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ABSTRACT
Bilevel optimization problems are referred to as having a nest-
ed inner optimization problem as a constraint to a outer op-
timization problem in the domain of mathematical program-
ming. It is also known as Stackelberg problems in game the-
ory. In the recent past, bilevel optimization problems have
received a growing attention because of its relevance in prac-
tice applications. However, the hierarchical structure makes
these problems difficult to handle and they are commonly
optimized with a deterministic setup. With presence of con-
strains, bilevel optimization problems are considered for find-
ing reliable solutions which are subjected to a possess a min-
imum reliability requirement under decision variable uncer-
tainties. Definition of reliable bilevel solution, the effect of
lower and upper level uncertainties on reliable bilevel so-
lution, development of efficient reliable bilevel evolutionary
algorithm, and supporting simulation results on test and en-
gineering design problems amply demonstrate their further
use in other practical bilevel problems.

1. INTRODUCTION
Bilevel optimization problems are characterised by a hier-

archical two level structure, in which there is a nested inner
optimization problem as a constraint to a outer optimization
problem. The outer optimization problem is often referred
as the upper level task, and the inner optimization problem
is often referred as the lower level task. Bilevel optimization
problems are typically challenging to handle because the fea-
sibility of a solution (upper level) can only be determined
after another optimization process (lower level). However,
due to bilevel optimization problem’s relevance in practice
[6, 15], it has received a growing attention from researchers
across various disciplines in the recent past.

In the domain of evolutionary computation, researchers
have shown strong interests in solving bilevel optimization
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problems because evolutionary algorithms’ flexibility and pop-
ulation approach offer a viable mean to overcome various
difficulties from bilevel optimization problems’ nested struc-
ture, many researching effort could be found in [5, 1].

In practical applications, constraints are most likely pre-
sented. Under this scenario, a deterministic optimal solution
is most likely to lie on one or more constraint boundaries
and an uncertainty in variables may cause the solution to be-
come infeasible in most occasions. In such cases, a solution
that lies well inside the feasible search region and satisfies all
constraints with a pre-specified reliability against constraint
violation is declared as the ‘reliable’ solution. Evolutionary
algorithms have been adequately used to address uncertain-
ties in variables for single-level optimization problems [3, 7,
10].

In bilevel optimization problems, uncertainties in variables
can occur in both lower and upper levels or in one of the lev-
els only. Since each level has an unequal importance to the
overall outcome of a bilevel optimization task, the effect of
uncertainties in upper and lower level variables on the final
reliable solutions of the problem is also expected to be dif-
ferent. Thus, searching for reliable bilevel solutions is likely
to be more complicated than the uncertainty-based studies
for single-level optimization problems [3, 4]. In this pilot
systematic study, we make an attempt to understand these
effects and demonstrate their importance through a number
of simple numerical test problems and then apply the devel-
oped method to an navy ship design problem.

In the remainder of this paper, we provide a brief introduc-
tion to the nature of bilevel optimization problems in Sec-
tion 2. In Section 2.1, we discuss constrained bilevel prob-
lems under uncertainties and discuss modifications to EBO
algorithms for solving such problems efficiently. Thereafter,
in Section 3, we present results for single and multi-variable
constrained bilevel problems. An application a navy ship de-
sign problem is presented next in Subsection 3.3. Finally, con-
clusions of this extensive study are made in Section 4.

2. DEFINITIONS
A bilevel optimization problem has two levels of optimiza-

tion tasks that involve two sets of variables x ∈ Rn (upper
level) and y ∈ Rm (lower level), described below:

Minimize F (x,y),
subject to y = argmin {f(x,y)|gj(x,y) ≤ 0, j = 1, . . . , JL} ,

Gj(x,y) ≤ 0, j = 1, 2, . . . , JU .
(1)



The pair (x,y) represents a particular bilevel solution. The
solution (x,y) is feasible (i) if y is an optimal solution of the
lower level optimization problem of minimizing f(x,y) sub-
ject to satisfaction of JL constraints gj(x,y) ≤ 0, and (ii) if it
also satisfies JU upper level constraints Gj(x,y) ≤ 0. The
optimality of upper level solution (x,y) is associated with
an upper level objective function F (x,y). Due to the need
for solving the lower level optimization problem for every
upper level solution, the above bilevel optimization problem
is also known as a nested optimization problem and is, in gen-
eral, a computationally intensive task.

2.1 Proposed Definition of Reliable Bilevel So-
lutions

In this section, we consider constrained optimization prob-
lems for which deterministic optimal solution(s) lie on one
or more constraint boundary. We extend the definition of
single-level reliable solutions [4] to define reliable solution-
s for bilevel optimization problems.

