatility series. We consider
a popular and well-known method of GARCH modeling. We note that this step can be done in multiple
ways. Notably, Diebold and Yilmaz (2015a) has popularized a formula due to Garman and Klass (1980)
that utilizes daily highest prices, lowest prices, opening prices and closing prices, all measured in logs for
all stocks. Because of the substantially lower informational requirement and the fact that our fundamental
objective is to characterize spillover from one return series to another, we use GARCH methodology because
of its simplicity.

Estimation of conditional volatility: We also use a parametric approach to model volatility by using
a GARCH(p, ¢) framework from each of the return series {r;;}. We follow the standard definition of the
GARCH model that

Tt Ot€¢

p q
C‘*‘Zaﬁt{i‘*‘ZﬁjUt{j- (2)
i=1 =1

of
We will denote conditional volatility of the i-th stock by o;;.

2.2.1 Selection of maximally connected component through Lasso

In order to analyze the mechanism of shock propagation, we first need to identify the set of stocks which
can be affected by the shock propagation (Hsu et al. (2008)). Towards that objective, we first construct
mazimally connected component G, of the network G.

5All data (prices as well as other company-level information) have been collected from Thomson Reuters Eikon database.
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Definition 1 (Maximally connected component:) Given a network G = (V, E), we call a subnetwork
G' C G with structure G' = (V' E'") a mazimally connected component of G, if G' is connected and for all
nodes w € V and u ¢ V', there exists no node v € V' such that (u,v) € E.

We identify the maximally connected component Gp,c. by estimating a Lasso (Least Absolute Shrinkage
and Selection Operator; Tibshirani (1996)) model. For a general description of Lasso, consider the following
least-square estimate with penalty for I' norm over the estimated parameters:

2

T k k
minz Y — Zﬂjwﬁ s.t. Z 16| < C (3)
t=1 j=1 j=1

where y; represents a vector of response variables and zj; represents explanatory variables where j € k.
Essentially, we fit the sparse VAR model in the form of Lasso regression described above with the obvious
substitution of {xj;;} by lagged values of y;;. For actual implementation, we consider the sequence of
conditional volatility {ci;}ien,tct; estimated above through GARCH procedure (where j € {1,2,3,4}) and
utilize adaptive Lasso technique (Zou (2006)) which optimally estimates the model and has the ability to
robustly identify the right subset model with true predictor variables (oracle properties). After we fit the
model (allowing one lag), a substantial number of the links between all {i,j} pairs would be set equal to
zero. Let us denote estimated coefficient matrix by 8. Then we convert into a binary matrix (0, 1) where all
nonzero elements are converted into ones and the zeros remain zero. Note that the row sum and the column
sum of this binary transformation of the 3 matrix represents indegree and outdegree respectively.® Then we
use a threshold to differentiate between connected and unconnected nodes. For the empirical exercise, we
followed the convention that if a node has both indegree and outdegree less than 10%, then it does not belong
to the maximally connected component G,,... Thus in order to belong to the connected component, one
node needs to be connected with at least 10% nodes with either incoming or outgoing links, or both. If the
threshold is set at 0, then we simply recover the original set of stocks. Notationally, let us assume that after
selecting the Gj,ec, the number of surviving stock is n < N.

2.2.2 Filtration of edges to construct a hierarchical network

Once the connected component has been extracted, we carry out all operations on that that set of stocks
only. We construct a sample correlation matrix I'? from both the return series {r;;} and the volatility series
{oit}, by using pairwise correlation coefficients defined as

3‘ _ B ((¢i — czz')(fi ) (@)

v

for i,7 € n, where Z denotes mean value of x and 0 denotes unconditional volatility of ¢ € {r,co}.

