Solving Optimistic Bilevel Programs by Iteratively
Approximating Lower Level Optimal Value Function

Ankur Sinha!, Pekka Malo?, and Kalyanmoy Deb?

Production and Quantitative Methods
Indian Institute of Management, Ahmedabad 380015 India
asinha@iimahd.ernet.in

2Department of Information and Service Economy
Aalto University School of Business, PO Box 21220, 00076 Aalto, Finland
pekka.malo@aalto.fi

3Department of Electrical and Computer Engineering
Michigan State University, East Lansing, MI, USA
kdeb@egr.msu.edu

COIN Report: 2016015

Abstract

Bilevel optimization is a nested optimization problem that contains one optimization task as
a constraint to another optimization task. Owing to enormous applications that are bilevel in
nature, these problems have received attention from mathematical programming as well as evo-
lutionary optimization community. However, most of the available solution methods can either
be applied to highly restrictive class of problems, or are highly computationally expensive that
they do not scale for large scale bilevel problems. The difficulties in bilevel programming arise
primarily from the nested structure of the problem. In this paper, we propose a metamodeling
based solution strategy that attempts to iteratively approximate the optimal lower level value
function. To the best knowledge of the authors, this kind of a strategy has not been used to
solve bilevel optimization problems, particularly in the context of evolutionary computation.
The proposed method has been evaluated on a number of test problems from the literature.

1 Introduction

Bilevel optimization is characterized as a mathematical program that involves two levels of optimiza-
tion. The outer optimization task is commonly referred to as the upper level optimization problem
and the inner optimization task is commonly referred to as the lower level optimization problem.
Bilevel optimization has two roots: these problems were first realized by Stackelberg [40] in the area
of game theory and came to be known as Stackelber games; later these problems were realized in
the area of mathematical programming by Bracken and McGill [13] as a constrained optimization



task, where the lower level optimization problem acts as a constraint to the upper level optimiza-
tion problem. These problems are known to be difficult due to its nested structure; therefore most
attention has been given to simple cases where the objective functions and constraints are linear
[48, 10], quadratic [8, 20, 1] or convex [30].

An interest in bilevel programming has been driven by a number of new applications arising in
different fields of optimization. For instance, in the context of homeland security |15, 47, 3|, bilevel
and even trilevel optimization models are common. In game theoretic settings, bilevel programs
have been used in the context of optimal tax policies |26, 38, 37]; model production processes [34];
investigation of strategic behavior in deregulated markets [23| and optimization of retail channel
structures [49], among others. Bilevel optimization applications are ubiquitous and airse in many
other disciplines, like in transportation [32, 19, 14|, management [41, 9|, facility location [25, 43, 41],
chemical engineering [39, 18|, structural optimization [11, 17|, and optimal control |33, 2| problems.

Evolutionary computation [6] techniques have been successfully applied to handle mathematical
programming problems and applications that do not adhere to regularities like continuity, differ-
entiability or convexities. Due to these properties of evolutionary algorithms, attempts have been
made to solve bilevel optimization problems using these methods, as even simple (linear or quadratic)
bilevel optimization problems are intrinsically non-convex, non-differentiable and disconnected at
times. However, the advantages come with a trade-off, as the evolutionary techniques are com-
putationally intensive and require large number of function evaluations to solve bilevel problems.
In this paper, we make an attempt to reduce the computational expense of evolutionary bilevel
optimization algorithms by utilizing a metamodeling-based principle that approximates the lower
level optimal value function. The principle can be integrated with any evolutionary algorithm to
handle bilevel optimization problems. We make comparisons with other algorithms studied in the
past to demonstrate the effectiveness of the proposed strategy.

The paper is organized as follows. To begin with we provide a brief literature survey of bilevel
optimization using evolutionary algorithms. Thereafter, we provide the general formulation and
introduce the single-level reduction principle using lower level optimal value function. Then we
incorporate the principle in an evolutionary algorithm and provide comparison results with earlier
approachs. Finally, we provide the conclusions.

