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Abstract

Optimal Control is a task where it is desired to determine the inputs of a dynamical system
that optimize (minimize or maximize) a specified cost functional also known as performance
index while satisfying any constraints on behaviour of the system. As the name suggests,
Inverse Optimal Control is the opposite of former one and thus is associated with mining of the
cost functional, optimal behaviour of which fits the given results best. In this paper, we present
the importance of evolutionary bilevel optimization techniques as a promising approach to solve
inverse optimal control problems. Generally inverse optimal control problems are found to be
ill posed which makes them computationally expensive in addition to associated redundancy
with solution. Inverse optimal control theory works as a stepping stone in figuring out the
underlying optimality criteria in a given task. It has several other applications in areas like
Markov’s Decision Processes and Game Theory. In our work, we solve inverse optimal control
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problems to retrieve the original functional in optimal control task using metaheuristic based
bilevel optimzation techniques. The dataset comprising of state variables generated from an
optimal control problem with an unknown functional is utilized to mine the functional. In the
later part of paper, we formulate a problem of human motion transfer as an bilevel optimization
task, subsequently run our algorithm on it and benchmark our results.

1 Introduction

Optimal control theory is a branch of mathematical optimization that has enormous applications
in a wide variety of areas in science and engineering. Optimal control problems involve calculation
of state functions along with control sequences which minimize a given cost functional often known
as performance index subject to some constraints. There are two kinds of techniques named as
Direct and Indirect methods to tackle any general optimal control problem. Indirect methods are
analytical techniques that involve the principles from variational calculus derived from the early
works of Pontryagin [1] and Bellman [2]. Direct methods deploy the use of numerical computations
and approximations for calculation of optimal control law and corresponding state funcions|3, 4].
One of the major challenges in control theory is deriving the performane index or reward function
which fits best on the given data set or demonstrations. Such kind of tasks lie in the category of
Inverse Optimal Control theory which is quite analogous to inverse optimzation problems. Inverse
problems solicit the calculation of cause based on the given result. It means that such tasks start
with result and go to calculation of causes which is quite contrary to general problems we come across
in science. Inverse problems have wide application spanning optics, radar, acoustics, communication
theory, signal processing, medical imaging, computer vision, geophysics, oceanography, astronomy;,
remote sensing, natural language processing, machine learning, nondestructive testing, and many
other fields. We present a novel approach that uses evolutionary bilevel optimization [refer section
2] principles, which could be useful in solving complex inverse optimal control problems. In a bilevel
formulation of inverse optimal control problem we try to minimize the error between the experimental
data and computed data at upper level, while the lower level optimization task involves solving an
optimal control problem for a sample functional. Solving the lower level problem iteratively with
different functionals allows to search for a functional that deviates the least from the experimental
data.

Rest of the paper is organized as follows. In the next section, we introduce general bilevel
optimization problems and their solution techniques. Thereafter, we provide a comprehensive study
on inverse optimal control problems along with discussion of research on its solution methodologies
which is followed by discussion on formulating such problems as bilevel optimization problems.
Lastly, we present numerical results on two types of inverse optimal control problems. The problems
have been chosen such that analytical solutions can be computed in order to test the performance
and applicability of evolutionary bilevel optimization techniques to inverse optimal control problems.

2 Bilevel Optimization

Bilevel optimization is a two level optimization task where one task is nested in another optimization
task. The outer task generally known as upper level optimization task and the inner one is called
lower level optimization task. Accordingly, in such problems we need to tackle with two kinds of
variables which are called upper level variables and lower level variables often known as upper level



decision vectors and lower level decision vectors respectively. A general bilevel optimzation problem
is defined as follows:

Definition. For the upper-level objective function F' : R™ x R™ — R and lower-level objective
function f:R" x R™ - R

minimize  F(x,,x;)
Ty €Xy,11€XL

subject to x; € argmin{ f(z,,z;) :
x|

gi(xy,x) <0,5=1,...,J

hi(zy, ) =0k=1,..., K}
Gi(zy, ) <0,l=1,...,L
Hy(xy,z)=0m=1,...,.M

As is clear from the above definition that x,, x; are upper level and lower level decision vectors
respectively. G, g; are upper level and lower level inequality constraints respectively. Equality
constraints at upper level and lower level are defined as H,,, and hj respectively.