We proceed to construct two hierarchical networks (Di Matteo et al. (2010)) based on the two correlation
matrices (I'" and I'?). We note that individual correlation values cannot serve the purpose of distance as they
can be negative. Therefore, following the literature (Mantegna (1999), Bonanno et al. (2004)) we consider

6 Indegree represents how much a particular node in a graph is open to influence of other nodes and outdegree represents
direct influence of one particular node on the remaining nodes.
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the metric (Gower (1966))
dij = 1/ 2(1 = pij)- ()

Using this nonlinear transformation, we can construct two distance matrices D™ and D created respectively
from the two correlation matrices I'" and I'?. With the help of the distance matrix, we construct two
networks G" = (V",E") and G° = (V?,E“), where V denotes the set of nodes/vertices (stocks) and E
denotes the set of edges obtained from Eqn. 5. Clearly these two networks contain n nodes and all the edges
are of positive magnitude.

In order to filter out the minimal sized network that has the maximum information (Bonanno et al.
(2004)), we construct the minimum spanning tree (MST hereafter) from I'” and I'?. For the purpose of
visualization, we only use the MST obtained from I'".” Below we define MST.®

Definition 2 (Minimum spanning tree:) A spanning tree of a graph G is a connected subgraph of G that
has no cycles and connects all vertices with minimum number of edges. For a weighted graph, the minimum
spanning tree is a spanning tree that has the least weight among all possible spanning trees.

Thus MST identifies the strongest links across the graph G,ec.”

To summarize the development so far, we have identified the connected component of stocks (Sec. 2.2.1)
and constructed the minimum spanning tree which preserves the links across stocks that are the strongest
under aggregation. We will utilize the MST to graphical exposition of the ripple effect as it drastically
reduces the number of links or edges to n — 1.

2.2.3 Identification restrictions from network topology

Once, we have constructed the maximally connected component of the network, we proceed towards quanti-
fying the spillover effects through estimation of a vector autoregression model. First, we need to specify the
identification restrictions.

We identify the VAR model through centrality measures. We consider two criteria: Eigenvector centrality
and Katz-Bonacich centrality (Bonacich (1987)) which are defined as follows.

Definition 3 (Eigenvector centrality:) For a given network G = (V, E) with adjacency matriz A, we
define eigenvector centrality to be a vector c®*9 which solves

Ac®9 = \c (6)

where \ is chosen to be the maximum eigenvalue \p,q. of the adjacency matriz A.

7As we will show later that a robust identification restrictions can be obtained from I'", which we utilize for estimation
purpose.

8There are many standard algorithms to create MST from a fully connected graph. Prim’s and Kruskal’s algorithms are
standard ones. Also, MST is unique for a graph when all edges have distinct weights (which is the case for an adjacency matrix
obtained from correlation matrix).

9Note that due to the transformation of the correlation matrix (Eqn. 5), minimum weight in the distance matrix refers to
maximum correlation. Therefore, MST on the distance matrix identifies the strongest links in terms of correlations.
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Definition 4 (Katz-Bonacich centrality:) For a given network G = (V, E) with adjacency matriz A, we
define Kat-Bonacich centrality to be a vector ¢XB such that

KB \ _ Ty—1 7

HPa)=(T-ad")"=1) I, (7)
where « is an attenuation factor (imposed form outside), I is an identity matriz and ? 18 a vector of ones.

Under the condition that o < 1/Amaz (Amaz being the highest eigenvalue of A), the centrality measure is
well-defined.

For simplification of exposition of the empirical analysis, we consider the unique ranking produced by
eigenvector centrality ¢® which is known to be the limit of the ranking produced by Katz-Bonacich centrality
as stated in Thm. 1 below.

Theorem 1 (Theorem. 3.3 from Benzi and Klymko (2013)) As a — AL,»_ (i.e. converges from

below), the ranking produced by c¢XB(a) converge to that produced by c®9. When a — 0, then ranking
produced by 5B (a) converge to that produced by degree of nodes.

Although it is quite feasible, we have not reported the results for o« — 0 as shock propagation in a financial
network depends on the nature of the influential nodes rather than number of connections.