2 A Survey on Evolutionary Bilevel Optimization

Most of the evolutionary approaches proposed to handle bilevel optimization problems are nested
in nature. As the name suggests, these approaches rely on two optimization algorithms, where one
algorithm is nested within the other. Based on the complexity of the optimization tasks at each
level, researchers have chosen to use either evolutionary algorithms at both levels or evolutionary
algorithm at one level and classical optimization algorithm a the the other level. One of the earliest
evolutionary agorithms for solving bilevel optimization problems was proposed in the early 1990s
by Mathieu et al. [31] who used a nested approach with genetic algorithm at the upper level, and
linear programming at the lower level. Later, Yin [51] solved genetic algorithm at the upper level
and Frank-Wolfe algorithm (reduced gradient method) at the lower level. In both these approaches
a lower level optimization task was executed for every upper level member that emphasizes the
nested structure of these approaches. Along similar lines, nested procedures were used in |29, 28, 52|.
Approaches with evolutionary algorithms at both levels are also common; for instance, in [4] authors
used differential evolution at both levels, and in [5] authors nested differential evolution with an ant
colony optimization.



In a number of studies, where lower level problem adhered to certain regularity conditions,
researchers have used the KKT conditions for the lower level problem to reduce the bilevel problem
into a single-level problem. The reduced single-level problem is then solved with an evolutionary
algorithm. For instance, Hejazi et al. [22], reduced the linear bilevel problem to single-level and
then used a genetic algorithm, where chromosomes emulate the vertex points, to solve the problem.
Wang et al. [45] used KKT conditions to reduce the bilevel problem into single-level, and then
utilized a constraint handling scheme to successfully solve a number of standard test problems. A
later study by Wang et al. [46] introduced an improved algorithm that performed better than the
previous approach [45]. Recently, Jiang et al. [24] reduced the bilevel optimization problem into a
non-linear optimization problem with complementarity constraints, which is sequentially smoothed
and solved with a PSO algorithm. Other studies using similar ideas are |27, 44].

It is noteworthy that utilization of KKT conditions restricts the algorithm’s applicability to
only a special class of bilevel problems. To overcome this drawback, researchers are looking into
metamodeling based approaches where the lower level optimal reaction set is approximated over
generations of the evolutionary algorithm. Studies in this direction are [35, 36]. Along similar
lines, in this paper we attempt to metamodel the lower level optimal value function to solve bilevel
optimization problems. Approximating the lower level optimal value function may offer a few
advantages over approximating the lower level reaction set that are discussed in the later part of
the paper.

3 Bilevel Formulation and Single-level Reductions

In this section, we provide a general formulation for bilevel optimization, and different ways people
have used to reduce bilevel optimization problems to single-level problems. Bilevel problems contain
two levels, upper and lower, where lower level is nested withing the upper level problem. The two
levels have their own objectives, constraints and variables. In the context of game theory, the
two problems are also referred to as the leader’s (upper) and follower’s problems (lower). The
lower level optimization problem is a parametric optimization problem that is solved with respect
to the lower level variables while the upper level variables act as parameters. The difficulty in
bilevel optimization arises from the fact that only lower level optimal solutions can be considered as
feasible members if they also satisfy the upper level constraints. Below we provide a general bilevel
formulation:

Definition 1 For the upper-level objective function F : R"™ x R™ — R and lower-level objective
function f:R™ x R™ — R, the bilevel optimization problem is given by

“min”  F(x,, ;) subject to
zu€Xy,21€XL

x; € argmin{ f(zy, 21) : gj(vy,2) <0,5=1,...,J}
T e€X

Gr(xy,x) <0,k=1,.... K

where G, : Xy x X = R, k=1,..., K denotes the upper level constraints, and g; : Xy x X;, — R
represents the lower level constraints, respectively.

3.1 Optimistic vs Pessimistic

Quotes have been used while specifying the upper level minimization problem in Definition 1 because
the problem is ill-posed for cases where the lower level has multiple optimal solutions. There is lack
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of clarity as to which optimal solution from the lower level should be utilized at the upper level in
such cases. It is common to take either of the two positions, i.e., optimistic or pessimistic, to sort
out this ambiguity. In optimistic position some form of cooperation is assumed between the leader
and the follower. For any given leader’s decision vector that has multiple optimal solutions for the
follower, the follower is expected to choose that optimal solution that leads to the best objective
function value for the leader. On the other hand in a pessimistic position the leader optimizes for
the worst case, where the follower may choose that solution from the optimal set which leads to the
worst objective function value for the leader. Optimistic position being more tractable is commonly
studied in the literature, and we handle the optimistic position in this paper.