Bilevel optimization tasks were first realized by German economist Stackelberg who described
these problems as hierarchical tasks in his popular work on leader-follower games also referred as
Stackelberg games [5]. In Stackelberg games, players compete with each other and leader makes
the first move knowing the ex ante that follower knows about its actions. Hence, leader’s task is to
optimize its response keeping in the mind that follower also wants to optimize theirs which results in
a nested optimization in which lower level task corresponds to follower’s optimization problem and
upper level task is taken care by leader. Bilevel optimization has further applications in toll-setting
problems [6-9], environmental economics [10-12], chemical industry [13-15], optimal design [16-18]
and defense [19-22], to name a few.

Bilevel optimization problems are classified as strongly NP-hard task. Only an optimal solution
to lower level task makes a possible feasible candidate to the upper level task. This requirement
makes these problems computationally very expensive since we need to solve lower level task every
time for each iteration at the upper level. A number of strategies to tackle such problems have been
discovered and discussed by mathematicians. Some of the popular techniques to solve such prob-
lems are classical approaches like Karush-Kuhn-Tucker (KKT) that reduces a bilevel optimization
task to a single-level optimization problem. For instance, in case of linear bilevel problems using
KKT conditions transforms the problem to mixed integer linear program. Approaches based on
vertex enumeration [23-25], as well as branch-and-bound [26,27] have been proposed to solve linear
bilevel problems. Branch-and-bound approach has also been to handle single-level reductions of
linear-quadratic [28] and quadratic-quadratic [29,30] bilevel problems. Other classical optimization
techniques include descent-based approaches [31,32], use of penalty functions [?,33,34] and trust-
region methods [35-37]. As soon as complexity of the bilevel optimization increases, the classical
bilevel techniques cease to substantiate their utility and we need to rely on computationally heavy
techniques like evolutionary algorithms to solve the problem.

2.1 Evolutionary Bilevel Optimization

Most of the earlier evolutionary algorithms for solving bilevel problems are nested in structure,
where lower level task is executed for every upper level decision vector as illustrated in figure 1.
Mathieu’s work [38] towards using genetic algorithms for bilevel linear programming was one of the
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Figure 1: Lower level optimal solutions for various different upper level members.

first studies where a hierarchical programming task was solved using an evolutionary techniques.
In the original work [38], the upper level task was solved using genetic algorithms (GAs), while a
classical approach was used at the lower level. In another work, Yin [39] handled the lower level
using the Frank-Wolfe algorithm and deployed genetic algorithm at upper level task for solving non-
convex bilevel optimization problems. Wang et al. [40,41] presented another solution methodology
to tackle non-linear bilevel programming problems by applying Karush-Kuhn-Tucker optimality
conditions at the lower level and further applying heuristic methods. More recently, metamodeling-
based solution methods have been used for solving bilevel optimization problems. Some of the
recent algorithms that rely on the reaction set mapping are [42-44]. In this paper, we will use the
Bilevel Evolutionary Algorithm based on Quadratic Approximations (BLEAQ) proposed in [42,43]
to handle the inverse optimal control problems.

3 Inverse Optimal Control Theory

Optimal control is a mathematical field which is concerned with control policies that can be deduced
using optimization algorithms on cost functional. In Mathematics, functional is a name given
to entities which are a function of functions. These state and control parameters are further a
function of some independent parameter. Feng Lin discusses the various optimal control problems



formulation and their implications in various daily routines like Minimal Tracking Error Problems,
Minimal Energy Problem and Linear Quadratic Regulator (LQR) Problem in fourth chapter of
his famous book in control theory [45]. A general optimal control problem is being formulated as
follows:

Definition. Minimize the continuous time cost functional

J =0[a(ty), to, 2(ts), f] + /t " Lla(t), u(t), f)dt

0
subject to first order dynamic constraints

a(t) = ala(t), u(t), 1],
the algebraic path constraints
blx(t), u(t), t] < 0,
and the boundary conditions
Ulx(ty), to, z(ts),tf] =0

where x(t) is the state, u(t) is the control, ¢ is the independent variable (generally speaking,
time), ¢ is the initial time, and ¢; is the terminal time. The objective here is to find state function
x(t) and control sequence u(t) which optimize the cost functional J.
Several solution techniques for general optimal control problems which have been discussed in liter-
ature comprise of indirect methods such as Hamilton-Jacobi-Bellman Equation and direct methods
whih rely on numerical computations of control and input policies by the help of boundary value
problems.