The relative exogeneity of the stocks can be defined as having highest centrality in the correlation matrices
I'" and I'?. In this paper, we will argue that I'" is a substantially better exogeneity criteria due to its stability
over all time periods (Sec. 4). This relative exogeneity criteria would be used in the next step for ordering
of the stocks through Cholesky decomposition. Thus the estimation procedure for the vector autoregression
model would depend on recursive identification.

We note that one can also utilize the centrality measures defined over the distance matrices D" and D°?.
Clearly, because of the formula we are using for distance (Eqn. 5), high centrality in I' would be reflected as
low centrality in D. Empirically, the correlation is around -0.99. Hence, either way we get almost identical
ordering.

2.2.4 Vector autoregression estimation and orthogonalization

In Sec. 2.2, we have constructed the volatility series for n» number of stocks. By applying the technique
presented in Sec. 2.2.1, we can find the maximally connected component of the stock network (Giuec)
created from the empirical correlation matrix (Sec. 2.2.2). Let us write the corresponding structure as
Gice = (Vinees Emee)- Clearly, the number of the surviving nodes in the resultant connected component is
lesser than the original network i.e., Nyee < N

Now, we select the corresponding volatility series {0t }ien,,..- We estimate a vector autoregression model
with p-lags of the following form'©:

Yo = A1+ Aop—o .+ Apy—p +ug (8)

10This is a generic description of an VAR model. For actual estimation, we substitute y;; by ;¢
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where all matrices {4, }1,... p have dimensions of n xn. The noise term has a covariance matrix E(uul) = =Z.

Generally, for lag selection one would rely on information criteria. We find that apart from AIC, all
other information criteria chooses a lag of 1. Also, choosing lag 1 makes the model much more economized
in terms of parameters, noting that the number of the variables is large (n ~ 100) and the time horizon is
about 1000 days (about 250 working days per year). Finally, more lags would not necessarily provide any
economic rationale for shock propagation. Therefore, all the results reported here are obtained by allowing
only one lag. Thus we consider the above-mentioned VAR to represent a simplest but non-trivial system

capturing the dynamics of volatility across stocks.

To construct orthogonalized impulse response functions, we first estimate the covariance matrix = of the
error term u. Following standard procedure advocated by Sims, we conduct a Cholesky decomposition of
the matrix =. Let us denote the resultant lower-triangular matrix &, i.e.,

=& (9)

where £* denotes the conjugate transpose of £. Then we pre-multiply Eqn. 8 to find the orthogonalized
impulse response functions.

[1p

2.2.5 Ripple effects through impulse response functions

After estimating the model, we compute the impulse response functions with the estimated coefficient ma-
trices. Given any shock in any of the stock volatility series, we can compute the corresponding impulse
responses. We show an example in Fig. 1. To enhance visual clarity, we have utilized the minimum spanning
tree and depicted the propagation of volatility shock emanating from a chosen epicenter over four different
time points.

2.3 Algorithm to characterize the ripple effects

Here, we provide a step-by-step algorithm to construct the asset network and characterize the shock propa-
gation mechanism.

1. Choose N number of stocks to create return series over T' time periods (e.g. days) such that T > N.
2. Estimate volatility series form each of the return series by using GARCH (p, ¢) model.
3. Estimate a Lasso model to find maximally connected component G,,.. from the network of stocks G.

4. Construct a network based on the correlation structure of the surviving stocks G". For visualization,
extract the minimum spanning tree.

5. Estimate a vector autoregression model on the volatility series from all stocks in G,,... The model is
identified by imposing an ordering obtained from the eigenvector centrality c2¢9 of the return correlation
matrix.

6. Characterize the ripple over the whole network by using estimated impulse response functions.
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Figure 1: (color online) Ripple effects on the financial network during the period 2014-17. We have chosen
all financial firms within the set of 100 firms with largest market capitalization in the NYSE, to construct
the network. The diagram depicts propagation of a positive volatility shock given to Goldman Sachs (GS)
across the network (for visualization we have utilized a minimum spanning tree) at two time points ¢t = 1
(left-top panel) and 10 (left-bottom panel). Intensity of color represents the magnitude of return volatility of
the nodes in the network. Right panel: Impulse response functions resulting from the same shock.