3.2 KKT reduction

When the lower level problem in Definition 1 adheres to certain convexity and regularity conditions,
it is possible to replace the lower level optimization task with its KKT conditions.

Definition 2 The KKT conditions appear as Lagrangian and complementarity constraints in the
single-level formulation provide below:

Imin F(zy, z)
zu€Xy,2 €X A
subject to
Gi(zy,2) <0,k=1,... K,
gj(@uw,2) <0,5=1,...,,
Nigi (T, ) =0,5=1,...,J,
Aj>05=1,...,J,
Ve L(2y, 11, A) = 0,
where
J

L(anxla )‘) = f(xmxl) + Z)‘jgj(mwxl)'

j=1

The above formulation might not be simple to handle, as the Lagrangian constraints often lead to
non-convexities, and the complementarity condition being combinatorial, make the overall problem
a mixed integer problem. In case of linear bilevel optimization problems, the Lagrangian constraint
is also linear. Therefore, the single-level reduced problem becomes a mixed integer linear program.
Approaches based on vertex enumeration [12, 16, 42], as well as branch-and-bound |7, 21] have been
proposed to solve these problems.

3.3 Reaction set mapping

An equivalent formulation of the problem given in Definition 1 can be stated in terms of set-valued
mappings as follows:

Definition 3 Let U : R* = R™ be the reaction set mapping,

U(x,) =argmin{ f(x,, ;) : gj(@y, x) < 0,5 =1,...,J},
T €Xp,



which represents the constraint defined by the lower-level optimization problem, i.e. ¥(x,) C X, for
every x, € Xy. Then the bilevel optimization problem can be expressed as a constrained optimization
problem as follows:

min F(zy, )
zy €Xy,r1€XL
subject to
x; € V(zy,)

Gk(l’u,fﬂl) SO,]{?: 1,...,K

Note that if the ¥-mapping can somehow be determined, the problem reduces to a single level
constrained optimization task. However, that is rarely the case. Evolutionary computation studies
that rely on iteratively mapping this set to avoid frequent lower level optimization are [35, 36].

3.4 Lower Level Optimal Value Function

Another equivalent definition of the problem in Definition 1 can be given in terms of the lower level
optimal value function that is defined below [50]:

Definition 4 Let ¢ : Xy — R be the lower level optimal value function mapping,

o(xy,) = min { f(xy, x) 1 gj(zy, 2) <0,5=1,...,J},
T €Xy,
which represents the minimum lower level function value corresponding to any upper level decision
vector. Then the bilevel optimization problem can be expressed as follows:
min F(zy, 1))
Tu€XU, T €XT,

subject to

f@u, ) < o(xy)
Gi(Tu, 1) <0,5=1,...,J
Gk(‘ru;xl) S 07k = 1,...,K.

In this paper, we aim to approximate the p-mapping iteratively during the generations of the
evolutionary algorithm, and solve a reduced bilevel problem described in Definition 4. To our best
knowledge, there does not exist an evolutionary algorithm that relies on approximating this mapping
during the course of solving a bilevel optimization problem.

Approximating the optimal value function mapping might offer an advantage over approximating
reaction set mapping, as the optimal value function mapping is not set valued. Moreover, it returns
a scalar for any given upper level decition vector. However, in Definition 4 the resulting problem
has to be solved with respect to both upper and lower level variables, while in Definition 3, the
lower level variables are directly available from the W-mapping. Therefore, there exists a trade-off.

4 Evolutionary Algorithm based on p-mapping Approxima-
tion

In this section, we provide an implementation of the ¢-mapping approximation within an evolu-
tionary algorithm. The steps of the algorithm are provided through a flowchart in Figure 1. For
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| Randomly initialize UL population of size N.