3.1 Recent research on inverse optimal control theory

As already discussed in section 1, Inverse problems have various applications in different fields.
Inverse optimality also known as Inverse Reinforcement Learning (IRL) has attracted considerable
attention in both control engineering and machine learning. Inverse optimality was first studied for
control-theoretic purposes in relation to stability[46,47]. The idea was further extended by Krstic
et al.[48] where one designs a control-Lyapunov function, treats it as an optimal value function
(and derives the corresponding control law) and finds the cost for which this value function is
optimal. Ziebart et al.[49] propsed the maximum entropy model to tackle inverse optimal control
problems in 2008, in which they solve forward problem repeatedly in the inner loop. Most of the past
methods for IRL use linear combinations of functions in forward problem due to the computational
complexity involved in finding the solution which restrict the search space, albeit we have also
used linear combination to demonstrate the applicability of evolutionary bilevel algorithms to such
problems. However, evolutionary bilevel algorithms can be easily applied to more complex non-
linear combinations without additional modifications.

3.2 Formulation of Inverse Optimal Control problem as Bilevel Opti-
mization Problem
An inverse optimal control problem consists of determining the objective function L£(x(t),u(t),t)

that produces the best fit to the dataset in the least squares sense. For the objective function we
make the assumption that it can be expressed as a weighted sum of a series of n base functions
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Figure 2: Inverse optimal control problem formulated as bilevel optimization problem. Upper level
passes « parameters to lower level and lower level passes optimal control ¢* for respective alpha
values to upper level.

¢;(t) with corresponding weight parameters «; :

Thus, the problem of obtaining the best objective function L£(-) is transformed into the getting
the best weight factors «;[50] since L£(-) is being expressed as linear combination of respective
base functions. Now, the weight factors play the crucial role in determining the objective function
because greater the weight, more the respective term is punished. On the other extremity, a; may
vanish for some term. A simplified version of inverse optimal control as a bilevel optimization task
can be formulated with upper level and lower level as illustrated in figure 2 :

minimize Y [[0*(t;; @) — Ias ()|
« sy
where ¥*(t;; ) is a solution of,

minimize / (Z aii(x(8), u(t), )) dt

subject to

x = a[x(t), u(t), 1]
x(0) = x0,%(T) = %,

where x summarizes the full or reduced vector of states and controls, 9(t)T = (x(¢)7,u(t)T) and
Y denotes the measured values or dataset.



4 Numerical\Direct Solution to Inverse Optimal Control
Problems

Inverse problems are quite expensive to solve numerically in comparison to forward problems since
they are not often well-posed. A problem is to be called well-posed if it satisfies following three
properties.

1. there is a solution,
2. the solution is unique, and

3. the solution depends continuously on the data.

Inverse problems are found to be ill-posed generally. In this section we present the numerical
solution of inverse optimal control problems treated as bilevel problem. The upper level handles
the iteration over « such that the fit between measurements and optimal control problem solution
(which is being calculated at lower level) is improved. Each upper level iteration includes one call
to the lower level where a forward optimal control problem is solved for the current set of «; .The
optimal solution of this problem is then communicated back to the upper level such that the least
squares fit between measurements and computations can be evaluated for this iteration.Optimal
control problem at the lower level can be solved analytically using principles of Pontryagin but
complexity issues and accuracy requirements force us to work out numerical methods so we have
adopted the numerical approach using polynomial approximations [51,52]. In our work, a five degree
polynomial has been used to approximate the state functions and control sequences which optimize
the given performance index at lower level.

Now we present our result and calculations on solving inverse optimal control problems formu-
lated as bilevel task using our algorithm by running it on several example problems.

4.1 Result
4.1.1 Example 1

The first example problem depicts a linear system which is the modified version of optimal control
problem described in [51] with x; (%), z2(t) as state parameters and u(t) as control parameter.

Find »*(t) that minimizes

1
J = / [ 22 (1) + i (t) + azu®(t)]dt (1)
0
subject to
Ty = Ty,
Lt'g = —X9 + u,

with initial conditions

x1(0) = 0,25(0) = —1
and

(1, a9, a3) = (15,10,0.1)

The first step in solving such problems by proposed method is approximating x,(¢) by 5 degree
polynomial of unknown parameters, we assume



1 (t) = t5 + C4t4 + C3t3 + C2t2 + Clt + Co

Then, #1(t) is calculated which subsequently gives
i) (t) = 5t4 + 4C4t3 + 303t2 + QCQt +

Solving for initial conditions,
we get,

00:0,01:—1

Further control variable is calculated using the state equation which leads to

u(t) = 5t* + (deg 4+ 20)t3 + (3¢5 + 12¢4)t* + (2¢4
+6C3)t + (Cl + 202)

which further leads to, J=

34.52 37.69 39.79 Co

1
(2 coca) | 3769 4482 50.15 e
39.79 50.15 58.44 Cy
13.31
+( Cy C3 C4) 25.62
39.50