In the following, we utilize the algorithm to characterize the ripples across the financial networks, ema-
nating from chosen epicenters. we also characterize how the impact of the ripples reduces over time.

3 Empirical analysis

We implement our methodology on multiple sets of data. First, we analyze intra-sectoral spill over effects.
Second we apply to a large number of stocks listed in the New York stock exchange with the highest market
capitalization. As we will demonstrate below, it is easier to visualize the ripple effects of a volatility shock
over networks rather than the standard time series view of impulse response functions. First, we demonstrate
the mapping between the impulse response functions and the network diagrams. Then we exclusively utilize
the networks to display the ripple effects. For visualization purpose, we use a color coding on the nodes of
the network, where magnitude of an impact is captured through density of color.
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3.1 Intra-sectoral spill over effects

Although the methodology can be utilized to model the spill over effects across stocks in any sector, we
have chosen to elucidate the mechanism with financial and industrial sectors. We first consider the financial
sector during the period 2014-17. In particular, we analyze the results of a positive volatility shock given to
Goldman Sachs Group Inc. (GS).!!

Fig. 1 shows the responses of an unit orthogonalized volatility shock emanating from Goldman Sachs
Group Inc. (GS) to all other financial stocks (which belong to the set of top 100 stocks in New York stock
exchange in terms of market capitalization). On the left, we show the network of stocks at t = 1 (time when
the volatility shock hits) and the same at ¢ = 10. The color intensity denotes the strength of the shock spill
over across nodes of the network. We see that Berkshire Hathaway Inc. (BRKA) was immediately affected
and recovered by period 10. But Morgan Stanley (MS) remains affected even after 10 periods, followed by
Charles Scwab Corp (SCHW) and MetLife Inc. (MET). The right panels shows complete descriptions of the
impulse response functions across periods ¢ ranging from 1 to 10.

Next, we consider the effects of a positive volatility shock given to Honeywell International Inc. (HON).
Fig. 2 shows the propagation of the shocks to all other industrial stocks (belonging to the set of top 100
stocks with largest market capitalization in the New York stock exchange during 2014-17) over four periods:
t=1,t=4,t="7and ¢t = 10. As the results exhibit, the effect on other stocks are not substantial after 10
periods.

3.2 Economy-wide spill over effects

Above, we have considered only within sector shock propagation. In this section, we apply the proposed
methodology to the full data set of 100 stocks with largest market capitalization. We conduct two exercises
to model the ripple effects.

One, we split the data in four samples covering non-overlapping periods 2002-05, 2006-09, 2010-13 and
2014-17. In each of them we apply a positive volatility shock to Goldman Sachs Group Inc. (GS) and trace
out the shock propagation across the network. We show that there is considerable variations in the spill
over effects across different time periods. Second, we quantify the above finding that shock spill overs can
be different across different periods, by combining the information of shocks to all firms across all periods.
We show that generally some periods are more prone to shock spill over than others. Below, we describe the
specific results and provide the corresponding details.

Fig. 3 shows the ripples emanating from Goldman Sachs Group Inc. (GS) in response to a positive
volatility shock in the period 2014-17. We have followed the entire procedure described in Sec. 2.3. We have
plotted the minimum spanning tree on the maximally connected component selected by Lasso estimation.
The diagram shows four snapshots at time ¢t = 1, 4, 7 and 10. We see that firms like Morgan Stanley (MS)
and Charles Scwab Corp (SCHW) among others are affected. Note that it is not very obvious that Goldman
Sachs and Morgan Stanley would share a direct connection. Since minimum spanning tree chooses a tree
from all possible connections across all possible pairs of stocks, there is no guarantee that firms belongings
to the same sector will be placed close to each other on the minimum spanning tree. However, this tends to

