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Abstract

Hub-and-spoke systems have wide applications ranging in airline transportation, freight
transportation, urban traffic, postal delivery, telecommunications and distribution in supply
chains. These systems are usually characterized by stochastic demand and congestion, which
adversely affect the quality of service to customers. These systems are further characterized
by different classes of customers who need different levels of service. In this paper, we
study the problem of hub-and-spoke network design under conditions wherein customer
demands are stochastic and consignments from one class are served at hubs with priority
over those from the other class to maintain the different service levels required by them.
We present a model for designing a capacitated multiple allocation hub location problem
with a service level constraint, defined using the distribution of time spent at hubs, for
each priority class. The model seeks to determine the hub-and-spoke network design at
the minimum total cost, which includes the total fixed cost of equipping open hubs with
sufficient processing capacity and the variable transportation costs, subject to a service
level constraint for each consignment class. The network of hubs, given their locations,
is thus modeled as spatially distributed preemptive priority M/M/1 queues. The problem
is challenging to solve, especially in absence of any known analytical expression for the
sojourn time distribution of low priority customers in a preemptive priority M/M/1 queue.
To resolve this problem, we exploit the concavity of the sojourn time distribution of low
priority consignments to eliminate the non-linearity in their service level functions at the
expense of a large number of tangent hyperplanes, which are determined numerically using
matrix geometric method. The problem is solved to optimality using a cutting plane method.
Computational results based on the US Civil Aeronautics Board (CAB) data are provided.
The results show that an explicit account for service level constraints at hubs may result in a
significantly different network configuration. Further, it is interesting to note that increasing
the fraction of consignments that receive priority in service or/and that have a lower value
of the maximum threshold on sojourn time may not necessarily increase the total cost of
the network design.
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∗Corresponding author

IIMA Working Paper No. 2013-11-02 November 7, 2013



1. Introduction

Hub-and-spoke networks have wide applications in areas ranging from airline passenger

transportation, freight transportation, urban public transport, postal delivery to telecom-

munications. Hubs are special facilities that serve as switching, transshipment or sorting

points in distribution systems. They exploit the economies of scale arising from concen-

trating traffic at certain nodes, called hubs, from/to several origins/destinations, instead

of serving each origin-destination pair directly. Flows from the same origin with different

destinations in a hub-and-spoke network are, therefore, consolidated on their route at the

hub where they are combined with flows that have different origins but the same destination

(Alumur and Kara, 2008; Campbell and O’Kelly, 2012). In multi-hub networks, traffic con-

centrated at a hub is directed to a second hub, which distributes it to the final destinations,

thereby exploiting the economies of scale on the inter-hub flows.

Examples of applications of hub-and-spoke networks include companies such as FedEx,

UPS, DHL, and the United States Postal Service (USPS), which receive and deliver millions

of packages every day. The configuration of the hub-and-spoke network plays a central role

in the cost-efficient distribution of such large volumes of packages transported between many

different origin-destination points. For example, FedEx has strategically located its hub at

Memphis in order to provide overnight service to the US and to serve 95% of the global

economy (220 countries on six continents) customers within 24-48 hours1.

A hub-and-spoke network design involves the optimal location of hubs and allocation

of non-hub origin and destination points to hubs. The criterion for optimality is generally

minimization of total cost of transportation (in p-hub median problem (O’Kelly and Bryan,

1998; Yaman, 2009)) or the total fixed cost of installing facilities at hubs plus the variable

transportation cost (in hub location problem with fixed costs), given an estimate of volume

of traffic among various origin and demand pairs. Other categorizations of hub-and-spoke

network design problem (p-hub center problem; and hub covering problem) based on dif-

ferent optimization criteria are discussed by Alumur and Kara (2008). Irrespective of its

optimization criterion, a hub-and-spoke network design problem is NP-hard, which combines

a facility location problem with network design, and the difficulty arises from the inherent

interrelation between the two. The problem has, therefore, received great attention ever

since it was first reported in the literature by O’Kelly (1986a). Campbell et al. (2002),

1http://www.memphisairport.org/notes/mem 2010 august hub.htm
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Alumur and Kara (2008), and Campbell and O’Kelly (2012) provide excellent reviews of the

related literature.

In this paper, we consider hub-and-spoke network design in air freight transportation in

which both the fixed cost of installing facilities at hubs as well as the variable transportation

costs are important cost components. Our focus in this paper is, therefore, on hub location

problem with fixed costs. O’Kelly (1992b) introduced the hub location problem with fixed

costs, in which the number of hubs to open is a decision variable as opposed to a p-hub

median problem in which the number of hubs to open is given. The model he proposed

assumes single allocation in the sense that the traffic from an origin node cannot be split

among 2 or more hubs. Similarly, the traffic to a destination node cannot be combined

from two or more hubs. Following O’Kelly’s work, several papers have reported either a

different formulation or a different solution approach to the single allocation hub location

problem with fixed costs (Campbell, 1994b; Abdinnour-Helm and Venkataramanan, 1998;

Labbe and Yaman, 2004; Cunha and Silva, 2007; Alumur et al., 2009, 2012; Contreras et al.,

2012). Simultaneously, there have been papers that have reported the multiple allocation

version of the problem, in which the traffic from an origin node is allowed to be split among

2 or more hubs, and likewise the traffic to a destination node is allowed to be combined from

two or more hubs (Campbell, 1994b; Boland et al., 2004; Hamacher et al., 2004; Marin,

2005b; Racunica and Wynter, 2005; Marin et al., 2006; Canovas et al., 2007; Alumur et al.,

2012).

The hub-and-spoke network design problem, when solved purely as a cost minimization

problem, however, tends to overload the resulting hubs in absence of any capacity constraints

on the hubs in the model. In reality, the hubs have a finite limit on the amount of flows

they can handle. An airline company, for example, may have a limit on the amount of

consignments it can sort at a hub before distributing them. Thus, the solution of a pure

cost minimization hub location problem, when implemented, is likely to cause traffic delays

due to congestion in presence of a finite capacity at the hubs. Explicitly modeling such a

limit on the amount of flows a hub can handle leads to a capacitated hub location problem.

Aykin (1994), Ernst and Krishnamoorthy (1999), Labbe et al. (2005), Costa et al. (2008),

and Correia et al. (2010), among others, have studied the single allocation version, while

Ebery et al. (2000), Boland et al. (2004), and Marin (2005a) have dealt with the multiple

allocation version of the capaciatated hub location problem.

Although flights follow a schedule, they are very often subject to delays either at the
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origin airports or during the flight, making their arrivals at the hubs non-deterministic. The

service rates of the hubs are also variable due to vagaries of weather and other operating

conditions at a facility as complex as a hub airport (Marianov and Serra, 2003). The use

of explicit limits on the load at a hub in presence of such uncertainties in the arrival and

the service rates is not enough to prevent congestion at a hub and the resulting traffic

delays, even when the traffic at a hub is less than its capacity. Elhedhli and Hu (2005) and

Elhedhli and Wu (2010) attempt to avoid such hub congestion in their solution by imposing

an increasing penalty on each incremental unit of traffic flow at a hub in a single allocation

model, while Camargo et al. (2009) do the same in a multiple allocation model. To the best

of our knowledge, Marianov and Serra (2003) is the only work that tries to avoid congestion

at hubs by explicitly imposing a probabilistic constraint (based on an M/D/c queueing

model of a hub) on the length of waiting flights at a hub.

In this paper, we first present a multiple allocation hub location problem with fixed costs

and service level constraints, defined as the minimum probability of servicing a waiting

flight at a hub within a predefined threshold time. This is a straight forward extension

of Marianov and Serra (2003) based on an M/M/1 queueing model for the congestion at

hubs if all the traffics are homogeneous. However, clearly, all flights with consignments

arriving at any of the hubs of FedEx or UPS are not homogeneous, for some of them

carry normal 1-week-delivery (henceforth called ‘regular’) consignments while others carry

overnight (henceforth called ‘express’) consignments. The two classes of consignments need

different treatments at the hubs, with the express consignments deserving a priority over the

regular consignments. Our second model takes such heterogeneous customers into account

by imposing a different service level constraint for each consignment class. We model this

by considering hubs as preemptive priority M/M/1 queues. Further, we consider the service

capacity to be a variable in the model. The resulting Mixed Integer Programming (MIP)

problem with probabilistic constraints is challenging to solve, especially in absence of any

known closed form expression for the service level constraint for low priority customers

(regular consignments). To resolve this problem, we exploit the concavity of the sojourn

time distribution of low priority consignments to eliminate the non-linearity in their service

level function, but at the expense of a large number of tangent hyperplanes, determined

numerically using matrix geometric method. The problem is solved efficiently using a cutting

plane method.

The remainder of the paper is organized as follows. In Section 2, we define the modelling
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framework, followed by a discussion on the solution methodology in Section 3. Section 4

presents our computational study and discussion of results. The paper concludes with a

summary of results and a discussion on future research in Section 5.

2. Model Formulation

Let N be the set of all nodes that exchange traffic, and also represent the set of potential

hub nodes. We use i and j as indices for the origin and destination nodes, while k and m as

indices for potential hub locations. Further, let Fk be the amortized cost of establishing a

hub at node k ∈ N . Define λij as the amount of traffic (number of flights) to be routed from

the origin node i ∈ N to destination j ∈ N . The transportation cost per unit of traffic from

node i to node j routed via hubs k and m, in that order, is given by Cijkm = Cik+δCkm+Cmj,

where Cik is the collection cost (per unit of traffic) from origin node i to hub k; Cmj is the

distribution cost (per unit of traffic) from hub m to destination node j; Ckm is the inter-hub

transfer cost (per unit of traffic), and δ ∈ (0, 1) is the discount factor, reflecting economies

of scale in inter-hub flows. Let the binary variable zk = 1 represent location of a hub at node

k; 0 otherwise. Variable xijkm represents the fraction of total traffic from node i to node

j routed via hubs located at nodes k and m, in that order. The problem is to optimally

decide appropriate nodes, k,m ∈ N , to locate hubs, and path(s) between all origin and

destination pairs,(i, j), such that every path traverses one or more hubs to benefit from

the inter-hub flow discounts. With these notations, we first present the strongest known

formulation of the Uncapacitated Multiple Allocation Hub Location Problem (UMAHLP),

proposed by Hamacher et al. (2004), since our proposed model builds onto it:

[UMAHLP]:

min
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

Cijkmλijxijkm +
∑
k∈N

Fkzk (1)

s.t.
∑
k∈N

∑
m∈N

xijkm = 1 ∀i, j ∈ N (2)

∑
m∈N

xijkm +
∑

m∈N\{k}

xijmk ≤ zk ∀i, j, k ∈ N (3)

xijkm ≥ 0 ∀i, j, k,m ∈ N (4)

zk ∈ {0, 1} ∀k ∈ N (5)
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The objective function (1) minimizes the sum of total transportation costs between all the

origin-destination node pairs and the amortized cost of establishing all the hubs. Constraint

set (2) requires that the traffic demand between any pair of nodes be completely satisfied.