Definition 1. Reliable Bilevel Solution: A solution (x,y)r1

is called a reliable bilevel solution, if it is the optimal solution
to the following bilevel minimization problem defined with
respect to a pair of desired reliability measures R and r for
upper and lower levels, respectively:

Minimize F (x,y),

subject to y∗ = argmin
{
f(x,y)|(p(

∧JL
j=1 gj(x,y) ≥ 0)) ≥ r

}
,

(P (
∧JU

j=1 Gj(x,y) ≥ 0)) ≥ R,

(2)
where x and y denote mean of lower level variable x and
upper level variable y, respectively. The terms p() and P ()
signify the joint probability of the solution x and y being
feasible from all J constraints (both lower level constrain-
t g and upper level constraint G) under the uncertainty as-
sumption. The quantities r and R are the desired reliability
(within [0, 1]), respectively, for lower level and upper level
constraints. Instead of the original constraint gj(x,y) ≥ 0,
the probabilistic constraint is introduced. Hence for a de-
sired pair of reliability measure (r and R), it is then expect-
ed to find a feasible bilevel solution that will ensure that the
joint probabilities of satisfying all lower and upper level con-
straints are r and R, respectively. To determine a bilevel solu-
tion’s reliability, ideally the reliability of the solution must be
evaluated by examining whether the solution is adequately
safe against all constraints. The simultaneous consideration
of all constraints to obtain the joint probability for each lev-
el is mathematically and computationally challenging [9]. In
this study, we simply break the above joint probability esti-
mation into different chance constraints for upper and lower
level, respectively, as follows:

P (Gj(x,y) ≥ 0) ≥ Rj , j = 1, 2, ..., JU , (3)
p(gk(x,y) ≥ 0) ≥ rk, k = 1, 2, ..., JL, (4)

where Rj and rk are the desired probabilities of constraint
satisfaction of the jth and k-th constraint in upper and lower
level problem, respectively. The feasibility check in our im-
plementation requires every constraint to be over the desired
reliability measures. Readers should refer to [4] for a more e-
laborated discussion on the joint probability estimation.

From the perspective of optimization-based reliability mea-
sures, the underlying idea is to locate a most probable point
(MPP) on the constraint boundary with a minimum distance
from the current solution [8]. There are many ways by which

the MPP point can be calculated or approximated. To il-
lustrate, let’s consider one of the approaches, namely Per-
formance measure approach (PMA) [2]. We first convert the x
coordinate system into a standard normal coordinate system
U, through the Rosenblastt transformation [11] and rewrite
a constraint function gj(x) as gnj (U). The standard normal
random variables are characterized by a zero mean and unit
variance. In this space, we approximate the hyper-surface
(gj(x) = 0 or equivalently gnj (U) = 0) by a first-order approx-
imation at the MPP. In other words, the MPP corresponds
to a reliability index βj , which makes a first-order approx-
imation of Pj = Φ(−βj), where Φ() is the standard normal
density function. Then, the following optimization problem
is solved in PMA to find the MPP:

Minimize gnj (U),
subject to ∥U∥ = βR

j ,
(5)

where βR
j is the desired reliability index computed from the

required reliability Rj as βR
j = Φ−1(Rj). The above formu-

lation finds a U∗ point which lies on a circle of radius βR
j

and minimizes gnj (U). The original probability constraint is
replaced by the following constraint:

gnj (U
∗) ≥ 0. (6)

To illustrate the method graphically, let us consider a hypo-
thetical problem shown in Figure 1. The figure shows a prob-
abilistic constraint gj in the U-space. The corresponding con-
straint boundary gnj (µ1, µ2) = 0 and the correspondent fea-
sible region are shown. The circle represents a solution that
corresponds to a reliability index of βR

j . Thus, the PMA ap-
proach finds a point U∗ on the circle for which the function
gnj (U) takes the minimum value. Then, if the corresponding
constraint function value is non-negative (i.e. gnj (U

∗) ≥ 0),
the probabilistic constraint P (gj(x) ≥ 0) ≥ Rj is considered
to have been satisfied. In this study, we implement a faster

Figure 1: PMA approach is illustrated.

version of PMA , together with BLEAQ (a bilevel evolution-
ary algorithm based on quadratic approximation of lower
level optimal solution as a function of upper level variables),
to approximate MPP for reliable bilevel solutions acquisition.
More information regarding FastPMA approach and BLEAQ
can be found respectively in [4] and [13].

We now illustrate the effect of uncertainties in variables of
each level one at a time and simultaneously in the following
subsections.



2.2 Uncertainties in Lower Level alone
First, we consider that the lower level variables y are un-

certain with a normal distribution having mean at the current
solution and known standard deviation σy-vector. We con-
struct a three-variable problem (with one upper level vari-
able and two lower level variables) for this purpose.