M Complete description of the company names and the corresponding short forms (ticker symbols) can be found in the
appendix. See tables 4, 5, 6 and 7 for listed companies during the periods 2002-05, 2006-09, 2010-13, 2014-17 respectively.
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Figure 2: (color online) Ripple effects on the industrial network during the period 2014-17. We have chosen
all industrial firms within the set of 100 firms with largest market capitalization in the NYSE, to construct
the network. The diagram depicts propagation of a positive volatility shock given to Honeywell International
Inc. (HON) across the network at four time points ¢t = 1 (left-top panel), 4 (right-top panel), 7 (left-bottom
panel) and 10 (right-bottom panel). Intensity of color represents the magnitude of return volatility of the
nodes in the network.

happen when pairs of stocks comove a lot. Responses to the same shock emanating from the same epicenter
Goldman Sachs Group Inc. (GS) have been shown in the Appendix (Fig. 5, 6, 7). Interestingly, as the
figures suggest the effects were much stronger during the period 2002-05. After that the effects subdued
substantially during two consecutive periods 2006-09 and 2010-13.

Analysis of the effects of only one stock does not give a complete picture of the market as a whole. But
analyzing all separate responses for all stocks would be difficult. Therefore, we summarize the information
of the impact of individual stocks on the remaining market in Fig. 4. On the z-axis, we show four periods
2002-05, 2006-09, 2010-13 and 2014-17. On the y-axis, we show the stock identities in terms of numbers
(can be mapped to the lists given in the Appendix; viz. tables 4, 5, 6 and 7) which act as the epicenters
of the ripple effects. In successive experiments, we give unit shocks to the individual epicenters and trace
the ripples emanating from the epicenters spreading throughout the stock network. The z-axis shows the
number of firms showing response of at least 5% magnitude of that of the epicenter after 4 time points i.e.,
t = 4. We see that during 2002-05, the average response (~ 30) was lesser compared to other periods. The
next period 2006-09 showed more pronounced responses (~ 36) with 2010-13 showing the highest average
number of stocks responding (~ 40). The last period 2014-17 again comes back closer to the first period (~
33).
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Figure 3: (color online) Ripple effects on the network of top 100 firms in terms of market capitalization
during the period 2014-17. We selected the maximally connected component by Lasso estimation. The
epicenter of the shock is Goldman Sachs (GS). The diagram exhibits responses of the stocks at four time
points t = 1 (left-top panel), 4 (right-top panel), 7 (left-bottom panel) and 10 (right-bottom panel). Spill over
to Morgan Stanley (MS) is evident. Intensity of color represents the magnitude of return volatility of the
nodes in the network.
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4 Return centrality as identification criteria

In this section, we discuss the economic reasons for considering return centrality as the identification criteria.
The main motivation comes from eigenvalue decomposition of cross-correlation matrix of return series. Let
us denote the cross-correlation matrix by 3,. We can decompose the matrix as

n
ET' = Z /\iC,‘CZT (10)
i=1

where )\; is the i-th eigenvalue and c¢; is the i-th eigenvector. Let us denote the highest eigenvalue in
modulus is A\; and the corresponding eigenvector is ¢; (and without loss of generalization, A, > A; for 7 < j).
Interestingly, ¢; has two interpretations. From a graph theoretic point of view, it represents the eigenvector
centrality. This is precisely what we are using for identification (we labeled it ¢¢9). On the other hand, from
a financial point of view it represents the relative weights of different stocks in a market portfolio. Thus
it represents the relative contribution of different stocks to the market-wide movement (outgoing) or the
impact of exogenous shocks on different stocks (incoming).

We need to make sure that the dominant eigenvalue \; is significantly large and is not an artifact arising
out of random noise. For that purpose, we utilize a well known result from random matriz theory that
provides an upper bound to the spectral radius of a correlation matrix generated from N random time series
of length T'. Such matrices are known as Wishart matrices.

Theorem 2 (from Maréenko and Pastur (1967)) Let N — oo and T — oo with Q = N/T > 1.
Consider a Wishart matric W = X X' where X ~ N(0,1). The upper bound on the modulus of the mazimum

eigenvalue of W is given by
1\2
Aub, = (1 + ) . 11
NG D

We verified it empirically that A, ; < A1, the maximum eigenvalue.