Solving the above quadratic programming problem and minimizing J with respect to ¢, c3, ¢4 gives
(ca, 3, ca) = (—7.3436,19.2045, —12.1543)
Putting these values in original equations we get the values as follows:

ri(t) = t° — 12.1543t* + 19.2045¢% — 7.3436t* — t;
x5(t) = 5t* — 48.6172t + 57.6135t* — 14.687t — 1;
u*(t) = 5t* — 28.62t° — 88.238t* + 100.54t — 15.69;

Now we formulate the above problem as inverse optimal problem and compare results with our
initial assumed values of (aq, ag, as).
n

minimize D [@i(t) = wa(8:))* + (w3(t:) — wa(t))

! T (t) — ult))] 2)

(c2,c3,c4) € argmin J
C€2,C3,C4

where,

3
=1



and J as defined in equation 1.
Carrying out the similar calculations, we get
J = CATB, where

1380 1.778 73.92 1
—.250 1.333 37.33 Ca
—. 177 2.285 54.28 Cs3
—.130 3.000 115.0 Cyq

A 3330 3.000 27.00 g | 6
2500 4.000 64.00 C3C4
2850 3.200 35.20 CaCy
2000 1.333 9.330 c
1420 1.800 22.80 c
1110 2.285 47.08 c

C = ( 1 O (3 )

Please note that n is the number of timestamps on which measurement is made in expression 2.
Comparing our framework with standard bilevel optimization problem, notice that expression 2 is

the upper level task with (¢, c3,c4) € argmin J being the lower level task and equation 3 acting
€2,C3,C4
as lower level constraints. This formulation can also be compared with one which is defined in

subsection 3.2 with,

o1(+) = 21(t), ¢a(-) = 25(t), ¢3(-) = u*(t) and

< ialt) ) = ( 0 —1 )\ )T ) e
U presents the measured data or data set as x{(t), z5(¢) and u*(¢). MATLAB script was executed
for n = 100 timestamps to get the fit on ¢ € [0,1] with ¢; = 0.0,0.01,...,.51,.52,...,1.0.

The numerical values calculated for upper level variables have been tabulated in table 1 with error
function variation plotted in figure 3.

Table 1: Upper Level Variables after 700 Generations
Execution o Qv Qg

First 15.0456  9.9551  0.0993
Second  14.9873 10.0125 0.1002
Third 14.9995 10.0005 0.1001
Fourth  15.0162 9.9841 0.0997

Fifth 15.0207  9.9796 0.0997

Average 15.0386 9.9864  .0998
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Figure 3: Error function at upper level variation against generation number. Clearly, Squared error
vanishes and converges to 0 after few generations advocating a strong fit between calculated values
and actual values.

4.1.2 Example 2

This example problem depicts a non-linear system adopted from optimal control problem described
in [45].

Find «*(¢) that minimizes

1
J = / (121 (t) + oo (t) + azu(t)]dt (4)
0
subject to
Ty = —Zx% — T9 + 2u,
.’i?l = —2.’171 + Zo,
and

(ala Qg, Oé3) - (1a 27 1)
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Figure 4: Fitness between approximation polynomials based upon actual and calculated parameters
(co, c3,¢4) after 700 generations for example problem 4.1.1

Since the limits are from 0 to 1 so let us we approximate x(¢) by a harmonic function which has 4
degrees of freedom,
x1(t) = Ay sin(w; t) + Ag sin(wy t)

Then, #5(t) is given by the expression,
To(t) =2 A sin(wy t) + 2 Ay sin(wy t) +
A wy cos(wyt) + Agwsy cos(wy t)

Further control variable is calculated using the state equation which leads to u(t) =

2 2

sin(wy t) (Al — Al;l ) + sin(wsy t) (Ag — AQQWQ )

3 A wy cos(wr t)
2

3 Aywsy cos(wa t)
‘ 6

+(Ay sin(w; ) + Ay sin(wy 1)) +




which further leads to,

. 6 Al A2 W9 Al w1 6 A2 A12 A22

Jw1_2_2+w2+2+2+
TA;sin(wy)  7Aysin(we) 64 cos(wy)
+ — —
2 2 w1
6 Ay cos(wg)  Ajwy cos(wy)  Aswsy cos(ws)
_'_ J—
W9 2 2
Ay? cos(wi) sin(w) B Ay? cos(ws) sin(wg)
2&)1 2W2
2 Ay Ay wy cos(wy) sin(ws)
w12 — wy?