Constraint set (3) prohibits traffic from being routed via any intermediate node that is not

a hub. Constraints (4) and (5) are non-negativity and integrality requirements.

Certain applications impose further restriction of at most 2 hubs en route any path from

an origin node to a destination node, including origin or destination if either of them itself

is a hub. For example, it may not be desirable for a passenger aircraft to stop at more

than 2 hubs for small distance flights. Similarly, postal services may require that any mail

should not visit more than 2 post offices before its final destination (Marin et al., 2006).

Such a restriction is implicitly taken care of by the model (1)-(5) if the transportation costs

between different pairs of nodes satisfy the triangle inequality, i.e., Cij < Cik + Ckj. This

is so because any flow routed via hubs k and m that traverses another intermediate hub

between them is costlier (incurs additional transportation cost without any additional inter-

hub flow discount) than the flow routed directly from hub k to hub m (Marin et al., 2006).

However, the transportation costs may not always satisfy the triangle inequality, especially

if they are not proportional to distances. In such cases, the restriction of at most 2 hubs on

any feasible path from an origin node to a destination node needs to be explicitly imposed

through the following additional constraints (Camargo et al., 2009):

xijij ≥ zi + zj − 1 ∀i, j ∈ N (6)∑
m∈N\{j}

xijim ≥ zi − zj ∀i, j ∈ N (7)

∑
k∈N\{i}

xijkj ≥ zj − zi ∀i, j ∈ N (8)

Constraint set (6) restricts any flow from origin node i to destination node j to travel only

via the path i→ i→ j → j if both i and j are hubs. Constraint sets (7) and (8) ensure that

any flow from origin node i to destination node j travels only via the path i→ i→ m→ j

and i→ k → j → j, respectively if i or j is a hub.

Model (1)-(8) does not assume any capacity limit at the hubs. In reality, as highlighted

in §1, hubs have a finite limit on the amount of flows they can handle. Camargo et al. (2009)

extend the UMAHLP model of Hamacher et al. (2004) with a penalty term in the objective

function for congestion at hubs. In the following subsection, we extend the capacitated
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multiple allocation hub location model of Camargo et al. (2009) by capturing finite capacity

and the resulting congestion (due to uncertain demand and service times) at hubs using

service level constraints.

2.1. Extension to Capacitated System with Service Level Constraints

Following the arguments presented by Marianov and Serra (2003), as highlighted in §1,

we assume the arrival of traffic at a hub has considerable variability, and hence is modelled

as a random variable. Similarly, due to the variability in the service rate at the hub owing to

vagaries in weather or other operational reasons, the service time at a hub is also modeled as

a random variable. Thus, each hub can be modeled as a queueing facility, where the mean

service rate of hub k, if it is allocated a capacity level l ∈ Lk, is given by µk =
∑

l∈Lk
µklzkl.

Here, zkl = 1 if node k is designed as hub with capacity level l, and µkl is the service rate at

lth capacity level at hub k. In order to serve each consignment within its promised delivery

time, the firm sets its own internal maximum threshold service time (τ) for consignments

at any hub and a target service level (α ∈ (0, 1)), which is the minimum probability with

which a consignment at any hub should be served within the maximum threshold service

time. Failure to meet the maximum threshold service time at a hub may lead to promised

delivery times to customers getting missed, which may result in penalties, either in the form

of a discount, partial refund or an expedited delivery (to avoid any further delay) without

additional charge to the customer. For example, FedEx offers a money-back guarantee for

every U.S. shipment that is even 1 minute late compared to its guaranteed delivery time.2

If we let Wk denote the total time spent by consignments in the system (waiting in queue

+ service time) at hub k, then the service level constraint can be expressed as follows:

Sk(τ) = P{Wk ≤ τ} ≥ α ∀k ∈ N

The resulting MIP formulation of the Capacitated Multiple Allocation Hub Location Problem

with Service Level Constraints (CMAHLP-SLC) is as follows:

2http://www.fedex.com/us/services/options/mbg.html
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[CMAHLP-SLC]:

min
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

Cijkmλijxijkm +
∑
k∈N

∑
l∈Lk

Fklzkl (9)

s.t.
∑
k∈N

∑
m∈N

xijkm = 1 ∀i, j ∈ N (10)

∑
m∈N

xijkm +
∑

m∈N\{k}

xijmk ≤
∑
l∈Lk

zkl ∀i, j, k ∈ N (11)

∑
l∈Lk

zkl ≤ 1 ∀k ∈ N (12)

Λk ≤
∑
l∈Lk

µklzkl ∀k ∈ N (13)

P{Wk ≤ τ} ≥ α
∑
l∈Lk

zkl ∀k ∈ N (14)

xijij ≥
∑
l∈Lk

(zil + zjl)− 1 ∀i, j ∈ N (15)

∑
k∈N\{j}

xijik ≥
∑
l∈Lk

(zil − zjl) ∀i, j ∈ N (16)

∑
k∈N\{i}

xcijkj ≥
∑
l∈Lk

(zjl − zil) ∀i, j ∈ N (17)

xijkm ≥ 0 ∀i, j, k,m ∈ N (18)

zkl ∈ {0, 1} ∀k ∈ N, l ∈ Lk (19)

Constraint set (11) is the counterpart of (3) in the uncapacitated setting. Constraint set

(12) allows a node to be opened as a hub with only one level of capacity. Constraint set

(13) is required for the stability of the queueing system at open hubs, where Λk is the mean

arrival rate of consignments at hub k, given by:

Λk =
∑
i

∑
j

∑
m

λijxijkm (20)

Λk in (20) captures only the (collection) flows entering hub k directly from the origin node.

It does not capture the (transfer) flows entering hub k via another hub. (20), together with

(12)-(14), thus models a capacity restriction at a hub only on the volume of consignments

entering it via collection. This makes sense in situations where consignments once pro-

cessed (e.g., sorted) after collection do not need further processing for distribution (Ebery

et al., 2000). However, in situations where the consignments need further processing before
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distribution, (20) should be modified as (Marin, 2005a; Camargo et al., 2009):

Λk =
∑
i

∑
j

∑
m

λijxijkm +
∑
i

∑
j

∑
m6=k

λijxijmk (20-1)

Here, the second summation captures the flows entering hub k only via another hub (transfer

flows). Constraint set (14) are the internal service level constraints at the hub nodes. The

target service level α is set by the management as an internal performance measure.

The term
∑

l∈Lk
zkl in the right hand side of the (14) ensures that the service level

constraint applies only to those nodes that are designated as hubs. Constraint sets (15) - (17)

are the the counterparts, in a capacitated setting, of the constraint sets (6) - (8), which model

the restriction of at most 2 hubs on any feasible path from an origin node to a destination

node. Unlike the uncapacitated model (UMAHLP), (15) is required in a capacitated model

even in the presence of transportation costs that satisfy triangle inequalities. This is to

circumvent following type of absurd solutions (Marin, 2005a). A consignment from an

origin node i to destination node j, when both i and j are hubs, may be routed using any

of the three different sets of variables: (a) xijii corresponding to the route i → i → i → j;

(b) xijjj corresponding to the route i→ j → j → j; and (c) xijij corresponding to the route

i → i → j → j. All these three variables represent essentially the same route (i → j).

However, (a) and (b) have higher associated costs than (c) since they do not involve any

inter-hub discount (δ). In absence of constraint set (15), [CMAHLP − SLC] may prefer

(a) if hub i has, while hub j does not have, enough spare capacity to meet the service level

constraint. Or, it may prefer (b) if hub j has, while hub i does not have, enough spare

capacity to meet the service level constraint. Alternatively, it may route the consignment

partly via all the above three routes. Obviously, such solutions do not make sense since they

associate different costs for essentially the same physical route. We, therefore, explicitly

include constraint sets (15) - (17) even in the presence of transportation costs that satisfy

triangle inequalities.

If we assume that the rate of flows between different origin node-destination node pairs

(i, j) to be independent random variables that follow a Poisson process with mean λij, then

the aggregate flow rate through hub k, following the superposition of Poisson processes, also

follows a Poisson process with a mean given by (20). The service times at the hub will depend

on the hub capacity, which is a decision variable. Let Lk be the set of available capacity

levels of a candidate hub at node k ∈ N . If the service times at the hub follow an exponential
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distribution, then each hub can be modeled as an M/M/1 queue3, where the mean service

rate of hub k, if it is allocated a capacity level l ∈ Lk, is given by µk =
∑

l∈Lk
µklzkl. This

service rate reflects the server capacity or essentially the units of flow a hub can serve in

a given time period. For a hub k, which is modeled as an M/M/1 queue, the service level

constraint (14) can be specified as (Gross and Harris, 1998):

∑
l∈Lk

µklzkl − Λk ≥
− ln(1− α)

τ

∑
l∈Lk

zkl (21)

where Λk is given by (20). It may be noted here that the presence of the service level

constraint (21) makes the queueing system stability constraint (13) redundant, which will,

therefore, be omitted in the rest of the paper.

2.2. Extension to Capacitated System with Service Level Constraints for Multiple Consign-

ment Classes

In this section, we extend the model [CMAHLP−SLC] to multiple consignment classes.

For simplicity, we assume only two consignment classes, indexed by c ∈ {r, e}, for regular

(r) and express (e), corresponding respectively to 1 week regular delivery and overnight

express delivery services offered by courier companies like FedEx and UPS. Demand from

consignment class c for flows between origin node i and destination node j arrives according

to a Poisson process with rate λcij. We assume the service times at a hub follow an exponential

distribution such that each hub can be modeled as an M/M/1 queue, where the mean service

rate of hub k, if it is allocated a capacity level l ∈ Lk, is given by µk =
∑

l∈Lk
µklzkl.

Consignments within each class are served on a first-come-first-served (FCFS) basis at a

hub. However, express consignments at a hub are given preemptive priority in service over

regular consignments. In order to serve each consignment within its promised delivery time,

the firm sets its own internal target service time (τ c) for consignment class (c) at any hub and

a target service level (αc). The objective of the firm is to locate the hubs with appropriate

capacities and select the routes for all origin-destination pairs via some hubs such that

the total network cost is minimized, subject to a separate service level constraint for each

consignment class at hubs. We refer to this problem as the Capacitated Multiple Allocation

Hub Location Problem with Multi-class Service Level Constraints (CMAHLP-MSLC). We

3M/M/· queuing model is an abstraction employed to make the problem tractable, especially since our
emphasis is more on strategic rather than on operations decisions.
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first define the following notations to be used in the model.

Indices:

i, j, k,m : Nodes

k,m : Hub nodes

l : capacity level at hub

c : Consignment class; c ∈ {e, r}.

Parameters:

N : Set of all nodes that exchange traffic; {i, j, k,m ∈ N}; N = {0, 1, 2, ..., |N − 1|}.

Lk : Set of all capacity levels at hub k; {l ∈ Lk}; Lk = {1, 2, ..., |Lk|}.