Minimize F (x,y) =
(
y2−50

30

)2
+

(
x−2.5
0.2

)2
subject to y = argmax

{
f(x,y) = y2;
gj(x,y) ≥ 0, j = 1, 2, . . . , JL

}
,

2 ≤ x ≤ 3,−4 ≤ y1 ≤ 10,−100 ≤ y2 ≤ 200.
(7)

The respective lower level constraints are given below:

g1(x,y) = x(y1 − 2)2 − y2,
g2(x,y) = y2 − 12.5x(y1 − 5),
g3(x,y) = 5(y1 + 4− x)(y1 + 8− x)− y2

(8)

Figure 2 shows the search space with lower level constraint
surfaces. For any given upper level variable value (x), the so-
lution on line AA is the optimal solution, as this correspond-
s to the maximum value of y2 for all feasible solutions. S-
ince this solution lies on the constraint boundary of g1 and
g2, it is sensitive to uncertainties in y1 and y2 variables. The
narrow band of the feasible space close to this deterministic
optimum makes it risky for constraint violation. However,
the local optimal solution for the same x lies on the intersec-
tion of constraints g1 and g3 (near line BB). Since the feasible
search region near this optimum is more wide, this local op-
timum is less sensitive to uncertainties in y1 and y2 variables.
Hence, this local optimum solution is a reliable solution. Line
BB marks the MPP points for all x. Figure 3 shows the low-
er level feasible space with the reliable solution marked for a
particular value of upper level variable x. For different val-
ues of x, a similar situation occurs and if reliable, instead of
global optimum, is desired, the lower level problem should
find the reliable solution (line BB) for every x.
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Figure 2: Optimal and reliable
solutions of lower level function of
Case A are shown.
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Figure 3: Lower level feasible re-
gion with optimal and reliable so-
lutions marked at fixed upper level
variable x∗ = 2.5.

Figure 4 shows the upper level objective function F (x, y2)
and marks both global optimum (AA) and reliable (BB) solu-
tions of the lower level problem. Figure 5 shows the contour
plot of upper level objective function on the x-y2 plane and
the relationship between these two variables for global op-
timal and reliable solutions. It is clear from the figures that
although AA solution would make upper level function min-
imum, if reliable solutions at the lower level is desired, the
solutions on line BB would correspond to the overall reliable
solution of the bilevel problem. The upper level optimization
problem considers only solutions on line BB feasible and then
should find the optimal solution from the set BB. Since, solu-
tions on set BB makes the lower level problem reliable, the
final solution is the reliable bilevel solution of the problem.
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Figure 4: Upper level function
of Case A with mapped lower level
optimal and reliable solutions.
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contour of Case A with optimal and
reliable solutions from lower level.

2.3 Uncertainties in Upper Level alone
Next, we consider a problem having uncertain upper vari-

ables only. The structure of both level problems from above
subsection are interchanged here. There are two upper level
variables and one lower level variable.

Maximize F (x,y) = x2,

subject to y = argmin
{
f(x,y) =

(
x1−50

28

)2
+

(
y−2.5
0.2

)2}
,

Gj(x,y) ≥ 0, j = 1, 2, ..., J,
2 ≤ y ≤ 4, −80 ≤ x1 ≤ 200, −100 ≤ x2 ≤ 200.

(9)
The upper level constraints are given below:

G1(x,y) = y(x1
20

− 2)2 − x2,
G2(x,y) = x2 − 12.5y(x1

20
− 5),

G3(x,y) = 5(x1
20

+ 4− y)(x1
20

+ 8− y)− x2.
(10)

Figure 6 shows the lower level objective function for an up-
per level variable x1. Note that the above problem is sim-
plified so that that lower level function is dependent only
on one of the upper level variables. The y-x1 search space
and respective lower level optimal solutions are shown in
Figure 7. It is clear that smaller optimal x1 solution is less
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Figure 6: Optimal solutions of
lower level function f(x, y) of the
Case B are shown.
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Figure 7: Contour plot of low-
er level objective function shown
with optimal lower level solution-
s marked in dots.

sensitive to x uncertainty.
When these lower level optimal solutions are considered

to be feasible at the upper level, Figure 8 shows the corre-
sponding variable combinations, marked with solid circles.
Since variables x1 and x2 are uncertain, of the two optimal
solutions for F = x2, the smaller x1 solution (right of the
figure) is the reliable solution to the overall bilevel optimiza-
tion problem. Figure 9 shows upper level variable space for
an optimal lower level variable y value.

2.4 Uncertainties in Both Upper and Lower Levels
Finally, we consider a four-variable test problem in which
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Figure 9: Upper level feasible
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lution - four solutions with differ-
ent reliability shown.

all variables are uncertain:
Maximize F (x,y) = x2

subject to y = argmax

{
f(x,y) = y2,
gj(x,y) ≥ 0, j = 1, 2, . . . , JL

}
,

Gj(x,y) ≥ 0, j = 1, 2, ..., J,
−4 ≤ x1 ≤ 10,−100 ≤ x2 ≤ 200,
−4 ≤ y1 ≤ 10,−100 ≤ y2 ≤ 200.

(11)
The upper and lower level constraint functions are given be-
low.

G1(x,y) = ( y1
14

+ 16
7
)(x1 − 2)2 − x2,

G2(x,y) = x2 − 12.5( y1
14

+ 16
7
)(x1 − 5),

G3(x,y) = 5(x1 + 4− ( y1
14

+ 16
7
))(x1 + 8− ( y1

14
+ 16

7
))− x2,

g1(x,y) = (x1
14

+ 16
7
)(y1 − 2)2 − y2,

g2(x,y) = y2 − 12.5(x1
14

+ 16
7
)(y1 − 5),

g3(x,y) = 5(y1 + 4− (x1
14

+ 16
7
))(y1 + 8− (x1

14
+ 16

7
))− y2.