PP . le A classical optimizer or an evolutionary algorithm may
I Perform LL optimization for each UL member. ] be used for LL optimization. SQP is used in this paper.
-
@ . Fitness assignment is done using UL function value and
h"ag UL members as 1 if LL optimization is successful, else 0; assign FilnessA|< UL constraints. Tag 0 members have poorer fitness than
< tag 1 members.
] L
1L 7
Execute an evolutionary algorithm on UL members for k generations. |, r Any evolutionary algorithm can be used. The fitness
LL optimization is performed for each UL member and the members are tagged. |‘ L assignment should be done as described above.
I Utilize tag 1 population members to create a quadratic approximation for ¢-mapping. |
: y [ The single-level reduced optimization problem can be
Solve the single-level reduced optimization problem. |< solved using a classical optimizer or an evolutionary
@ l algorithm. SQP is used in this paper.
Replace the worst population member with the single-level reduced optimization solution. |
N =50
Identify the No k=10
best solution in the population. §=0.1
If the improvement in the best solution e=1le-3

is < ¢ in terms of UL function value,
then terminate.

LL: Lower level
UL: Upper level
L1 ves SQP: Sequenial Quadratic Programming

Figure 1: Flowchart for incorporating approximated ¢-mapping in an evolutionary algorithm.

brevity, we do not discuss the steps of the evolutionary algorithm, as any scheme can be utilized in
the provided framework to handle bilevel optimization problems. For our tests and comparisons,
we use the same genetic operators as reported in |35, 36].

5 Results

For comparing p-approximation approach against W-approximation approach, we simply replace
the p-approximation step in the algorithm flowchart with the W-approximation step. A quadratic
approximation is used for both the mappings. Both the ideas were tested on a set of 8 test problems
selected from the literature given in Tables 1 and 2. To assess the savings achieved by the two
approximation approaches, we compare them against a nested approach where the approximation
idea is not incorporated, but the same evolutionary algorithm described in Figure 1 is used at the
upper level and a lower level optimization problem is solved for every upper level member. Hereafter,
we refer this benchmark as a no-apprximation approach. Whenever lower level optimization is
required, we rely on sequential quadratic programming to solve the problem for all cases. Table 3
provides the median function evaluations (31 runs) at the upper and lower level required by each of
the three cases, i.e, p-approximation, W-approximation and no-approximation. Detailed results from
multiple runs are presented through Figures 2 and 3. Interestingly, both the approximation ideas



Table 1: Standard test problems TP1-TP5. (Note that z = z, and y = ;)

Problem Formulation Best Known Sol.

TP1

Minimize F(z,y) = (z1 — 30)? + (22 — 20)? — 20y; + 20y,

(@,y)
s.t.
no= 2 . x,y) = (x1 —y1)? + (22 — y2)?
m=2 Z/Ear%ﬂgllﬂ{ g(< 5)< 1(01 Zyzl)l 2 (2 =) ’
y — 17 = b b)
T, + 229 > 30,21 + 12 < 25,29 < 15
e 2 F = 225.0
£ =100.0
TP2
Mi(ninﬁize F(z,y) = 2x1 + 2x2 — 3y1 — 3y2 — 60,
s.t.
F@y) = (y1 — 1 + 20)% + (y2 — @ + 20)2
no= 2 y € argmin ¢ =1 — 2y > 10,29 — 2yo > 10 ,
m=2 ) ~10>y; >20, i=1,2
x1 + w2 + y1 — 2y2 < 40,
0<z; <50, i=1,2. F=0.0
£ =100.0
TP3
Ml?ln%lze F(‘Tay) = 7(1'1)2 - 3(%2)2 - 4y1 =+ (y2)27
T,y
s.t.
f(%Qy) = 2(x1)? +2(yl)2 — 5y
n — 92 ) (21)? —2x1 4+ (22)° — 2y1 +y2 > —3
) € argmin )
m =2 Y %y) T2+ 3y —dy2 2 4
0< Yi, 1=1, 2
(21)? + 2z < 4, F = —18.6787
0<a, i=1,2 f=-1.0156
TP4
Mi(nin%ize F(z,y) = —8x1 — 4xo + 4y; — 40y2 — 4y,
$7y
s.t.
[z, y) =21 4+ 2w2 +y1 + y2 + 2y3
n = 2, y2+ys—y1 <1
m=3 y € argmin § 221 —y1 +2y2 — 0.5y3 < 1 )
(v) 2&32 + 2y1 — Y2 — O5y3 S 1
Ogyla 1217273 F=-292
0<x;, =12 f=32
TP5
Mi{lin;ize F(z,y) = rt(x)x — 3y1 — 4y + 0.5¢(y)y,
z,y
s.t.
f(z,y) = 0.5t(y)hy — t(b(x))y
. —0.333y1 +y2 —2<0
0 o= 2 Y AEMI ) 0.333y, —2 <0 ’
m =2 0< Yi, i=1,2
where
_(1 3 _( 1 2 _ F=-36
h—(3 10),1)(:1:)—( 3 3>x,r—0.1 = 20