λcij : Rate of flows for consignment class c from origin node i ∈ N to destination node

j ∈ N .

Λc
k : Rate of arrival of consignments from class c at hub k.

µkl : Capacity (processing rate) corresponding to capacity level l at hub k.

µk : Capacity (processing rate) installed at hub k.

δ : Inter-hub flow discount; δ ∈ (0, 1).

Cij : Transportation cost per unit of direct flow from node i ∈ N to node j ∈ N .

Cijkm : Transportation cost per unit of flow from node i ∈ N to node j ∈ N routed via

hubs k,m ∈ N in that order. Cijkm = Cik + δCkm + Cmj.

Fkl : Amortized cost of locating a hub with capacity level l at hub k.

τ c : Maximum threshold on sojourn time (in queue + in service) for consignment class

c.

αc : Target service level for consignment class c at a hub.

W c
k : Sojourn time (in queue + in service) for consignment class c at hub k.

Sck(τ
c) : Service level achieved for consignment class c at hub k, i.e., P{W c

k ≤ τ c}.

Variables:

zkl : 1, if node k is opened as a hub with capacity level l; 0 otherwise.

xcijkm : fraction of the flow for consignment class c from origin node i ∈ N to destination

node j ∈ N that is routed via hubs located at nodes k,m ∈ N in that order.

The resulting mixed integer programming formulation of the Capacitated Multiple Allo-

cation Hub Location Problem with Multi-class Service Level Constraints (CMAHLP-MSLC)

is as follows:
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[CMAHLP-MSLC]:

min
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

∑
c∈{e,r}

λcijCijkmx
c
ijkm +

∑
k∈N

∑
l∈Lk

Fklzkl (22)

s.t.
∑
k∈N

∑
m∈N

xcijkm = 1 ∀i, j ∈ N, c ∈ {e, r} (23)

∑
m∈N

xcijkm +
∑

m∈N\{k}

xcijmk ≤
∑
l∈Lk

zkl ∀i, j, k ∈ N, c ∈ {e, r} (24)

∑
l∈Lk

zkl ≤ 1 ∀k ∈ N (25)

∑
l∈Lk

µklzkl − Λe
k ≥
− ln(1− αe)

τ e

∑
l∈Lk

zkl ∀k ∈ N (26)

Srk(τ
r) = P{W r

k ≤ τ r} ≥ αr
∑
l∈Lk

zkl ∀k ∈ N (27)

xcijkm ≥
∑
l∈Lk

(zil + zjl)− 1 ∀i, j ∈ N, c ∈ {e, r} (28)

∑
k∈N\{j}

xcijik ≥
∑
l∈Lk

(zil − zjl) ∀i, j ∈ N, c ∈ {e, r} (29)

∑
k∈N\{i}

xcijkj ≥
∑
l∈Lk

(zjl − zil) ∀i, j ∈ N, c ∈ {e, r} (30)

xcijkm ≥ 0 ∀i, j, k,m ∈ N, c ∈ {e, r} (31)

zkl ∈ {0, 1} ∀k ∈ N, l ∈ Lk (32)

The objective function (22) is the total of average flow cost per unit time and the amortized

cost of installing capacities at selected hubs. Constraint sets (23) - (25) are counterparts, in

a multi-class setting, of constraint sets (10) - (12). Similarly, Constraint sets (28) - (30) are

counterparts, in a multi-class setting, of the constraint sets (15) - (17). Constraint sets (26)

and (27) are the service level constraints for express and regular consignments, respectively,

where Λe
k and Λr

k are given by:

Λe
k =

∑
i

∑
j

∑
m

λeijx
e
ijkm (33)

Λr
k =

∑
i

∑
j

∑
m

λrijx
r
ijkm (34)

The form of service level constraints (26) for express consignments is based on the fact that

the sojourn time distribution Sek(τ
e) = P{W e

k ≤ τ e} for high priority (express) customers
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in a preemptive priority queue is known to be exponential (Chang, 1965). However, such

an analytical characterization of the sojourn time distribution Srk(τ
r) = P{W r

k ≤ τ r} for

low priority (regular) customers, appearing in constraint set (27), is not known (Abate and

Whitt, 1997). This makes [CMAHLP −MSLC] challenging to solve. We discuss how we

tackle the issue of service level constraints for regular customers (corresponding to (27)) in

the next section.

3. Solution Methodology

The absence of an analytical characterization of the service level constraint (27) for

regular customers makes [CMAHLP −MSLC] challenging to solve. While the Laplace

transform of the sojourn time distribution Srk(τ
r), appearing in (27), and its first few mo-

ments are well known (Stephan, 1958), the distribution itself is somewhat complicated and

requires numerical computation of the inverse Laplace transform, thereby preventing its an-

alytical characterization (Jayaswal et al., 2011). There are approximations proposed in the

literature for the sojourn time distribution. However, they are very complex and often not

sufficiently accurate (Abate and Whitt, 1997). Moreover, the choice of appropriate approxi-

mation to be used depends on Λe
k and Λr

k, which can only be determined endogenously, and

are not known in advance in our model.

Although the exact form of Srk(τ
r) in constraint (27) is unknown, we exploit its special

structure, determined numerically using the matrix geometric method. Plots of Srk(τ
r) vs.

(Λe
k, Λr

k), S
r
k(τ

r) vs. (Λe
k, µk) and Srk(τ

r) vs. (Λr
k, µk) are shown in Figure 1. These

plots suggest that Srk(τ
r) is jointly concave in (Λe

k, Λr
k), in (Λe

k, µk), and also in (Λr
k, µk).

However, this does not necessarily show the joint concavity of Srk(τ
r) in (Λe

k, Λr
k, µk). We

will, therefore, integrate into our solution method a mechanism to ensure that the concavity

assumption is not violated.

Assuming Srk(τ
r) is concave, it can be approximated by a set of tangent hyperplanes at

various points ((Λe
k)
p, (Λr

k)
p, (µk)

p), ∀ p ∈ P :

Sr
k(τr) = min

p∈P

{
(Sr

k(τr))p + (Λe
k − (Λe

k)p)

(
∂(Sr

k(τr))

∂Λe
k

)p

+ (Λr
k − (Λr

k))p

(
∂(Sr

k(τr)

∂Λr
k

)
+ (µk − (µk)p)

(
∂(Sr

k(τr))

∂µk

)p
}
,

where (Srk(τ
r))p denotes the value of Srk(τ

r) at a fixed point ((Λe
k)
p, (Λr

k)
p, (µk)

p), and(
∂(Sr

k(τr))

∂Λe
k

)p
,
(
∂(Sr

k(τr))

∂Λr
k

)p
, and

(
∂(Sr

k(τr))

∂µk

)p
are the partial gradients of Srk(τ

r) at ((Λe
k)
p, (Λr

k)
p,

(µk)
p). Constraint (27) can thus be replaced by the following set of linear constraints:
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Figure 1: Service Level for Regular Consignments at Hub k vs. Demands for Regular and Express Consign-
ments and Hub Capacity

(Sr
k(τr))p + (Λe

k − (Λe
k)p)

(
∂(Sr

k(τr))

∂Λe
k

)p

+ (Λr
k − (Λr

k))p

(
∂(Sr

k(τr)

∂Λr
k

)
+ (µk − (µk)p)

(
∂(Sr

k(τr))

∂µk

)p

≥ α ∀p ∈ P (35)

Replacing (27) by the above set of constraints results in a finite but a large number of

constraints, which is amenable to cutting plane method.

We use the matrix geometric method to numerically evaluate (Srk(τ
r))p at a given point

((Λe
k)
p, (Λr

k)
p, (µk)

p). We refer the readers to Neuts (1981) for details of the matrix geometric

method. The use of the matrix geometric method yields explicit recursive formulas for the

joint stationary probabilities, which can provide significant computational improvements

over the transform techniques (Miller, 1981). Moreover, it gives exact solutions, in contrast

to simulation, which is another alternative method to evaluate Srk(τ
r) that at best gives

point estimates. The matrix geometric method is also computationally efficient compared

to simulation. This is important in solving [CMAHLP −MSLC], which requires repeated

evaluation of (Srk(τ
r))p for various open hubs k at various solutions points p. Once Srk(τ

r) is
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evaluated at a point ((Λe
k)
p, (Λr

k)
p, (µk)

p), its gradients are obtained using the finite difference

method (described in Section 3.2). The gradients are used to generate cuts of the form (35),

which are added iteratively in the cutting plane algorithm. The details of the cutting plane

algorithm along with its computational performance are presented in Section 3.3.

3.1. The Matrix Geometric Method

3.1.1. The Joint Stationary Queue Length Distribution at Hub k

If we define N e
k(t) and N r

k (t) as state variables representing the number of express (high

priority) and regular (low priority) consignments at hub k at time t, then {Nk(t)} :=

{N r
k (t), N e

k(t), t ≥ 0} is a continuous-time two-dimensional Markov chain with state space

{nk = (nrk, n
e
k)}. The key idea we employ here is that {Nk(t)} is a quasi-birth-and-death

(QBD) process, which allows us to develop a matrix geometric solution for the joint distri-

bution of the number of consignments of each class at hub k. A simple implementation of

the matrix geometric method, however, requires the number of states in the QBD process

to be finite. For this, we treat the queue length of express consignments (including the one

in service) to be of finite size M , but of size large enough for the desired accuracy of our

results. Since express consignments are always served in priority over regular consignments,

it is reasonable to assume that its queue size will always be bounded by some large number.

In the Markov process {Nk(t)}, a transition can occur only if a consignment of either

class arrives or served at hub k. The possible transitions are:

From To Rate Condition
(nrk, n

e
k) (nrk, n

e
k + 1) Λe

k for nrk ≥ 0, nek ≥ 0
(nrk, n

e
k) (nrk + 1, nek) Λr

k for nrk ≥ 0, nek ≥ 0
(nrk, n

e
k) (nrk, n

e
k − 1) µk for nrk ≥ 0, nek > 0

(nrk, n
e
k) (nrk − 1, nek) µk for nrk > 0, nek = 0

The infinitesimal generator Q associated with our system description is thus block-tridiagonal:

Q =


B0 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where B0, A0, A1, A2 are square matrices of order M + 1. These matrices can be easily
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constructed using the transition rates described above.

A0 =



Λr
k

Λr
k

. . .

. . .

Λr
k


; A2 =



µk

0

. . .

. . .

0


; B0 =



∗ Λe
k

µk ∗ Λe
k

µk ∗ Λe
k

. . .
. . .

. . .

µk ∗



where ∗ is such that A0e + B0e = 0. A1 = B0 − A2.

We denote x as the stationary probability vector of {Nk(t)}:

x = [x00, x01, . . . , x0M , x10, x11, . . . , x1M , . . . , . . . , xi0, xi1, . . . , xiM , . . . , . . .]