(12)
Note that lower level problem involves only one of the upper
level variable (x1) and upper level problem involves only one
lower level variable y1 for simplicity. Figure 10 shows the re-
lationship of two lower lavel variables with x1. For a given
value of x1, the respective reliable lower level solutions are
shown to lie on line BB. When these solutions are sent to up-
per level and variable space x1-y is shown in Figure 11. The
reliable variable value x2 is then found by solving the reli-
able upper level optimization problem. The solution on BB
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Case C with mapped lower level op-
timal and reliable solutions. Reliable
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close to the local but reliable part of the upper level objective
function is the reliable bilevel solution.

3. RESULTS ON TEST PROBLEMS
We now present simulation results on the above illustra-

tive and extended multi-variable test problems as well as a
navy ship design problem using BLEAQ [14] in the follow-
ing subsections. Brute force strategies, such as grid search

is utilized to provide comparisons in case of illustrative test
problems. As the number of variables at both levels increase,
the grid search approach becomes exhaustive and computa-
tionally expensive to execute. We design higher-dimensional
problems in a way so that all bilevel optimal variables take
the same single-variable value. This way, we avoid execut-
ing the grid search method and simply compare the BLEAQ-
obtained results with grid search solutions. Results are pre-
sented in terms of upper level elite function value(ULEFV),
lower level elite function value(LLEFV), upper level variable
solution(ULVS) and lower level variable solution(LLVS).

Uncertainties, that may occur in lower level variables alone,
upper level variables alone, or both, are considered to have
a normal distribution with the mean (µ) as its deterministic
value and the variance (σ2). The FastPMA technique, de-
scribed in Section 2.1, is used to identify the MPP in each
case in order for BLEAQ to determine a solution’s feasibility.
A user-defined reliability index R and r (as the case may be)
needs to be supplied. Here, all results use a default setting of
95% reliability unless stated otherwise.

The first subsection below contains results obtained on il-
lustrative bilevel test problems, followed by the results ob-
tained on 12-variable bilevel test problems in the second sub-
section. Results are also obtained for six-variable test prob-
lems, but are not included here for brevity. Finally, results
obtained for a navy ship design problem are presented in the
third subsection.

3.1 Low-dimensional Test Problems

• Case 1: Lower level constrained only: Test problems with
constraints in lower level alone are studied in this case.
The upper and lower level objective functions are provid-
ed in Equation 7 and corresponding constraints are pro-
vided in Equation 8. Both upper and lower level prob-
lems use a population size of 50 and both are restricted
to a maximum generation of 800. The lower level vari-
ables are modeled with 0.35 and 7.5 variance, respective-
ly, for y1 and y2. The desired lower level reliability in-
dex is 95%. For the grid search procedure, we use a step
size of 1% for each variable dimension, thereby making a
total of 1003 or one million solution evaluations. Result-
s obtained with deterministic, reliability-based, and grid
search are provided in Table 1.

Table 1: Illustrative bilevel solutions for Case 1.
3-Variable ULEFV LLEFV ULVS LLVS

D
et

.

Grid 0.1736 62.500 2.5 7.00 62.50
Best 0.1691 62.1051 2.4842 7.00 62.1051
Median 0.1689 62.1622 2.4865 7.00 62.1622
Worst 0.1121 61.95 2.4986 6.8999 61.95

R
el

ia
bl

e Grid 2.8335 -0.70 2.5 -0.50 -0.70
Best 2.8573 -0.6914 2.4907 -0.5710 -0.6914
Median 2.8589 -0.7116 2.4922 -0.5697 -0.7116
Worst 2.8597 -0.6821 2.4850 -0.5753 -0.6821

It is clear from the table that our proposed BLEAQ method
with PMA approach of handling uncertainty is able to
match the reliable solutions obtained using the grid search
method with a much smaller number of function evalua-
tions (7160 versus 1M).

• Case 2: Lower level unconstrained only: Test problem-
s with constraints in upper level alone are studied here.
The upper and lower level objective functions are provid-
ed in Equation 9 and corresponding constraints are pro-



vided in Equation 16. The population size for upper and
lower level are 100 and 20, respectively. And both lev-
els are restricted to a maximum generation of 800. The
upper level variables are modeled with 0.35 and 7.5 vari-
ance, respectively, for x1 and x2. The desired upper level
reliability index is 95%. For grid search method, the step
size is 1% for each variable dimension. Results obtained
with deterministic, reliability-based, and grid search are
provided in Table 2. The proposed BLEAQ and PMA

Table 2: Illustrative bilevel solutions for Case 2.
3-Variable ULEFV LLEFV ULVS LLVS

D
et

.