t(-) denotes transpose of a vector




Table 2: Standard test problems TP6-TPS8. (Note that =z, and y = 1)

Problem Formulation Best Known Sol.
TP6
Mi(nirr;ize F(z,y) = (z1 — 1)% + 2y; — 2z,
Ty
s.t.
fla,y) = (2y1 — 4)°+
(2y2 — 1)* + 2111
n — 1’ 4331 + 5y1 + 4y2 S 12
m=2 y € argmin ¢ 4dys —4x; — Sy < -4 5,
() dry —4dy; +5y2 < 4
4y — 4m1b+ oy2 < 4 F=-1.2091
Ogyia 1= 172 f:76145
0 S T
TP7
Minimize F(z,y) = — (e e
s.t.
_ (z1ty1)(z2+y2)
n = 2 Yy € argmin f(l', y) = I+z1y1+a2y2 ,
m=2 ’ () 0<y, <w, 1=12
N (z1)% + (z2)% <100
71— 23 <0 F=-196
0<az; i=12 f=1.96
TPS8
Mi(nirr?ze F(z,y) = |2x1 + 2x2 — 3y1 — 3y2 — 60|,
zy
s.t.
f(@,y) = (1 — 21 +20)%+
(y2 — a2+ 20)2
no= 2 y € argmin{ 2y; —x1 +10<0 ,
m =2 (v) 2y — 29 +10 <0
10<y; <20, i=1,2
1+ 22 + Y1 — 2y2 <40 =00
0<2;, <50, i=1,2 f =100.0




Table 3: Median function evaluations for the upper level (UL) and the lower level (LL) from 31 runs
of different algorithms. The savings represent the proportion of total function evaluations (LL+UL)
saved because of using the approximation when compared with no-approximation approach.

UL Func. Evals. LL Func. Evals. Savings
@-Appx  WU-Appx No-Appx @-Appx VY-Appx No-Appx © v
Med Med Med Med Med Med
TP1 134 150 - 1438 2061 - Large Large
TP2 148 193 436 1498 2852 5686 73%  50%
TP3 187 137 633 2478 1422 6867 64%  79%
TP4 299 426 1755 3288 6256 19764 83%  69%
TP5 175 270 576 2591 2880 6558 61%  56%
TP6 110 94 144 1489 1155 1984 25%  41%
TP7 166 133 193 2171 1481 2870 24%  47%
TP8 212 343 403 2366 5035 7996 69%  36%

perform significantly well on all the problems as compared to the no-approximation approach. The
savings column in the table shows the proportion of function evaluations savings that can be directly
attributed to ¢ and ¥ approximations. There is also a slight difference in performance between the
two approximation strategies which could be attributed to the quality of approximation achieved
for specific test problems. To provide the readers an idea about the extent of savings in function
evaluations obtained from using metamodeling based strategies, we also provide comparisons with
earlier evolutionary approaches [45, 46] in Table 4. It is quite clear that the savings achieved are
better by order of magnitudes.