The vector x can be partitioned by levels into sub vectors xi, i ≥ 0, where xi = [xi0,

xi1, . . ., xiM ] is the stationary probability of states in level i (nrk = i). Thus, x =

[x0,x1,x2,x3, . . . , . . .]. x can be obtained using a set of balance equations, given in matrix

form by the following standard relations (Latouche and Ramaswami, 1999; Neuts, 1981):

xQ = 0; xi+1 = xiR

where R is the minimal non-negative solution to the matrix quadratic equation:

A0 +RA1 +R2A2 = 0

The matrix R can be computed using well known methods (Latouche and Ramaswami,

1999). A simple iterative procedure often used is:

R(0) = 0 ; R(n+ 1) = −
[
A0 +R2(n)A2

]
A−1

1

The probabilities x0 are determined from:

x0(B0 +RA2) = 0

subject to the normalization equation:

∞∑
i=0

xie = x0(I −R)−1e = 1
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where e is a column vector of ones of size M + 1.

3.1.2. Estimation of Srk(τ
r)

The sojourn time W r
k of a regular consignment at hub k is the time between its arrival

to hub k till it completes service at that hub. It may be preempted by one or more express

consignments for service. So it is difficult to characterize the distribution Srk(·). Ramaswami

and (1985) present an efficient algorithm based on uniformization to derive the compli-

mentary distribution of waiting times in phase-type and QBD processes. Jayaswal et al.

(2011) adapt their algorithm to derive Srk(·), the distribution of the waiting time plus the

time in service of low priority (regular) customers, which we adopt in this paper.

Consider a tagged regular consignment entering the system. The time spent by the

tagged consignment depends on the number of consignment of either class already present

in the system ahead of it, and also on the number of subsequent express arrivals before it

completes its service. All subsequent regular arrivals, however, have no influence on its time

spent in the system. The tagged consignment’s time in the system is, therefore, simply the

time until absorption in a modified Markov process {Ñk(t)}, obtained by setting Λr
k = 0.

Consequently, matrix Ã0, representing transitions to a higher level, becomes a zero matrix.

We define an absorbing state, call it state 0
′
, as the state in which the tagged consignment

has finished its service. The infinitesimal generator for this process can be represented as:

Q̃ =



0 0 0 0 0 · · ·

b0 B̃0 0

0 A2 Ã1 0

0 A2 Ã1 0
...

. . . . . . . . .


where, B̃0 = B0 + A0; Ã1 = A1 + A0; and b0 = [µk 0 · · · 0]TM+1. The first row and

column in Q̃ corresponds to the absorbing state 0́. The time spent in system by the tagged

consignment, which is the time until absorption in the modified Markov process with rate

matrix Q̃, depends on the the arrival rates Λe
k and Λr

k and the capacity µk at hub k. For

a given point p (corresponding to arrival rates (Λe
k)
p, (Λr

k)
p and capacity (µk)

p at hub k)

in the solution space, the distribution of the time spent by a regular consignment at hub

k is (Srk(y))p = 1 − (Srk(y))p, where (Srk(y))p is the stationary probability that a regular

consignment spends more than y units of time at hub k. Further, let (Srki(y))p denote the
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conditional probability that a tagged consignment, which finds i regular consignments ahead

of it, spends a time exceeding y at hub k. The probability that a tagged consignment finds

i regular consignments is given, using the PASTA property, by xi = x0R
i. Srk(y) can be

expressed as:

(Srk(y))p =
∞∑
i=0

xi(Srki(y))pe (36)

(Srki(y))p can be computed more conveniently by uniformizing the Markov process {Ñk(t)}

with a Poisson process with rate γ, where

γ = max
0≤i≤M

(−Ã1)ii = max
0≤i≤M

− (A0 + A1)ii

so that the rate matrix Q̃ is transformed into the discrete-time probability matrix:

Q̂ =
1

γ
Q̃+ I =



1 0 0 0 0 · · ·

b̂0 B̂0 0

0 Â2 Â1 0

0 Â2 Â1 0
...

. . . . . . . . .


where Â2 = A2

γ
, Â1 = Ã1

γ
+I, b̂0 = b0

γ
. In this uniformized process, points of a Poisson process

are generated with a rate γ, and transitions occur at these epochs only. The probability that

n Poisson events are generated in time y equals e−γy (γy)n

n!
. Suppose the tagged consignment

finds i regular consignments ahead of it. Then, for its time at hub k to exceed y, at most i of

the n Poisson points may correspond to transitions to lower levels (i.e., service completions

of regular consignments). Therefore,

(Srki(y))p =
∞∑
n=0

e−γy
(γy)n

n!

i∑
v=0

G(n)
v e, i ≥ 0 (37)

where, G
(n)
v is a matrix such that its entries are the conditional probabilities, given that

the system has made n transitions in the discrete-time Markov process with rate matrix

Q̂, that v of those transitions correspond to lower levels (i.e., service completions of regular
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consignments). Substituting the expression for (Srki(y))p from (37) into (36), we obtain:

(Srk(y))p =
∞∑
n=0

dne
−γy (γy)n

n!
(38)

where, dn is given by:

dn =
∞∑
i=0

x0R
i

i∑
v=0

G(n)
v e, n ≥ 0 (39)

Now,

∞∑
i=0

Ri

i∑
v=0

G(n)
v e

=
n+1∑
i=0

Ri

i∑
v=0

G(n)
v e +

∞∑
i=n+2

Ri

n∑
v=0

G(n)
v e

(
since G(n)

v = 0 for v > n
)

=
n+1∑
v=0

n+1∑
i=v

RiG(n)
v e + (I −R)−1Rn+2e

(
since

n∑
v=0

G(n)
v e = e

)

=
n+1∑
v=0

(I −R)−1(Rv −Rn+2)G(n)
v e + (I −R)−1Rn+2e

=
n∑
v=0

(I −R)−1RvG(n)
v e + (I −R)−1Rn+1G

(n)
n+1e

(
since

n+1∑
v=0

G(n)
v e = e

)

=
n∑
v=0

(I −R)−1RvG(n)
v e

(
since G(n)

v = 0 for v > n
)

= (I −R)−1Hne n ≥ 0

where, Hn =
∑n

v=0 R
vG

(n)
v . Therefore,

(Srk(τ
r))p = 1− (Srk(τ

r))p =
∞∑
n=0

e−γLl
(γLl)

n

n!
x0(I −R)−1Hne (40)

Hn can be computed recursively as:

Hn+1 = HnÂ1 +RHnÂ2; H0 = I

Therefore, for given arrival rates ((Λe
k)
p, (Λr

k)
p) and capacity ((µk)

p) at hub k, Srk(τ
r) in (16)

can be computed using (40).
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3.2. Estimation of the Gradient of Srk(τ
r)

There are several methods available in the literature to compute the gradients of Srk(τ
r).

We use a finite difference method as it is probably the simplest and most intuitive, and can

be easily explained. Using the finite difference method, the gradients can be computed as:

(
∂(Srk(τ

r))

∂Λe
k

)p
=

(Srk(τ
r))((Λe

k)p+dΛe
k,(Λ

r
k)p,(µk)p) − (Srk(τ

r))((Λe
k)p−dΛe

k,(Λ
r
k)p,(µk)p)

2dΛe
k(

∂(Srk(τ
r))

∂Λr
k

)p
=

(Srk(τ
r))((Λe

k)p,(Λr
k)p+dΛr

k,(µk)p) − (Srk(τ
r))((Λe

k)p,(Λr
k)p−dΛr

k,(µk)p)

2dΛr
k(

∂(Srk(τ
r))p

∂µk

)p
=

(Srk(τ
r))((Λe

k)p,(Λr
k)p,(µk)p+dµk) − (Srk(τ

r))((Λe
k)p,(Λr

k)p,(µk)p−dµk)

2dµk

where dΛe
k, dΛr

k and dµk (referred to as step sizes) are infinitesimal changes in the respective

variables.

3.3. The Cutting Plane Algorithm

The cutting plane algorithm to solve [CMAHLP−MSLC] is given below. The algorithm

differs from the traditional description in that we use the matrix geometric method to

generate the cuts and evaluate the function values instead of having an algebraic form for

the function and using analytically determined gradients to generate the cuts.

Algorithm 1 Cutting Plane Algorithm
1: P ← Φ.
2: repeat
3: Solve [CMAHLP −MSLC(P )] to obtain xcijkm ∀c ∈ {e, r} and zkl ∀k ∈ N, l ∈ Lk.
4: Obtain Λe

k and Λr
k using (33) and (34) and µk =

∑
l∈Lk

µklzkl ∀k ∈ {N :
∑

l∈Lk
zkl =

1}. p← {(Λe
k,Λ

r
k, µk)}k∈N :

∑
l∈Lk

zkl=1

5: Obtain Srk(τ
r) using (40) ∀k ∈ {N :

∑
l∈Lk

zkl = 1}.
6: if Srk(τ

r) ≥ αr ∀k ∈ {N :
∑

l∈Lk
zkl = 1} then

7: Stop.
8: else
9: Obtain cuts of the form (35) ∀k ∈ {N :

∑
l∈Lk

zkl = 1}.
10: P ← P ∪ {p}.
11: end if
12: until Srk(τ

r) < αr for any k ∈ {N :
∑

l∈Lk
zkl = 1}.

The success of the cutting plane algorithm relies on the concavity of Srk(τ
r). We have

demonstrated, using computational results obtained by the matrix geometric method, that
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Srk(τ
r) is concave in (Λe

k, Λr
k) and separately concave in µk. However, it is difficult to establish

the joint concavity of Srk(τ
r) in (Λe

k, Λr
k, µk). If the concavity assumption is violated, then

the algorithm may cut off parts of the feasible region and terminate with a solution that is

suboptimal. We conduct a test to ensure the concavity assumption is not violated. This

is done by ensuring that a new point, visited by the cutting plane algorithm after each

iteration, lies below all the previously defined cuts, and that all previous points lie below

the newly added cut. The test, however, cannot ensure that Srk(τ
r) is concave unless it

examines all the points in the feasible region. Still, it does help ensure that the concavity

assumption is not violated at least in the region visited by the algorithm. We used this

test in our numerical experiments, which did ensure that the concavity assumption was not

violated for all the cases studied, at least in the region visited by the algorithm. Details of

the test can be found in Atlason et al. (2004).

4. Computational Study

We report our computational experience with the solution method for problem instances

based on the US Civil Aeronautics Board (CAB) data. CAB data set contains problem

instances of sizes |N | = 10, 15, 20, 25. However, the data set does not contain hub capacities

(µkl) and the associated fixed costs (Fkl), required for our problem. So, we generate these

additional data using the data generation scheme described below.

Flows between various node pairs provided in the CAB data set are scaled such that

TF = 1, where TF is the total flow in the network. We set 3 potential capacity levels

for any hub k ∈ N , expressed as l × 0.4 × TF , where l ∈ Lk = {1, 2, 3}. Fixed cost of

opening a hub with capacity µkl is generated using the function: Fkl = 200(µkl)
a, where a

represents the economy of scale in installing capacity at a hub. We assume a = 0.80 in all

our experiments. Inter-hub flow discount factor δ is selected from the set {0.2, 0.4, 0.6.0.8}.