4.1 Centrality measures: Stability over volatile and tranquil periods

Here, we have to make choice for the identification criteria. We note that both of the dominant eigenvectors
of the return correlation matrix and the volatility correlation matrix, could have been candidates for identi-
fication criteria in terms of relative exogeneity. We note that return is an observed variable and hence, free
of measurement noise and/or model specification errors. Volatility on the other hand, is latent and hence
needs to be estimated. Such estimation results will be model specific. Thus return centrality is a more robust
choice.

More importantly, we find that the centrality measure based on the return matrix is considerably more
robust and stable across different timing horizon. We show the correlation results of the firms’ return
centralities in table 1 in four different snapshots (2002-05, 2006-09, 2010-13 and 2014-17) that covers pre-
crisis to post-crisis periods. In table 2, we show the same for volatility correlation centrality. Return
centralities are clearly much more correlated across time than the corresponding volatility centralities. Thus
the return centrality measure is more robust.
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100

Figure 4: (color online) A summary of impulse response functions (z-axis) across all stocks (y-axis) across all
four periods (z-axis). On the z-axis we plot the number of stocks showing at least 5% response (in absolute
values) with respect to a shock given to the epicenter at t = 1 (listed on the y-axis, from 1 to 100) after 3
time points i.e., at ¢t = 4. Intensity of color represents the magnitude of return volatility of the nodes in the
network.

Table 1: Correlation matrix: Return Centrality ¢

9 (02-05) %9 (06-09) %9 (10-13) %9 (14-17)

&9 (02-05) 1 - - -
¢i9 (06-09) 0.641 1 - -
9 (10-13) 0.508 0.564 1 -
”9 (14-17) 0.511 0.405 0.685 1
Table 2: Correlation matrix: Volatility centrality c¢%9
9 (02-05) 59 (06-09) 29 (10-13) &9 (14-17)
&9 (02-05) 1 - - -
¢19 (06-09) 0.375 1 - -
9 (10-13) 0.240 0.475 1 -
”9 (14-17) 0.088 0.294 0.442 1
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4.2 Explanatory factors of return centrality

So far we have utilized the return centrality ¢ as an identification criterion. Fundamentally, it is a measure
which has extracted from return dynamics of different stocks. In this section, we explore the its relationship
with firm-level fundamentals. Since the variable of interest here is a centrality measure, we create a simple
regression specification where centrality (from the return correlation matrix) is a function of firm size (log
of the total asset), return on assets (ROA; as a proxy of profitability), financial rating (as a proxy for health
of the firm; higher rating indicates worse health) and number of analysts (as a measure of profitability).
Here we note that we are unaware of any literature that relates firm-level economic variables to centrality
of the firms in the in return/volatility network (except Sharma et al. (2017) which shows that economic
size and return centrality are correlated at the sector level). Therefore, we analyze only the known and
well-accepted factors that explain variation in expected return. We find that size, profitability, financial
health and popularity explain variation in centrality as described below. However, we do not expect our list
of such variables to be exhaustive.

Harvey et al. (2016) provides a comprehensive list of potential variables that explain expected return of
firms. Here, we choose a set of four firm-level variables that have been documented to have explanatory
power for expected returns. Banz (1981) demonstrated that higher market capitalization is correlated with
lower expected return. This observation had been incorporated in the three-factor model propounded by
Fama and French (1992), where size is shown to be a systematic risk factor. In this context, we note that
Sharma et al. (2017) showed that sectors with higher size (proxied by market capitalization, total revenue
and employment) tends to have higher centrality in the sectoral network constructed from the observed
return correlation matrix. Here we proxy size by log of assets, but our results hold true for log of market
capitalization as well. We find that larger firms typically are more central in the financial network. Next
two variables we consider represent profitability and financial health of the firm. Novy-Marx (2013) showed
profitability measured by gross return of assets at the firm level predicts variation in expected return. Also,
financial health explains variations in expected returns and is shown to correlate with size effect and the
value effect on return (Vassalou and Xing (2004)). Therefore, as a summary measure of financial health, we
incorporate credit rating of firms. Finally, we test the effects of popularity of stocks by considering number
of analysts following a stock. Hameed et al. (2015) documented that analysts have differential propensity
to follow firms based on observed correlation of the firm-level fundamentals with the corresponding industry
peers. They showed that firms with higher analyst coverage impacts stock prices of firms with lower coverage,
when analysts revise earning forecasts of those firms. But the opposite does not happen. This unidirectional
spillover of information provides a rationale for higher co-movements between stocks with larger analyst
coverage, which will manifest in the observed return correlation matrix.