2 Ay Ay wy cos(ws) sin(wy)

w12 — w22

It is clearly visible that J is symmetric with respect to pair (wi,ws) and pair (A;, As). J was mini-
mized using fmincon[?] with to get (w1, ws, A1, Ay) = (4.5554,4.5553,1.4347, 3.2935) with following
restrictions imposed 3 < w; < 5,3 < wy < 5,1 < A <4,3 < Ay < 4. Putting these values in
original equations we get the values as follows:

() = 1.4347 sin(4.5554 1) + 3.2935 sin(4.5553 1)
x5(t) = 15.003 cos(4.5553t) + 6.536 cos(4.5554 t) +
6.587 sin(4.5553 t) + 2.869 sin(4.5554 t)

u*(t) can be calculated by putting results in equation 5.

Again we formulated above problem as inverse optimal problem as described already in 4.1.1 and
formulation can easily be compared with one defined in subsection 3.2.

The numerical values calculated for upper level variables have been tabulated in table 2 with error
function variation plotted in figure 5.

Table 2: Upper Level Variables after 800 Generations
Execution o 9 Q3

First 1.0021 1.9985 0.9994
Second  0.9995 2.0012 0.9993
Third 1.0012 1.9985 1.0003
Fourth ~ 0.9998 1.9978 1.0024
Fifth 0.9986 2.0023 0.9991

4.1.3 Example 3

Now we solve a real world application of optimal control theory where it can be used to design
robot trajectories which can imitate human beings. Many researchers dealt this problem in past
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Figure 5: Error function at upper level variation against generation number.

[50,53,54]. Our problem has been inspired from what has been discussed in [54]. A common as-
sumption of many approaches analyzing human motion is that humans try to minimize an unknown
cost function while doing everyday manipulation tasks. This assumption also forms the basis for the
strategy discussed here. It has to be noticed that the main purpose of this approach is to describe
human behavior based on physical models rather than to explain it from a biological or psycho-
logical perspective [55]. In daily life a huge potential exists to assist and disencumber humans in
fulfilling their tasks, by providing service or care robots. A difficult task in building adaptive and
autonomous robots is generating task-specific robot motions which fit naturally in a human every-
day environment. Our contribution is a framework which is able to represent and generate motions
based on an optimal combination of physically inspired principles obtained by analyzing human
motions recorded in an unconstrained observation setup. Having all of these in mind, our proposed
method works on the principal of BLEAQ. While cost function formulation has been adopted from
[50] which leads to a bilevel task as follows:

We took the following basic formulation of the objective function as a combined weighted minimiza-
tion of total time, the integrated squares of the three acceleration components, and the integrated
squared difference of body orientation angle and direction towards the goal ¥(t) as described in
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[50]:

/OT [24: i (2(8),u(t) )| at
/OT[ao + aquy (1) + agusy(t)?+

asus(t)® + aal (2(t), z)°)dt (6)

—a0T+a1/ 1(1) dt+a2/ o (1) dt+

T
Oég/ th + Qy Lp Ze th (7)
0 0
subject to
0(o(t),2) = LY ) ana
’ ze — ()



Figure 7: Human performing reaching motions

A detailed description of the variables and parameters formulated above can be found in [50,54].
We implemented our algorithm on TUM kitchen dataset. Detailed description of the dataset can
be found in [54, 56].

Value of cofficients has been calculated as (ayg, oy, g, avg, ag)=(1.86, 2.53, 3.33, 1.36, 5.3) Right
arm path (sequence of coordinates) has been plotted in figure 8. Trajectories obtained by using our
cofficients closely follow the actual data set values showing the robustness and applicability of our
method.

5 Conclusions and Future Work

In this paper, we have solved inverse optimal control problems using a bilevel optimization technique.
A recently proposed technique (BLEAQ) has been applied on a couple of toy examples and a
real world problem. The results suggest that the technique is able to successfully handle all the
problems; and can therefore be useful in solving more complex inverse control problems. The
problems need not adhere to continuity and differentiability assumptions for the algorithm to be
applicable. One of the important applications of inverse optimal control is in human imitation where
robots are being sought which can perfectly imitate humans in performing tasks. While performing
an act humans minimize an unknown cost function, and researchers spanning from psychologists
to mathematicians are engaged in figuring out the optimal criteria. Bilevel optimization can be
a useful approach for determining the optimal cost function, which is in an important direction
on which we would like to extend our research. Development of efficient algorithms for bilevel
optimization and accurate human motion tracking techniques would enable more accurate models
of human motion and performance and thus transferring these models to humanoids which can lead
to greater efficiency of robots.
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Trajectory Plot of Right Arm using Obtained Cofficients
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Figure 8: Right arm trajectory plot in reaching motions for 4.1.3