Composition of express (e) and regular (r) consignments is represented as: (ef , rf ), where

ef and rf are the fractions of express and regular consignments between any pair of nodes.

Consignment composition in our experiments is varied as: (0, 1); (0.2, 0.8); (0.4, 0.6); (0.6,

0.4); (0.8, 0.2); (1, 0).

Results of our computational study for various network sizes (N), inter-hub flow discount

factors (δ), and compositions of consignments (ef , rf ) are presented in Table 1 and Table 2

corresponding to “without Service Level Constraints” and “with Service Level Constraints”.

For these experiments, we set the values of τ e = 6 and τ r = 10 as the threshold on the
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maximum sojourn time at a hub for express and regular consignment classes respectively.

The target service levels Ske (τ e = 6) and Skr (τ r = 10) as 0.98. In these two tables, (ef , rf ) =

(0, 1) corresponds to the case with only one consignment class, for which the threshold on

the maximum sojourn time at a hub is τ r = 10. Similarly, (ef , rf ) = (1, 0) corresponds to

the case with only one consignment class, for which the threshold on the maximum sojourn

time that at a hub is τ e = 6.

The results in Table 1 show, as expected, that the service levels provided to regu-

lar and express consignments at their hubs deteriorate with an increasing proportion of

express consignments in the system. It also shows that increasing discount (decreasing

the value of δ) on inter-hub flows results in opening of more hubs to exploit the inter-

hub flow discounts. Furthermore, in absence of any explicit service level constraints, the

open hubs in the resulting solution generally provide poor service levels. For example, for

N = 10, δ = 0.2, ef = 0.4, er = 0.6, the service level provided by the hub located at node 5

for regular consignments is as low as 0.4611.

Table 2 reports the cost of service quality (CoSQ), which is the additional cost of network

design to guarantee a target service level (α = 0.98) to both the consignment classes. It

is computed as the difference between the total cost of network design with and without

service level constraints. Figure 2 shows that the change in CoSQ with an increase in

the fraction of express consignments (ef ) is not necessarily monotonic. An increase in the

fraction of express consignments (ef ), who have a lower value of the maximum threshold

on sojourn time, should ideally increase the capacity required to meet their target service

level. However, an increase in ef is accompanied by a corresponding decrease in the fraction

of regular consignments (rf ), who receive a less preferential treatment at hubs in presence

of priority in service, thereby decreasing the capacity required to meet their target service

level. Hence, in presence of priority in service, two opposite forces come into play, the net

result of which may be either an increase or a decrease in the capacity required, and hence

a corresponding increase or a decrease in CoSQ. For example, as observed from Table 2,

CoSQ, in general, increases with an increase in ef . However, for N = 10, δ = 0.4, CoSQ

decreases from 365.1 to 357.6 corresponding to an increase in ef from 0.8 to 1.0. This is

an interesting observation as it suggests that increasing the fraction of consignments that

receive priority in service or/and that have a lower value of the maximum threshold on

sojourn time may not necessarily increase the total cost of the network design.

A comparison of results between Table 1 and Table 2 shows that the optimal hub-and-
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spoke network configuration without any service level constraint may differ significantly from

the one in presence of such service level constraints. This is amply highlighted, for example,

in the case N = 10, δ = 0.2, ef = 0.2, rf = 0.8, which results in the following hub (capacity)

configuration in absence of any explicit consideration of service levels: 2(1), 3(1), 5(1), 6(1).

However, in presence of explicit service level constraints (Sek(τ
e) = 0.98, Srk(τ

r) = 0.98), the

optimal hub (capacity) configuration is: 6(2), 8(3). We note here that the economy of scale

(a) in hub capacity also plays an important role in the optimal hub location and capacity

selection. In absence, of any economy of scale (a = 1), an explicit consideration of service

level constraints should generally result in more hubs being opened. However, we notice

in the above example that the number of open hubs have decreased in presence of such

service level constraints, although at higher capacities so as to exploit the economies of scale

(a = 0.80) in hub capacities.

In Table 3, we show the effect of varying τ e and τ r on the network configuration for

N = 15. For this, we fix τ e at 8, and vary τ r between 8 and 128. It can be observed

from the results that an increase in τ e, implying a less stringent service level constraint,

generally results in either fewer hubs being opened or the same number of hubs with smaller

capacities. For example, for δ = 0.2, ef = 0.5, rf = 0.5, τ e = 8, an increase in τ r from 8

to 16 results in a decrease in the number of hubs being opened from 5 to 3. On the other

hand, for δ = 0.8, ef = 0.5, rf = 0.5, τ e = 8, an increase in τ r from 16 to 32 does not result

in any change in the hub locations, but the capacities of both the opened hubs (3 and 6)

reduce from level 3 to level 2. Further, the portions in the extreme right side of the plots

in Figure 3 shows that a substantial decrease in the maximum threshold on sojourn time

(τ r) can be achieved with only minimal increase in total cost of network design. However,

after a certain point, the total cost increases exponentially even with a small decrease in the

maximum threshold on sojourn time for regular consignments.

5. Conclusions

In this paper, we studied the hub location and network design problem, characterized by

stochastic demand and congestion, with an explicit consideration for customer heterogeneity.

Customers were thus assumed to belong to two different priority classes, express and regular,

with express customers always receiving priority in service at hubs. To account for the

heterogeneous customer requirements, we used a different service level constraint, defined

as a lower limit on the probability of a consignment waiting for more than a given threshold
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Figure 3: Total Cost (TC) vs. Maximum Threshold Sojourn Time for Regular Consignments (τr)

at a hub, for each customer class. The network of hubs, given their locations, was thus

modeled as spatially distributed preemptive priority M/M/1 queues. The model sought to

determine the hub-and-spoke network design at the minimum total cost, which included the
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total fixed cost of equipping open hubs with sufficient processing capacity and the variable

transportation costs, subject to a service level constraint for each consignment class. The

problem proved to be challenging, especially in absence of any known analytical expression

for the sojourn time distribution of low priority customers in a preemptive priority M/M/1

queue. To this end, we developed a solution technique that uses the matrix geometric method

in a cutting plane framework. Based on an extensive computational study, we demonstrated

that the optimal network configuration that accounts for different service levels demanded by

heterogeneous customers classes may differ significantly from the one that does not consider

service level constraints. Further, we observed that increasing the fraction of consignments

that receive priority in service or/and that have a lower value of the maximum threshold on

sojourn time may not necessarily increase the total cost of the network design.

This work reported in this paper can be extended in a number of ways. Our study is

based on the assumption that each hub behaves like a preemptive priority M/M/1 queue.

An immediate extension of the current work will be to consider a non-preeemptive priority

discipline at hubs. Another possible extension would be a more generalized queuing model,

like a priority M/G/1 queue model, of the hubs, although the resulting model will be

extremely challenging to solve.
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Table 1: Configuration of the Hub-and-Spoke System without Service Level Constraints (τe = 6, τ r = 10)

N δ ef rf Hub (Capacity) (Se
k(τe), Sr

k(τr)) TC CPU

10 0.2 0 1 2(1), 3(1), 5(1), 6(1) (–, 0.9382), (–, 0.6834), (–, 0.5595), (–, 0.7121) 773.4 0.5
0.2 0.8 2(1), 3(1), 5(1), 6(1) (0.8950, 0.9231), (0.8722, 0.6343), (0.8671, 0.5094), (0.8737, 0.6642) 773.4 1.4
0.4 0.6 2(1), 3(1), 5(1), 6(1) (0.8785, 0.9069), (0.8202, 0.5854), (0.8053, 0.4611), (0.8242, 0.6163) 773.4 1.4
0.6 0.4 2(1), 3(1), 5(1), 6(1) (0.8595, 0.8897), (0.7469, 0.5379), (0.7149, 0.4154), (0.7554, 0.5692) 773.4 1.3
0.8 0.2 2(1), 3(1), 5(1), 6(1) (0.8374, 0.8717), (0.6437, 0.4925), (0.5825, 0.3731), (0.6596, 0.5239) 773.4 1.3
1 0 2(1), 3(1), 5(1), 6(1) (0.8119, –), (0.4984, –), (0.3885, –), (0.5262, –) 773.4 0.5

0.4 0 1 3(1), 5(1), 6(1) (–, 0.2475), (-, 5.5e-016), (–, 0.8201) 832.7 0.5
0.2 0.8 3(1), 5(1), 6(1) (0.8648, 0.2202), (0.8462, 0.0011), (0.8806, 0.7816) 832.7 7.6
0.4 0.6 3(1), 5(1), 6(1) (0.7879, 0.1918), (0.7527, 0.0011), (0.8430, 0.7417) 832.7 6.4
0.6 0.4 3(1), 5(1), 6(1) (0.6392, 0.1622), (0.6331, 0.0011), (0.7935, 0.7012) 832.7 5.4
0.8 0.2 3(1), 5(1), 6(1) (0.4339, 0.1419), (0.4098,0.0031), (0.7284, 0.6608) 832.7 3.6
1 0 3(1), 5(1), 6(1) (0.1568, –), (3.3e-016, –), (0.6427, –) 832.7 0.5

0.6 0 1 3(1), 5(1), 6(1) (–, 0.1036), (–, 0.1604), (–, 0.8201) 874.7 0.5
0.2 0.8 3(1), 5(1), 6(1) (0.8553, 0.0896), (0.8564, 0.1395), (0.8806, 0.7816) 874.7 2.5
0.4 0.6 3(1), 5(1), 6(1) (0.7692, 0.0771), (0.7728,0.1206), (0.8430, 0.7417) 874.7 2.1
0.6 0.4 3(1), 5(1), 6(1) (0.6319, 0.0661), (0.6404, 0.1039), (0.7935, 0.7012) 874.7 2.0
0.8 0.2 3(1), 5(1), 6(1) (0.4128, 0.0589), (0.4310, 0.0911), (0.7284, 0.6608) 874.7 1.7
1 0 3(1), 5(1), 6(1) (0.0635, –), (0.0996, –), (0.6427, –) 874.7 0.5

0.8 0 1 3(1), 5(1), 6(1) (–, 0.0490), (–, 0.2474), (–, 0.8108) 913.7 0.5
0.2 0.8 3(1), 5(1), 6(1) (0.8542, 0.0422), (0.8583, 0.2170), (0.8799, 0.7712) 913.7 2.7
0.4 0.6 3(1), 5(1), 6(1) (0.7659, 0.0361), (0.7786, 0.1892), (0.8411, 0.7302) 913.7 2.5
0.6 0.4 3(1), 5(1), 6(1) (0.6239, 0.0308), (0.6543, 0.1643), (0.7897, 0.6888) 913.7 2.3
0.8 0.2 3(1), 5(1), 6(1) (0.3959, 0.0294), (0.4601, 0.1435), (0.7217, 0.6476) 913.7 2.0
1 0 3(1), 5(1), 6(1) (0.0297, –), (0.1568,–), (0.6318, –) 913.7 0.6