Grid 62.50 10.3316 7.00 62.50 2.50
Best 62.50 10.3316 7.00 62.50 2.50
Median 62.50 10.3316 7.00 62.50 2.50
Worst 62.50 10.3316 7.00 62.50 2.50

R
el

ia
bl

e Grid -0.7288 4.7878 -0.5633 -0.7288 2.50
Best -0.7288 4.7878 -0.5633 -0.7288 2.50
Median -0.7288 4.7878 -0.5633 -0.7288 2.50
Worst -0.7288 4.7878 -0.5633 -0.7288 2.50

combination is able to match the results of the grid search
method, but with a much smaller number of overall func-
tion evaluations (4536 versus 1M).

• Case 3: Active constraints presented in both levels: Test
problems with constraints in both levels are studied in
this case. The upper and lower level objective function-
s are provided in Equation 11 and corresponding con-
straints are provided in Equation 12. Both upper and low-
er level problems use a population size of 80 and both are
restricted to a maximum generation of 1,000. Both upper
and lower level variables are modeled with 0.35 and 7.5
variance, respectively, for x1 and x2 and y1 and y2. The
desired upper and lower level reliability index are both
95%. For teh gird search problem, the step size is 1%
for each variable dimension. Results obtained with de-
terministic, reliability-based and grid search are provided
in Table 3.

Table 3: Illustrative bilevel solutions for Case 3.
4-Variable ULEFV LLEFV ULVS LLVS

D
et

.

Grid 70.00 70.00 7.00 70.00 7.00 70.00
Best 69.64 64.64 7.00 69.64 7.00 64.64
Median 69.61 69.68 6.9988 69.61 7.0011 69.68
Worst 69.50 69.63 6.9952 69.50 7.0001 69.63

R
el

ia
bl

e Grid 0.32 0.32 -0.80 0.30 -0.80 0.30
Best 0.3022 0.3022 -0.7917 0.3022 -0.7917 0.3022
Median 0.2745 0.2862 -0.7859 0.2745 -0.7903 0.2862
Worst 0.2354 0.3009 -0.7859 0.2354 -0.7914 0.3009

As can be seen from the table, BLEAQ with PMA approach is
able to match the reliable solution obtained by the exhaustive
search method (12,486 vs 100M).

3.2 Higher-dimensions Test Problem Results
This subsection studies bilevel test problems with multi-

ple variables in both levels, in particular, results are obtained
on problems with six and nine variables. However, due to s-
pace restrictions, results are presented only for nine-variable
problems and similar results are obtained for the six-variable
problem. Cases 1, 2 and 3 for different uncertainty models
are considered.

• Case 1: Lower level constrained only: Multi-variable test
problems with constraints in lower level alone are stud-
ied in this case. The upper and lower level optimization

problem formulations are provided below:

Minimize F (x,y) =
∑m

i∈E

(
yi−50

30

)2
+

∑n
k

(
xk−2.5

0.2

)2
,

subject to y = argmax

{
f(x,y) =

∑m
i∈E yi,

gcp(x,y) ≥ 0, c = 1, 2, . . . , JL

}
,

2 ≤ xk ≤ 3,−4 ≤ yj ∈ O ≤ 10,−100 ≤ yi ≤ 200.
(13)

where m and n denote the number of variables in upper
and lower level respectively. Let O and E denote the set
of positive odd and even integers, which are less than the
dimensionality of each level’s variable respectively. Low-
er level constraints are then modified as follows:

g1k(x,y) = xk(yj − 2)2 − yi,
g2k(x,y) = yi − 12.5xk(yj − 5),
g3k(x,y) = 5(yj + 4− xk)(yj + 8− xk)− yi,
∀k ∈ {1, 2, ..., n}.

(14)

Optimization tasks are performed with m = 6 and n = 3
comparing with and without reliability consideration in
bilevel solution. A population of size of 150 is used for
both lower and upper level. A maximum of 2,000 gen-
erations are allowed. The desired lower level reliability
index is set at 2 which provides 95.5% reliability. And the
modeled uncertainties are normally distributed with 10%
variance over each variable’s defining domain. Results
are presented in Table 4.
Recall that the illustrative three-variable results for Case 1
was ULVS={2.50}, LLVS={7.00, 62.50} and ULVS={2.4907},
LLVS={-0.6914}, respectively, for deterministic and reli-
able solutions. Since the multi-variable functions are cre-
ated by adding the respective identical pairs of three-objective
functions for each variable pair, it is expected that the op-
timal value for each variable will be identical to the illus-
trative three-variable case. The optimal function values
are multiples of the three-variable case.
BLEAQ solutions indicate similar variable values as the il-
lustrative three-objective case. Importantly, the ability of
BLEAQ method to solve a 9-variable problem is demon-
strated here.

• Case 2: Upper level constrained only: Multi-variable test
problems with constraints in upper level alone are stud-
ied in this case. The upper and lower level optimization
problem formulations are provided below:

Maximize F (x,y) =
∑n

i∈E xi

subject to y = argmin

{
f(x,y) =

∑m
j∈O

(
xj−50

28

)2

+
∑m

k

(
yk−2.5

0.2

)2}
,

Gj(x,y) ≥ 0, j = 1, 2, ..., J,
2 ≤ yk ≤ 4,−80 ≤ xj ≤ 200,−100 ≤ xi ≤ 200.