Table 3 gives the result of these regression for all four time windows (2002-06, 2006-09, 2010-13 and
2014-17). Log asset is generally strongly correlated with the centrality measure with negative coefficients.'?
An immediate implication is that shock propagates from large firm to smaller firms. Profitability (measured
by ROA), financial health (measured by ranking based on credit rating where higher ranking implies lower
financial health) and analysts’ coverage does not seem to have consistent explanatory power for all snapshots.

12Note that due to transformation via Eqn. 5, a stock belonging to the core with high centrality in the distance matrix will
have relatively weaker correlations with other stocks. Thus higher firm size is associated with firms at the periphery of the
network obtained from distance matrix. Therefore, the firms with higher presence in the market mode of the asset returns
(Plerou et al. (2002)) are empirically found to be typically larger in size than the ones with smaller presence.
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Finally, we estimate panel regression with all the firms (those who were operational from 2002 to 2017).
A random effect model (preferred by Hausman test) with time effect retains the feature that core firms (in
the distance matrix) are smaller in size, less profitable and are in worse financial health. Combining with
the earlier interpretation, we see that firms that have more presence in the market mode (obtained from the
return correlation matrix) are larger in size, more profitable and have better financial health. Popularity
does not seem to play a consistent role either way.

5 Summary and conclusion

Propagation of shocks on a financial network is a very intuitive phenomenon. The recent literature on
financial econometrics has started formally addressing and modeling it. However, the standard approach is
to analyze the long-range variance decomposition. Essentially the method creates a network across financial
entities (e.g. stocks) by attributing the fraction of variations explained by one entity of the others. In this
paper, we propose a complementary approach by estimating a VAR model on the latent volatility processes
of the stocks with an identification criteria obtained from the topology of the network. In particular, we show
that the centrality measure based on dominant eigenvector of the observed return correlation matrix provides
a intuitive and robust identification strategy. The identified model allows us to observe the ripple effects
originating from a particular epicenter in the stock network and to quantify the corresponding magnitude of
fluctuations.

This paper relates most notably to the work of Diebold and Yilmaz (Diebold and Yilmaz (2015a)) who
constructed the above-mentioned method of long range variance decomposition based on VAR models to
construct the network across assets. Our proposed approach is to infer the network form the observed cross-
correlation data and utilize a conversion to a norm to create a minimum spanning tree, which preserves the
strongest links. For the construction of the minimum spanning tree from the stock network, we rely on the
work by Mantegna (1999) and others (see for example Tumminello et al. (2010) for a detailed treatment).
We take correlation matrix as given and conduct a spectral analysis to find the centrality of the stocks. It
is important to note that the centrality measures (in the sense of eigenvector centrality) obtained from the
correlation matrix and the distance matrix are almost exactly anti-correlated, which is consistent with the
algebraic transformation used for creating the metric from the correlation values. Hence, either ordering can
be used for identification purpose by maintaining the appropriate signs.

The centrality measure serves multiple purpose and can be used as a very useful tool. One, it provides
a natural interpretation of the core-periphery structure of the network. One can in principle decompose the
network into a core and periphery, but centrality provides a more continuous version of relative coreness than
a binary characterization of being either in core or periphery. This becomes very useful to define relative
exogeneity of the stocks, which acts as an identification criteria for finding orthogonalized impulse response
functions through standard Cholesky decomposition. Third, we also utilize a result from random matrix
theory (in particular, Marchenko-Pastur theorem developed in Marc¢enko and Pastur (1967)) to establish the
statistical validity of the centrality measure that the result is not outcome of random noise. This approach
was used by Plerou et al. (2002) and have become useful for analyzing financial risk with high-dimensional
data (see e.g. Bouchaud and Potters (2003)).