15 0.2 0 1 3(1),5(1),6(1),11(1),13(1) (–, 0.5645), (–, 0.7362), (–, 0.8707), (–, 0.9330), (–, 0.9543) 999.06 4.8

0.2 0.8 3(1),5(1),6(1),11(1),13(1)
(0.8673, 0.5144), (0.8750, 0.6898), (0.8853, 0.8400), (0.8940, 0.9164),

(0.8987, 0.9442)
999.06 11.8

0.4 0.6 3(1),5(1),6(1),11(1),13(1)
(0.8059, 0.4659), (0.8279, 0.6429), (0.8550, 0.8075), (0.8761, 0.8986),

(0.8870, 0.9334)
999.06 11.3

0.6 0.4 3(1),5(1),6(1),11(1),13(1)
(0.7161, 0.4201), (0.7630, 0.5966), (0.8166, 0.7740), (0.8553, 0.8798),

(0.8739, 0.9219)
999.06 11.1

0.8 0.2 3(1),5(1),6(1),11(1),13(1)
(0.5848, 0.3776), (0.6736, 0.5517), (0.7682, 0.7398), (0.8310, 0.8600),

(0.8593, 0.9099)
999.06 11.0

1 0 3(1),5(1),6(1),11(1),13(1) (0.3927, –), (0.5504, –), (0.7070, –), (0.8025, –), (0.8430, –) 999.06 4.8

0.4 0 1 3(1),5(1),6(1),11(1),13(1) (–, 0.4695), (–, 0.7362), (–, 0.8938), (–, 0.9330), (–, 0.9543) 1127.8 3.6

0.2 0.8 3(1),5(1),6(1),11(1),13(1)
(0.8641, 0.4224), (0.8750, 0.6898), (0.8879, 0.8677), (0.8940, 0.9164),

(0.8987, 0.9442)
1127.8 8.3

0.4 0.6 3(1),5(1),6(1),11(1),13(1)
(0.7965, 0.3777), (0.8279, 0.6429), (0.8617, 0.8398), (0.8761, 0.8986),

(0.8870, 0.9334)
1127.8 7.9

0.6 0.4 3(1),5(1),6(1),11(1),13(1)
(0.6952, 0.3362), (0.7630, 0.5966), (0.8292, 0.8107), (0.8553, 0.8798),

(0.8739, 0.9219)
1127.8 7.6

0.8 0.2 3(1),5(1),6(1),11(1),13(1)
(0.5435, 0.2986), (0.6736, 0.5517), (0.7891, 0.7808), (0.8310, 0.8600),

(0.8593, 0.9099)
1127.8 8.1

1 0 3(1),5(1),6(1),11(1),13(1) (0.3164, –), (0.5504, –), (0.7397, –), (0.8025, –), (0.8430, –) 1127.8 3.6

0.6 0 1 3(1),5(1),6(1),11(1) (–, 0.0802), (–, 0.6881), (–, 0.8708), (–, 0.9330) 1236.9 4.3
0.2 0.8 3(1),5(1),6(1),11(1) (0.8548, 0.0692), (0.8725, 0.6392), (0.8853, 0.8401), (0.8940, 0.9164) 1236.9 11.8
0.4 0.6 3(1),5(1),6(1),11(1) (0.7677, 0.0594), (0.8208, 0.5905), (0.8550, 0.8077), (0.8761, 0.8986) 1236.9 11.2
0.6 0.4 3(1),5(1),6(1),11(1) (0.6284, 0.0508), (0.7482, 0.5430), (0.8167, 0.7742), (0.8553, 0.8798) 1236.9 11.9
0.8 0.2 3(1),5(1),6(1),11(1) (0.4055, 0.0461), (0.6463, 0.4976), (0.7683, 0.7400), (0.8310, 0.8600) 1236.9 12.9
1 0 3(1),5(1),6(1),11(1) (0.0489, –), (0.5030, –), (0.7071, –), (0.8025, –) 1236.9 4.3

0.8 0 1 3(1),5(1),6(1),11(1) (–, 0.1521), (–, 0.7022), (–, 0.8724), (–, 0.9230) 1317.7 11.8
0.2 0.8 3(1),5(1),6(1),11(1) (0.8562, 0.1321), (0.8732, 0.6539), (0.8855, 0.8420), (0.8922, 0.9037) 1317.7 36.1
0.4 0.6 3(1),5(1),6(1),11(1) (0.7722, 0.1142), (0.8228, 0.6056), (0.8554, 0.8098), (0.8719, 0.8830) 1317.7 36.3
0.6 0.4 3(1),5(1),6(1),11(1) (0.6391, 0.0982), (0.7524, 0.5583), (0.8175, 0.7765), (0.8479, 0.8612) 1317.7 36.7
0.8 0.2 3(1),5(1),6(1),11(1) (0.4283, 0.0862), (0.6540, 0.5130), (0.7696, 0.7426), (0.8193, 0.8384) 1317.7 39.2
1 0 3(1),5(1),6(1),11(1) (0.0942, –), (0.5165, –), (0.7092, –), (0.7853, –) 1317.7 14.6

TC = Total Cost; CPU = Computation Time (seconds); (ef , rf ) = (0, 1) refers to a single consignment class with the maximum
threshold on sojourn time = 10, whereas ef , rf = (1, 0) refers to a single consignment class with the maximum threshold on sojourn
time = 6.
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Table 1 Continued: Configuration of the Hub-and-Spoke System without Service Level Constraints (τe =
6, τ r = 10)

N δ ef rf Hub (Capacity) (Se
k(τe), Sr

k(τr)) TC CPU

20 0.2 0 1
3(1), 6(1), 11(1), 13(1),

16(1)
(–, 0.5990), (–, 0.9297), (–, 0.9482), (–, 0.9609), (–, 0.2015) 938.48 4.3

0.2 0.8
3(1), 6(1), 11(1), 13(1),

16(1)
(0.8686, 0.5486), (0.8934, 0.9122), (0.8972, 0.9362), (0.9006, 0.9531),

(0.8573, 0.1759)
938.48 10.0

0.4 0.6
3(1), 6(1), 11(1), 13(1),

16(1)
(0.8097, 0.4995), (0.8747, 0.8934), (0.8836, 0.9233), (0.8912, 0.9448),

(0.7755, 0.1527)
938.48 9.9

0.6 0.4
3(1), 6(1), 11(1), 13(1),

16(1)
(0.7244, 0.4526), (0.8528, 0.8735), (0.8681, 0.9096), (0.8808, 0.9360),

(0.6469, 0.1321)
938.48 9.8

0.8 0.2
3(1), 6(1), 11(1), 13(1),

16(1)
(0.6009, 0.4088), (0.8270, 0.8527), (0.8507, 0.8952), (0.8695, 0.9267),

(0.4445, 0.1153)
938.48 9.4

1 0
3(1), 6(1), 11(1), 13(1),

16(1)
(0.4221, –), ( 0.7967, –), (0.8309, –), (0.8571, –), (0.1263, –) 938.48 4.4

0.4 0 1
3(1), 6(1), 11(1), 13(1),

16(1)
(–, 0.6344), (–, 0.9395), (–, 0.9483), (–, 0.9603), (–, -1.7e-015) 1075 4.6

0.2 0.8
3(1), 6(1), 11(1), 13(1),

16(1)
(0.8708, 0.5851), (0.8953, 0.9247), ( 0.8972, 0.9362), (0.9005, 0.9522),

(0.8524, 0.0012)
1075 16.4

0.4 0.6
3(1), 6(1), 11(1), 13(1),

16(1)
(0.8115, 0.5331), (0.8791, 0.9089), (0.8836, 0.9233), (0.8908, 0.9436),

(0.7660, 0.0011)
1075 15.2

0.6 0.4
3(1), 6(1), 11(1), 13(1),

16(1)
(0.7301, 0.4858), (0.8605, 0.8921), (0.8682, 0.9096), (0.8802, 0.9346),

(0.6217, 0.0011)
1075 13.9

0.8 0.2
3(1), 6(1), 11(1), 13(1),

16(1)
(0.6143, 0.4413), (0.8389, 0.8745), (0.8507, 0.8952), (0.8685, 0.9250),

(0.3875, 0.0039)
1075 11.9

1 0
3(1), 6(1), 11(1), 13(1),

16(1)
(0.4532, –), (–, 0.8141), (–, 0.8309), (–, 0.8557), (-1.1e-015) 1075 4.8

0.6 0 1 3(1), 6(1), 11(1), 16(1) (–, 0.2619), (–, 0.9274), (–, 0.9536), (–, 1.6e-015) 1182.4 28.0
0.2 0.8 3(1), 6(1), 11(1), 16(1) (0.8577, 0.2297), (0.8929, 0.9093), (0.8985, 0.9433), (0.8542, 0.0012) 1182.4 82.2
0.4 0.6 3(1), 6(1), 11(1), 16(1) (0.7789, 0.2007), (0.8737, 0.8899), (0.8866, 0.9323), (0.7639, 0.0012) 1182.4 93.9
0.6 0.4 3(1), 6(1), 11(1), 16(1) (0.6580, 0.1750), (0.8511, 0.8693), (0.8733, 0.9206), (0.6156, 0.0012) 1182.4 83.7
0.8 0.2 3(1), 6(1), 11(1), 16(1) (0.4684, 0.1528), (0.8244, 0.8478), (0.8583, 0.9083), (0.3774, 0.0045) 1182.4 87.8
1 0 3(1), 6(1), 11(1), 16(1) (0.1666, –), (0.7928, –), (0.8417, –), (169.9e-016, –) 1182.4 27.8

0.8 0 1 3(1), 6(1), 16(1) (–, 3.3e-015), (–, 0.8646), (–, -1.2e-014) 1245.8 18.2
0.2 0.8 3(1), 6(1), 16(1) (0.8507, 0.0011), (0.8869, 0.8355), (0.8531, 0.0012) 1245.8 67.2
0.4 0.6 3(1), 6(1), 16(1) (0.7625, 0.0011), (0.8542, 0.8002), (0.7622, 0.0012) 1245.8 84.8
0.6 0.4 3(1), 6(1), 16(1) (0.6180, 0.0011), (0.8125, 0.7638), (0.6184, 0.0011) 1245.8 69.1
0.8 0.2 3(1), 6(1), 16(1) (0.3923, 0.0037), (0.7582, 0.7266), (0.3823, 0.0042) 1245.8 76.8
1 0 3(1), 6(1), 16(1) (1.9e-015, –), (0.6988, –), (-7.3e-015, –) 1245.8 18.7