(15)
where m and n denote the number of variables in upper
and lower level respectively. Let O and E denote the set
of positive odd and even integers, which are less than the
dimensionality of each level’s variable respectively. Up-
per level constraints are then modified as following:

G1k(x,y) = yk(
xj

20
− 2)2 − xi,

G2k(x,y) = xi − 12.5yk(
xj

20
− 5),

G3k(x,y) = 5(
xj

20
+ 4− yk)(

xj

20
+ 8− yk)− xi,

∀k ∈ {1, 2, ...,m}.
(16)



Table 4: 9-variable reliable bilevel solutions for Case 1.
9-Variable ULEFV LLEFV ULVS LLVS

Det.

Best 0.5306 187.5047 2.4994 2.5003 2.5005 7.00 62.4845 7.00 62.5076 7.00 62.5127
Median 0.5275 187.6351 2.5021 2.5114 2.4999 7.00 62.5526 6.9936 62.5855 7.00 62.4971
Worst 0.5142 187.1778 2.5122 2.4984 2.5015 6.98 62.1819 7.00 62.4590 7.00 62.5369

Reliable

Best 8.5005 -2.0742 2.4963 2.4986 2.4930 -0.5712 -0.7014 -0.5699 -0.7121 -0.5705 -0.6994
Median 8.5767 -2.1348 2.4933 2.4924 2.4922 -0.5695 -0.7113 -0.5702 -0.6998 -0.5697 -0.7116
Worst 8.5791 -2.0463 2.4859 2.4896 2.4850 -0.5752 -0.6822 -0.5685 -0.7002 -0.5753 -0.6821

Table 5: 9-variable reliable bilevel solutions for Case 2.
9-Variable ULEFV LLEFV ULVS LLVS

Det.

Best 187.50 30.9949 7.00 62.50 7.00 62.50 7.00 62.50 2.50 2.50 2.50
Median 187.4985 30.9947 7.00 62.4997 7.00 62.4994 7.00 62.4994 2.50 2.50 2.50
Worst 187.4041 30.9773 6.9979 62.4462 7.00 62.4999 6.9983 62.4580 2.50 2.50 2.50

Reliable

Best -2.1864 14.3633 -0.5633 -0.7288 -0.5633 -0.7288 -0.5633 -0.7288 2.50 2.50 2.50
Median -2.1864 14.3633 -0.5633 -0.7288 -0.5633 -0.7288 -0.5633 -0.7288 2.50 2.50 2.50
Worst -2.2039 14.3651 -0.5639 -0.7427 -0.5632 -0.7299 -0.5634 -0.7313 2.50 2.50 2.50

Optimization tasks are performed with m = 3, n = 6
comparing with and without reliability consideration in
bilevel solution. A population of size of 150 is used for
both lower and upper level. A maximum of 2,000 gen-
erations are allowed. The desired upper level reliabili-
ty index is set at 2 which provides 95.5% reliability. The
modeled uncertainties are normally distributed with 10%
variance over each variable’s defining domain. Results
are presented in Table 5.

Recall that the illustrative three-variable results for Case 2
was ULVS={7.00, 62.50}, LLVS={2.50} and ULVS={-0.5633,
-0.7288}, LLVS={2.50}, respectively, for deterministic and
reliable solutions. Since the multi-variable functions are
created by adding the respective identical pairs of three-
objective functions for each variable pair, it is expected
that the optimal value for each variable will be identical to
the illustrative three-variable case. And the optimal func-
tion values are multiples of the three-variable case.

• Case 3: Active constraints presented in both levels: Multi-
variable test problems with constraints in both levels are
studied in this case. The upper and lower level objective
functions are provided in Equation 17:

Maximize F (x,y) =
∑m

i∈E xi

subject to y = argmax

{
f(x,y) =

∑n
i∈E y2,

gj(x,y) ≥ 0, j = 1, 2, . . . , JL

}
,

Gj(x,y) ≥ 0, j = 1, 2, ..., J,
−4 ≤ xi∈O ≤ 10,−100 ≤ xi∈E ≤ 200,
−4 ≤ yi∈O ≤ 10,−100 ≤ yi∈E ≤ 200.

(17)

where m and n denote the number of variables in upper
and lower level respectively. Let O and E denote the set
of positive odd and even integers, which are less than the
dimensionality of each level’s variable respectively. The
constraint definitions for each level are provided in Ap-
pendix A.

Optimization tasks are performed comparing with and
without reliability consideration in bilevel solution, with
the number of total variables equal up to 16, due to the
limited space, results are presented with m = n = 4. Max-
imum allowable generations for each level are set at 2000
and the desired reliability index for both levels are fixed
at 2, which provide 95.5% reliability. The modeled uncer-
tainties are normally distributed with 10% variance over
each variable’s defining domain. Results are provided in
Table 6.