It is noteworthy that the W-mapping in a bilevel optimization problem could be a set-valued
mapping. In such cases the quadratic approximation idea will not work. To test this hypothesis, we
modified all the 8 test problems by adding two additional lower level variables (y, and y,) that makes
the W-mapping in all the test problems as set-valued for the entire domain of W. The modification
does not change the original bilevel solution. This was achieved by modifying the upper and lower
level functions for all the test problems as follows:

Fr(z,y) = F(z,y) + v + 5
fnew(xay> = f(fL",y) + (yp - yq)2
ypqu € [_17 1]

Note that the above modification necessarily makes the lower level problem have multiple optimal
solutions corresponding to all z, as the added term gets minimized at y, = y, which has infinitely
many solutions. Out of the infinitely many lower level optimal solutions, the upper level prefers
Yp =Yg = 0. With this simple modification, we execute our algorithm with yp-approximation and
W-approximation on all test problems, the results for which are presented through Tables 5 and 6.
For all the problems, the W-approximation idea fails. The W-approximation idea continues to work
effectively as before. The slight increase in function evaluations for the W-approximation approach
comes from the fact that there are additional variables in the problem.



Table 4: Mean of the sum of upper level (UL) and lower level (LL) function evaluations for different
approaches.

Mean Func. Evals. (UL+LL)

p-appx. W-appx. No-appx. WJL [45] WLD [46]
TP1 1595 2381 35896 85499 86067

TP2 1716 3284 5832 256227 171346
TP3 2902 1489 7469 92526 95851
TpP4 3773 6806 21745 291817 211937
TP5 2941 3451 7559 77302 69471
TP6 1689 1162 1485 163701 65942
TP7 2126 1597 2389 1074742 944105
P8 2699 4892 5215 213522 182121

1500 x10

¥ appX.J¥ appx. 1% appX.JV¥ appx

1000

0.81

5001
0.67

ETELL L 4 Al il

TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8

Figure 2: Box plot (31 runs/samples) for the up- Figure 3: Box plot (31 runs/samples) for the
per level function evaluations required for test lower level function evaluations required for test
problems 1 to 8. problems 1 to 8.
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Table 5: Minimum, median and maximum function evaluations at the upper level (UL) from 31 runs
of the p-approximation algorithm on the modifed test problems (m-TP). The other two approaches
fail on all the test problems.

o-Appx. V-Appx. No-Appx.
Min Med Max Min/Med/Max Min/Med/Max

m-TP1 130 172 338 - -
m-TP2 116 217 -
m-TP3 129 233 787 - -
m-TP4 198 564 2831 - -
m-TP5 160 218 953 - -
m-TP6 167 174 529 - -
m-TP7 114 214 473 - -
m-TP8 150 466 2459 - -

Table 6: Minimum, median and maximum function evaluations at the lower level (LL) from 31 runs
of the p-approximation algorithm on the modifed test problems (m-TP). The other two approaches
fail on all the test problems.

o-Appx. W-Appx. No-Appx.
Min Med Max Min/Med/Max Min/Med/Max

m-TP1 2096 2680 8629 - -
m-TP2 2574 4360 -
m-TP3 1394 3280 13031 - -
m-TP4 1978 5792 28687 - -
m-TP5 3206 4360 17407 - -
m-TP6 2617 3520 8698 - -
m-TP7 1514 5590 11811 - -
m-TP8 2521 6240 35993 - -
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6 Conclusions

In this paper, we have evaluated two single-level reduction techniques for bilevel optimization; i.e.,
V-mapping approximation approach and p-mapping approximation approach. To conclude, the
W-mapping offers the advantage that if it can be approximated accurately, it readily gives the
optimal lower level variables. However, in cases when this mapping is set-valued, approximating
U can be very difficult. On the other hand, the p-mapping is always single-valued, approximating
which is much easier, and is therefore more preferred over the W-mapping. The results shown in
this paper clearly demonstrate that even a simple modification that makes the lower level problem
have multiple-optimal solutions, makes the W-approximation strategy fail because of poor quality
of approximation. To our best knowledge, most of the studies utilizing meta-modelling techniques
to solve bilevel optimization problems have mostly relied on approximating the W-mapping. Given
the ease and reliability offered by the p-approximation over W-approximation, we believe that the
meta-modelling-based techniques should closely look at the benefits of the p-approximation.
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