25 0.2 0 1 3(1), 11(1), 16(1), 23(1) (–, 0.550295), (–, 0.904348), (–, 0.248776), (–, 0.923292) 1002.8 11.8
0.2 0.8 3(1), 11(1), 16(1), 23(1) (0.8667, 0.5004), (0.8893, 0.8804), (0.8583, 0.2182), (0.8922, 0.9040) 1002.8 23.9
0.4 0.6 3(1), 11(1), 16(1), 23(1) (0.8044, 0.4523), (0.8651, 0.8549), (0.7787, 0.1903), (0.8720, 0.8834) 1002.8 23.9
0.6 0.4 3(1), 11(1), 16(1), 23(1) (0.7128, 0.4070), (0.8355, 0.8282), (0.6545, 0.1653), (0.8480, 0.8616) 1002.8 23.4
0.8 0.2 3(1), 11(1), 16(1), 23(1) (0.5783, 0.3651), (0.7994, 0.8006), (0.4606, 0.1443), (0.8195, 0.8389) 1002.8 24.6
1 0 3(1), 11(1), 16(1), 23(1) (0.3809, –), (0.7554, –), (0.1577, –), (0.7857, –) 1002.8 14.7

0.4 0 1 3(1), 11(1), 16(1), 23(1) (–, 0.6195), (–, 0.8946), (–, 0.0253), (–, 0.9365) 1138.9 10.6
0.2 0.8 3(1), 11(1), 16(1), 23(1) (0.8694, 0.5691), (0.8880, 0.8686), (0.8538, 0.0218), (0.8946, 0.9209) 1138.9 25.1
0.4 0.6 3(1), 11(1), 16(1), 23(1) (0.8121, 0.5198), (0.8619, 0.8409), (0.7645, 0.0186), (0.8777, 0.9042) 1138.9 25.0
0.6 0.4 3(1), 11(1), 16(1), 23(1) (0.7296, 0.4726), (0.8296, 0.8119), (0.6206, 0.0159), (0.8581, 0.8864) 1138.9 26.4

0.8 0.2 3(1), 11(1), 16(1), 23(1)
(0.61087, 0.4281), (0.78989, 0.7822), ( 0.38879, 0.0170), ( 0.8353,

0.8679)
1138.9 23.4

1 0 3(1), 11(1), 16(1), 23(1) (0.4399, –), (0.7408, –), (0.0152, –), (0.8088, –) 1138.9 11.2

0.6 0 1 3(1), 11(1), 16(1) (–, 1.6e-015), (–, 0.8646), (–, -1.1e-015) 1247.1 254.4
0.2 0.8 3(1), 11(1), 16(1) (0.8537, 0.0011), (0.8846, 0.8328), (0.8530, 0.0012) 1247.1 841.1
0.4 0.6 3(1), 11(1), 16(1) (0.7640, 0.0011), (0.8533, 0.7993), (0.7620, 0.0011) 1247.1 684.8
0.6 0.4 3(1), 11(1), 16(1) (0.6154, 0.0011), (0.8136, 0.7648), (0.6187, 0.0011) 1247.1 811.0
0.8 0.2 3(1), 11(1), 16(1) (0.3798, 0.0043), (0.7630, 0.7296), (0.3825, 0.0042) 1247.1 611.4
1 0 3(1), 11(1), 16(1) (9.9e-016, –), (0.6988, –), (6.64e-016, –) 1247.1 256.4

0.8 0 1 3(1), 11(1), 16(1) (–, 0), (–, 0.8646), (–, 1.7e-015) 1316.4 247.0
0.2 0.8 3(1), 11(1), 16(1) (0.8538, 0.0012), (0.8848, 0.8330), (0.8527, 0.0015) 1316.4 831.7
0.4 0.6 3(1), 11(1), 16(1) (0.7628, 0.0011), (0.8537, 0.7997), (0.7627, 0.0012) 1316.4 852.2
0.6 0.4 3(1), 11(1), 16(1) (0.6175, 0.0012), (0.8131, 0.7644), (0.6176, 0.0012) 1316.4 794.8
0.8 0.2 3(1), 11(1), 16(1) (0.3791, 0.0044), (0.7627, 0.7294), (0.3839, 0.0042) 1316.4 755.8
1 0 3(1), 11(1), 16(1) (0, –), (0.6988, –), (1.1e-015, –) 1316.4 281.3

TC = Total Cost; CPU = Computation Time (seconds); (ef , rf ) = (0, 1) refers to a single consignment class with the maximum
threshold on sojourn time = 10, whereas ef , rf = (1, 0) refers to a single consignment class with the maximum threshold on sojourn
time = 6.
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Table 2: Configuration of the Hub-and-Spoke System with Service Level Constraints (τe = 6, τ r = 10,
αe = 0.98, αr = 0.98)

N δ ef rf Hub (Capacity) (Se
k(τe), Sr

k(τr)) TC CoSQ CPU

10 0.2 0 1 3(2), 5(2), 6(2) (–, 0.9921), (–, 0.98), (–,0.9947) 991.5 218.1 2.4
0.2 0.8 6(2), 8(3) (0.9882, 0.9892), (0.9982, 0.9823) 1012.2 238.8 22.9
0.4 0.6 3(2), 5(3), 6(2) (0.9836, 0.9816), (0.9978, 0.9964), (0.9840, 0.9832) 1053.2 278.8 12.8
0.6 0.4 3(2), 6(2), 8(3) (0.98, 0.98), (0.98, 0.9799), (0.9953, 0.9871) 1076.3 302.9 28.5
0.8 0.2 3(3), 5(3), 6(2) (0.9954, 0.9928), (0.9938,0.9861), (0.98,0.9844) 1128.5 355.1 21.1
1 0 2(2), 3(3), 6(3) (0.98, –), (0.98, –), (0.9953, –) 1132.8 359.4 14.0

0.4 0 1 3(2), 5(2), 6(2) (–, 0.9873), (–, 0.98), (–, 0.9967) 1046.2 213.5 5.7
0.2 0.8 6(2), 8(3) (0.9882, 0.9892), (0.9982, 0.9823) 1061.6 228.8 19.1
0.4 0.6 3(2), 5(3), 6(2) (0.9838, 0.9799), (0.9978, 0.9963), (0.9840, 0.9851) 1111.3 278.6 15.0
0.6 0.4 3(2), 6(2), 8(3) (0.98, 0.9799), (0.98, 0.9799), (0.9953, 0.9872) 1131.3 298.6 11.5
0.8 0.2 3(3), 6(2), 8(3) (0.9955, 0.9926), (0.98, 0.9851), (0.9938, 0.9861) 1197.8 365.1 15.5
1 0 6(3), 8(3) (0.9887, –), (0.98, –) 1190.3 357.6 4.2

0.6 0 1 3(2), 5(2), 6(2) (–, 0.9835), (–, 0.9846), (–, 0.9967) 1088.4 213.6 2.8
0.2 0.8 6(2), 8(3) (0.9879, 0.9889), (0.9983, 0.9825) 1098.1 223.3 15.5
0.4 0.6 3(2), 5(3), 6(2) (0.9841,0.9799), (0.9975, 0.9951), (0.9855, 0.9890) 1158.4 283.6 18.8
0.6 0.4 3(2), 6(2), 8(3) (0.9801, 0.9799), (0.98, 0.981), (0.9953, 0.9866) 1178.0 303.3 15.8
0.8 0.2 3(3), 6(2), 8(3) (0.9954, 0.9925), (0.98, 0.9851), (0.9938, 0.9861) 1239.4 364.6 18.4
1 0 6(3), 8(3) (0.9887, –), (0.98, –) 1224.6 349.9 4.8

0.8 0 1 6(2), 8(3) (–, 0.9949), (–, 0.9909) 1112.3 198.5 2.2
0.2 0.8 6(2), 8(3) (0.9884, 0.9895), (0.9982, 0.9820) 1112.4 198.6 13.5
0.4 0.6 6(3), 8(3) (0.9982, 0.9983), (0.9965, 0.9799) 1183.3 269.5 16.6
0.6 0.4 3(2), 6(2), 8(3) (0.9805, 0.9799), (0.98, 0.9810), (0.9952, 0.9866) 1222.3 308.6 21.2
0.8 0.2 3(3), 6(2), 8(3) (0.9958,0.9936), (0.98, 0.9850), (0.9933, 0.9841) 1277.8 364.0 15.6
1 0 6(3), 8(3) (–,0.9887), (-,0.98) 1241.0 327.2 3.9

15 0.2 0 1 0(2), 3(2), 6(2), 11(2) (–, 0.9958), (–, 0.98), (-, 0.9972), (–, 0.9987) 1326.8 327.7 84.0
0.2 0.8 3(3), 11(2), 12(2) (0.9985, 0.9957), (0.9903, 0.9979), (0.9879, 0.9854) 1353.3 354.2 42.1
0.4 0.6 3(2), 5(2), 6(2), 11(2) (0.9834, 0.9799), (0.9844, 0.9799), (0.9824, 0.9819), (0.9887, 0.9967) 1341.7 342.6 176.1
0.6 0.4 3(3), 6(2), 11(2), 13(2) (0.9945, 0.9799), (0.9817, 0.9853), (0.9868, 0.9952), (0.9884, 0.9972) 1360.9 361.8 103.8
0.8 0.2 0(2), 3(3), 6(2), 11(2) (0.98, 0.9848), (0.9922, 0.9799), (0.98, 0.9853), (0.9837, 0.9921) 1385.8 386.8 200.9
1 0 3(3), 11(2), 12(3) (–, 0.98), (–, 0.9820), (–, 0.9948) 1417.7 418.7 87.1

0.4 0 1 3(2), 11(2), 12(2) (0.98, –), (0.9979, –), (0.98, –) 1420.3 292.6 67.6
0.2 0.8 3(3), 11(2), 12(2) (0.9985, 0.9963), (0.9903, 0.9979), (0.9877, 0.9827) 1447.1 319.3 55.7
0.4 0.6 3(3), 11(2), 12(2) (0.9969, 0.9884), (0.9887, 0.9967), (0.9839, 0.9799) 1448.6 320.8 118.0
0.6 0.4 3(3), 6(2), 11(2), 13(2) (0.9945, 0.9799), (0.9823, 0.9869), (0.9868, 0.9952), (0.9880, 0.9967) 1473.7 345.9 95.9
0.8 0.2 0(2), 3(3), 6(2), 11(2) (0.98, 0.9844), (0.9921, 0.9799), (0.98, 0.9857), (0.9838, 0.9922) 1490.5 362.7 229.5
1 0 3(3), 11(2), 12(3) (0.9812, –), (0.9820, –), (0.9945, –) 1511.2 383.4 55.7

0.6 0 1 0(2), 3(2), 7(2) (–, 0.9879), (–, 0.98), (–, 0.9965) 1493.1 256.2 49.5
0.2 0.8 3(3), 6(2) (0.9983, 0.9877), (0.9878, 0.9840) 1495.0 258 59.9
0.4 0.6 0(2), 3(3), 7(2) (0.9851, 0.9875), (0.9973, 0.9918), (0.9860, 0.9904) 1541.1 304.2 209.8
0.6 0.4 3(3), 6(2), 11(2) (0.9946, 0.9799), (0.98, 0.9799), (0.9826, 0.9888) 1546.1 309.1 110.4
0.8 0.2 0(2), 3(3), 6(2), 11(2) (0.98, 0.9847), (0.9922, 0.9799), (0.98, 0.9859), (0.9836, 0.9918) 1583.9 347 450.0
1 0 3(3), 6(3) (0.98, –), (0.9887, –) 1580.4 343.5 25.1