Modeling spillover through linkages of volatilities have been an important area of work in the academic as

well as policy domain, as it provides a more comprehensive view of the risk embedded in a financial system.
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Diebold and Yilmaz (2008) showed that there is a link between macroeconomic volatilities and financial
volatilities. Recent work by Hiiser et al. (2018), Corsi et al. (2018), Hué et al. (2019) among others, highlight
the role of networks in measurement and contribution to systemic risk. Our paper contributes to the same
literature and the proposed algorithmic approach might provide a visual laboratory to analyze risk.
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Appendix

In this section, we provide list of all stocks considered along with ticker symbols, name and sectoral affiliation
for all four periods under study: 2002-05, 2006-09, 2010-13 and 2014-17. Finally, we also provide additional
network diagrams for the full sample analysis for three periods: 2002-05, 2006-09 and 2010-13. Analysis for
the data from 2014-17 is in the main text.

A Identity of the stocks

Ticker symbols of all stocks considered: BRKA, XOM, JNJ, GE, T, PG, WMT, CVX, PFE, VZ, ORCL,
KO, DIS, HD, MRK, IBM, UNH, MO, MMM, MDT, SLB, BA, LLY, HON, UPS, GS, NKE, UTX, BMY,
UNP, CVS, MS, ABT, AXP, LOW, CB, BLK, COP, AIG, NEE, TMO, DHR, DUK, MET, EOG, GD, CAT,
SCHW, SPG, FDX, AMT, SO, TJX, SYK, OXY, D, KMB, PRU, ITW, F, RTN, ANTM, HAL, AET, CCL,
NOC, BDX, CI, EMR, PSA, MMC, ECL, APC, DE, PCG, PX, CCI, BSX, TRV, GIS, ETN, EXC, NSC,
SPGI, AEP, LUV, WM, PXD, STZ, EL,, MCK, HUM, ALL, VLO, TGT, APD, AFL, SHW, BAX, CBS.

In the following tables (tables 4, 5, 6 and 7), we compile the list of stocks (along with ticker symbols
and sectoral affiliations) in order of centrality measure as has been discussed in the paper for four different
time-periods viz., 2002-05, 2006-09, 2010-13 and 2014-17.
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B Additional network figures

Figure 5: (color online) Ripple effects on the network of top 100 firms in terms of market capitalization
during the period 2002-05. We selected the maximally connected component by Lasso estimation. The
epicenter of the shock is Goldman Sachs (GS). The diagram exhibits responses of the stocks at four time
points t = 1 (left-top panel), 4 (right-top panel), 7 (left-bottom panel) and 10 (right-bottom panel). Intensity
of color represents the magnitude of return volatility of the nodes in the network.
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Figure 6: (color online) Ripple effects on the network of top 100 firms in terms of market capitalization
during the period 2006-09. We selected the maximally connected component by Lasso estimation. The
epicenter of the shock is Goldman Sachs (GS). The diagram exhibits responses of the stocks at four time
points t = 1 (left-top panel), 4 (right-top panel), 7 (left-bottom panel) and 10 (right-bottom panel). Intensity
of color represents the magnitude of return volatility of the nodes in the network.
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Figure 7: (color online) Ripple effects on the network of top 100 firms in terms of market capitalization
during the period 2010-13. We selected the maximally connected component by Lasso estimation. The
epicenter of the shock is Goldman Sachs (GS). The diagram exhibits responses of the stocks at four time
points t = 1 (left-top panel), 4 (right-top panel), 7 (left-bottom panel) and 10 (right-bottom panel). Intensity
of color represents the magnitude of return volatility of the nodes in the network.
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