Recall that the illustrative four-variable results for Case 3
was ULVS = {7.00, 69.64}, LLVS = {7.00, 69.68} and ULVS
= {-0.7917, 0.3022}, LLVS = {-0.7917, 0.3022}, respectively,
for deterministic and reliable solutions. Since the multi-
variable functions are created by adding the respective
identical pairs of three-objective functions for each vari-
able pair, it is expected that the optimal value for each
variable will be identical to the illustrative four-variable
case. And the optimal function values are multiples of
the three-variable case.

3.3 Results on a Navy Ship Design Problem
For the purpose of applying our proposed reliability-based

uncertainty handling technique in bilevel problems, we con-
sider Sen-Bulker [12] ship model design problem. The o-
riginal Sen-Bulker ship model is a tri-objective optimization
problem consists of six design variables and nine constraints.
The three objectives are minimization of light ship mass (LS),
minimization of transportation cost (TC), and maximization
of annual cargo capacity (AC). The full problem formulation
is provided in Appendix B. Although a trade-off between
transportation cost and ship mass is intuitive, it is expected
that the cargo capacity and transportation cost will be corre-
lated. Hence, we first eliminate one objective of maximizing
AC and impose hierarchy into the remaining two objectives
to redefine the original problem as a bilevel problem.

Now, we consider one objective of minimization of TC as
the lower level optimization task and the other objective of
minimization of LS as the upper level optimization task. The
six design variables are separated accordingly and all nine
constraints are assigned to the lower level optimization task.
The new problem definition is provided as following:

Min. F (x,y) = LightShipMass(x,y)

s.t. y = argmin

{
f(x,y) = TransportationCost(x,y),
gj(x,y) ≥ 0, j = 1, 2, . . . , 9.

}
(18)

The upper level variable vector y = {ShipLength(L), Beam
Width(B)} specifies the physical dimension of a ship; and
the lower variable vector x = {Draft(T ), Depth(D), Coefficient(CB),
Velocity(V ) } specifies the operating mode of a ship design. It
is reasonable to propose the original Sen-Bulker ship model
in this manner, in which we first obtain the best performance
of a particular ship configuration measured by transporta-
tion cost (lower level objective), then optimize the shape of
the ship by minimizing the ship mass (upper level objective).
The new definition of the Sen-Bulker model with hierarchy in
objectives transforms the problem into a bilevel optimization
task, but still inherits the original concepts of the problem.

To better understand the Sen-Bulker navy ship model with



Table 6: 8-variable reliable bilevel solutions for Case 3.
8-Variable ULEFV LLEFV ULVS LLVS

Det.

Best 139.2416 139.2830 6.9994 69.6270 6.9990 69.6146 7.0000 69.6418 7.0000 69.7411
Median 139.1720 139.2790 6.9980 69.5844 6.9982 69.5875 7.0000 69.6394 7.0000 69.6396
Worst 139.0419 139.2701 6.9961 69.5356 6.9951 69.5063 7.0000 69.6360 7.0000 69.6341

Reliable

Best 0.6045 0.6045 -0.7917 0.3022 -0.7917 0.3022 -0.7917 0.3022 -0.7917 0.3022
Median 0.6041 0.6040 -0.7917 0.3022 -0.7915 0.3020 -0.7917 0.3022 -0.7918 0.3023
Worst 0.5989 0.6045 -0.7915 0.2999 -0.7918 0.2990 -0.7917 0.3022 -0.7917 0.3023

hierarchy introduced, a upper level search space are obtained
by forming a mesh grid of upper level variables, and for each
combination of upper level variables, its corresponding low-
er level solution are optimized, as provided in Figure 12.
It’s noticeable that not every combination of upper level vari-
ables could result in a feasible lower level solution. For the
purpose of completeness, the lower level solutions with least
constraint violations are preserved in case of no feasible so-
lutions exist.
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Figure 12: Upper level search space with respect to optimal
lower level solutions correspondingly. In case of infeasi-
ble, the lower level solutions with the least constraint vio-
lations are preserved.

BLEAQ is used to solve the bilevel Sen-Bulker navy ship
design problem (18) described above. Due to the computa-
tional complexity involved of obtaining optimization-based
MPP (FastPMA) for each of nine constraints, Monte-Carlo
sampling-based MPP acquisition is used instead. Depending
on the desired reliability, the number of samples evaluated
for each candidate solution needs to be updated. For the fol-
lowing simulation results, we have chosen to set the number
of samples at 100. The population sizes are both 48 for upper
and lower level. The maximum allowed generations for each
level are set equally at 1,200. The obtained results are shown
in Table 7.

To further explore the problem, the original Sen-Bulker navy
ship model with elimination of the maximization of AC is
solved using NSGA-II with and without the consideration of
reliability. The results are shown in Figure 13

4. CONCLUSIONS
In this pilot study, we have introduced the concept of re-

liability in bilevel optimization problems arising from un-
certainties in both lower and upper level decision variables.
In the presence of constraints, uncertainties in decision vari-
ables cause optimal or near-optimal solutions to violate con-
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Figure 13: Bi-level vs. Bi-objective Results on Sen-Bulker
Navy Ship design model

straints some of the times. By restricting an upper bound on
allowable failures in lower as well as upper level problem-
s, reliable bilevel solutions can be achieved. The reliability
based bilevel optimization methods have been proposed us-
ing the standard single-level stochastic optimization meth-
ods and results on test and a ship design problem have been
presented.

The topic of uncertainty handling in bilevel problems is
highly practical and timely with the overall growth in re-
search in bilevel evolutionary algorithms and in uncertainty
handling methods. This paper remains as the first systematic
study in this direction and should spur interests for further
research and application in the coming years.
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6. APPENDIX
6.1 Constraint violation evaluation of Multi-variable Case

3 Reliability model
A solution having positive value for all constraints is con-

sidered feasible. The defining domain for each variable is
provided in Equation 17.

G1(x,y) = ( y1
14

+ 16
7
)(x1 − 2)2 − x2,

G2(x,y) = x2 − 12.5( y1
14

+ 16
7
)(x1 − 5),

G3(x,y) = 5(x1 + 4− ( y1
14

+ 16
7
))(x1 + 8− ( y1

14
+ 16

7
))− x2,

G4(x,y) = ( y3
14

+ 16
7
)(x3 − 2)2 − x4,

G5(x,y) = x4 − 12.5( y3
14

+ 16
7
)(x3 − 5),

G6(x,y) = 5(x3 + 4− ( y3
14

+ 16
7
))(x3 + 8− ( y3

14
+ 16

7
))− x4,

(19)

g1(x,y) = (x1
14

+ 16
7
)(y1 − 2)2 − y2,

g2(x,y) = y2 − 12.5(x1
14

+ 16
7
)(y1 − 5),

g3(x,y) = 5(y1 + 4− (x1
14

+ 16
7
))(y1 + 8− (x1

14
+ 16

7
))− y2.

g4(x,y) = (x3
14

+ 16
7
)(y3 − 2)2 − y4,

g5(x,y) = y4 − 12.5(x3
14

+ 16
7
)(y3 − 5),

g6(x,y) = 5(y3 + 4− (x3
14

+ 16
7
))(y3 + 8− (x3

14
+ 16

7
))− y4.

(20)

6.2 Evaluation of a design using original Sen-
Bulker Model

The function forms of a(CB) and b(CB) are given else-
where [12].A solution having positive value for all constraints
is considered feasible. The allowable variable values are: 190
≤ L ≤ 500 m, 10 ≤ T ≤ 27 m, 12 ≤ D ≤ 51 m, 0.63 ≤ CB ≤
0.75, 22 ≤ B ≤ 75 m, and 14 ≤ V ≤ 18 Knots.
[f, Constr] = Sen−Bulker ship model(x){
(L, T,D,CB , B, V ) = x;
Displ = 1.025 ∗ L ∗B ∗ T ∗ CB ;
P = Displ2/3 ∗ V 3/(b(CB) ∗ V/(9.8065 ∗ L)0.5 + a(CB));
SteelMass = 0.0034 ∗ L1.7 ∗B0.7 ∗D0.4 ∗ C0.5

B ;
OutfitMass = L0.8 ∗B0.6 ∗D0.3 ∗ C0.1

B ;
MachineMass = 0.17 ∗ P 0.9;
DeadWeight = Displ − ShipMass;
DailyConsmp = 0.2 + 0.19 ∗ P ∗ 0.024;
SeaDays = 5000/(24 ∗ V );
FuelCarried = DailyConsmp ∗ (SeaDays+ 5);
Crew = 2 ∗DeadWeight0.5;
CargoDw = DeadWeight− FuelCarried− Crew;
PortDays = 2 ∗ (CargoDw/8000 + 0.5);
ShipCost = 1.3∗(2000∗SteelMass0.85+3500∗OutfitMass+
2400 ∗ P 0.8);
RunningCost = 40000 ∗DeadWeight0.3;
FuelCost = 1.05 ∗DailyConsmp ∗ SeaDays ∗ 100;
PortCost = 6.3 ∗DeadWeight0.8;
V oyageCost = FuelCost+ PortCost;
RTPA = 350/(SeaDays+ PortDays);
AnnualCost = 0.2∗ShipCost+RunningCost+V oyageCost∗
RTPA;
AnnualCargo = CargoDw ∗RTPA;
LightShipMass = SteelMass+OutfitMass+MachineMass;
TranspCost = AnnualCost/AnnualCargo;
f = [TranspCost, LightChipCass/104,−AnnualCargo/106];
/ ∗ ConstraintEvaluation ∗ /
GM = 0.53 ∗T +(0.085 ∗CB − 0.002) ∗B2/(T ∗CB)+0.52 ∗
D + 1;
Constr(1) = L/B − 6;Constr(2) = 15− L/D;
Constr(3) = 19− L/T ;
Constr(4) = 0.45 ∗DeadWeight0.31 − T ;
Constr(5) = 0.7 ∗D+0.7− T ;Constr(6) = DeadWeight−
3000;
Constr(7) = 500000−DeadWeight;
Constr(8) = 0.32− V/(9.8065 ∗ L)0.5;
Constr(9) = GM − 0.07 ∗B; }