0.8 0 1 3(3), 6(2) (–, 0.9906), (–, 0.9951) 1507.5 189.8 29.6
0.2 0.8 3(3), 6(2) (0.9982, 0.9819), (0.9884, 0.9896) 1507.7 190 21.9
0.4 0.6 3(3), 6(3) (0.9967, 0.9799), (0.9981, 0.9982) 1576.3 258.7 141.2
0.6 0.4 0(2), 3(3), 6(2) (0.9830, 0.9881), (0.9945, 0.98), (0.9801, 0.9813) 1590.5 272.8 90.3
0.8 0.2 0(2), 3(3), 6(3) (0.98, 0.9852), (0.9925, 0.9799), (0.9962, 0.9951) 1662.8 345.1 238.1
1 0 3(3), 6(3) (0.98, –), (0.9887, –) 1601.0 283.3 24.1

TC = Total Cost; CPU = Computation Time (seconds); CoSQ= Cost of Service Quality; ; (ef , rf ) = (0, 1) refers to a single
consignment class with the maximum threshold on sojourn time = 10, whereas ef , rf = (1, 0) refers to a single consignment
class with the maximum threshold on sojourn time = 6.
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Table 2 Continued: Configuration of the Hub-and-Spoke System with Service Level Constraints (τe = 6,
τ r = 10, αe = 0.98, αr = 0.98)

N δ ef rf Hub (Capacity) (Se
k(τe), Sr

k(τr)) TC CoSQ CPU

20 0.2 0 1 3(2), 11(2), 15(2), 16(2) (–, 0.9930), (–, 0.9990), (–, 0.9971), (–, 0.9850) 1237.7 299.2 992.8
0.2 0.8 3(2), 11(2), 15(2), 16(2) (0.9874, 0.9825), (0.9906, 0.9984), (0.9893, 0.9947), (0.9877, 0.9799) 1239.9 301.4 193.7
0.4 0.6 0(2), 3(2), 11(2), 16(2) (0.9815, 0.98), (0.9844, 0.9799), (0.9887, 0.9970), (0.9843, 0.9799) 1271.2 332.7 442.7
0.6 0.4 3(2), 11(2), 15(2), 16(3) (0.9805, 0.9799), (0.9880, 0.9967), (0.9816, 0.9848), (0.9964, 0.9934) 1306.6 368.1 660.3
0.8 0.2 3(2), 11(2), 15(2), 16(3) (0.98, 0.9836), (0.9842, 0.9929), (0.98, 0.9853), (0.9919, 0.9799) 1328.4 389.9 455.8
1 0 3(3), 11(2), 16(3) (0.9869, –), (0.9846, –), (0.9907, –) 1342.2 403.7 69.4

0.4 0 1 3(2), 16(2), 18(2) (–, 0.98), (–, 0.98), (–, 0.9979) 1344.6 269.6 718.7
0.2 0.8 3(2), 6(2), 16(2) (0.9875, 0.9799), (0.9870, 0.9867), (0.9885, 0.9799) 1367.5 292.5 321.8
0.4 0.6 0(2), 3(2), 11(2), 16(2) (0.9816, 0.9799), (0.9839, 0.9799), (0.9889, 0.9971), (0.9844, 0.9799) 1391.8 316.8 1169.0
0.6 0.4 3(2), 6(2), 16(3) (0.98025, 0.9799), (0.98, 0.9799), (0.9953, 0.9872) 1412.3 337.2 808.6
0.8 0.2 3(3), 11(2), 16(3) (0.9940, 0.9867), (0.9858, 0.9948), (0.9934, 0.9843) 1433.9 358.9 291.3
1 0 3(3), 11(2), 16(3) (0.9899, –), (0.9838, –), (0.9886, –) 1433.9 358.9 52.6

0.6 0 1 3(2), 6(2), 16(2) (–, 0.9876), (–, 0.9966), (–, 0.98) 1412.2 229.8 716.0
0.2 0.8 3(2), 6(2), 16(2) (0.9872, 0.9799), (0.9873, 0.9868), (0.9885, 0.9799) 1436.4 254.0 516.1
0.4 0.6 3(2), 6(2), 16(3) (0.9835, 0.9799), (0.9854, 0.9890), (0.9976, 0.9951) 1468.8 286.4 725.1
0.6 0.4 3(2), 6(2), 16(3) (0.9803, 0.98), (0.98, 0.9804), (0.9953, 0.9869) 1473.7 291.3 944.2
0.8 0.2 3(3), 11(2), 16(3) (0.9945, 0.9887), (0.9855, 0.9944), (0.993, 0.9825) 1514.8 332.4 581.2
1 0 3(3), 16(3) (0.9816, –), (0.9877, –) 1509.7 327.3 101.1

0.8 0 1 3(2), 6(2), 16(2) (–, 0.98), (–, 0.9979), (–, 0.98) 1456.6 210.8 468.5
0.2 0.8 10(2), 16(3) (0.9879, 0.9799), (0.9983, 0.9901) 1482.1 236.3 227.9
0.4 0.6 3(3), 16(3) (0.9974, 0.9925), (0.9976, 0.9950) 1538.3 292.5 493.7
0.6 0.4 6(2), 16(2), 19(3) (0.9805, 0.9799), (0.9801, 0.9799), (0.9952, 0.9871) 1578.5 332.7 636.0
0.8 0.2 3(3), 6(2), 16(3) (0.9957, 0.9931), (0.9811, 0.9876), (0.9931, 0.9831) 1578.5 332.8 725.2
1 0 3(3), 16(3) (0.9827, –), (0.9869, –) 1538.3 292.5 65.5

25 0.2 0 1 3(2), 11(2), 16(2) (–, 0.98), (–, 0.9979), (–, 0.98) 1258.5 255.7 1952.5
0.2 0.8 13(2), 16(2), 20(2), 23(2) (0.9899, 0.9968), (0.9880, 0.9799), (0.9872, 0.9799), (0.9900, 0.9976) 1320.6 317.7 1715.1
0.4 0.6 0 (2), 3(2), 11(2), 16(2) (0.9840, 0.9871), (0.9831, 0.9799), (0.9877, 0.9948), (0.9846, 0.9799) 1311.0 308.2 4764.6
0.6 0.4 11(2), 17(3), 20(2) (0.9831, 0.9891), (0.9940, 0.9799), (0.9816, 0.9799) 1345.1 342.3 3255.2
0.8 0.2 13(2), 11(2), 15(2), 17(3) (0.98, 0.9844), (0.9802, 0.9864), (0.98, 0.985), (0.9936, 0.9858) 1383.6 380.8 2778.1
1 0 11(2), 16(3), 20(3) (0.98, –), (0.9893, –), (0.9913, –) 1389.0 386.1 423.2

0.4 0 1 3(2), 11(2), 16(2) (–, 0.98), (–, 0.9979), (–, 0.98) 1365.1 226.3 2257.9
0.2 0.8 3(2), 11(2), 16(2), 23(2) (0.9874, 0.9813), (0.9898, 0.9965), (0.9876, 0.9799), (0.9903, 0.9977) 1426.7 287.8 1631.3
0.4 0.6 3(2), 11(2), 16(3) (0.9846, 0.9799), (0.9871, 0.9937), (0.9971, 0.9924) 1439.6 300.7 2411.5
0.6 0.4 3(2), 11(2), 17(3) (0.9809, 0.9799), (0.9833, 0.9891), (0.9941, 0.9799) 1448.4 309.5 2523.9
0.8 0.2 1(3), 3(3), 11(2) (0.9924, 0.98), (0.9961, 0.9945), (0.9809, 0.9874) 1503.1 364.2 2943.5
1 0 3(3), 11(2), 16(3) (0.9911, –), (0.98, –), (0.9895, –) 1495.7 356.9 415.0

0.6 0 1 3(2), 11(2), 16(2) (–, 0.98) (–, 0.9979), (–, 0.98) 1454.0 206.9 1289.9
0.2 0.8 3(2), 11(2), 16(3) (0.9877, 0.9799), (0.9897, 0.9964), (0.9986, 0.9979) 1518.1 271.0 1074.8
0.4 0.6 3(2), 11(2), 16(3) (0.9845, 0.9799), (0.9869, 0.9933), (0.9972, 0.9927) 1528.1 281.0 2204.9
0.6 0.4 11(), 17(3), 20(2) (0.9832, 0.9891), (0.9941, 0.9799), (0.9809, 0.9799) 1533.6 286.5 2939.7
0.8 0.2 1(3), 3(3), 11(2) (0.9924, 0.9799), (0.9960, 0.9943), (0.9812, 0.9880) 1587.5 340.4 2904.2
1 0 3(3), 11(2), 16(3) (0.99068, –), (0.98, –), (0.9901, –) 1584.9 337.8 507.8

0.8 0 1 3(2), 11(2), 16(2) (–, 0.98), (–, 0.9979), (–, 0.98) 1523.8 207.4 1128.9
0.2 0.8 3(2), 11(2), 16(3) (0.9878, 0.9799), (0.9897, 0.9963), (0.9986, 0.9979) 1588.6 272.2 1768.5
0.4 0.6 3(2), 11(2), 17(3) (0.9836, 0.9799), (0.9873, 0.9938), (0.9973, 0.9924) 1592.7 276.3 2659.9
0.6 0.4 11(2), 19(3), 20(2) (0.9831, 0.9890), (0.9944, 0.9799), (0.9802, 0.9799) 1628.2 311.8 2388.2
0.8 0.2 1(3), 3(3), 11(2) (0.9924, 0.9799), (0.9961, 0.9946), (0.9807, 0.9870) 1658.0 341.6 3383.8
1 0 3(3), 11(2), 16(3) (0.9909, –), (0.98, –), (0.9897, –) 1653.0 336.6 832.2

TC = Total Cost; CPU = Computation time (seconds); CoSQ= Cost of Service Quality; (ef , rf ) = (0, 1) refers to a single
consignment class with the maximum threshold on sojourn time = 10, whereas ef , rf = (1, 0) refers to a single consignment
class with the maximum threshold on sojourn time = 6.
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Table 3: Effect of Varying τe and τ r on the Configuration of the Hub-and-Spoke System (N = 15, αe = 0.98,
αr = 0.98)

δ ef rf τe τr Hubs (Capacity) (Se
k(τe), Sr

k(τr)) TC CPU

0.2 0.1 0.9 8 8 3(3), 11(2), 12(2) (0.9998, 0.9892), (0.9981, 0.9943), (0.9980, 0.9799) 1356.0 38.5
16 3(2), 11(2), 12(2) (0.9975, 0.9799), (0.9981, 0.9999), (0.9977, 0.9988) 1290.5 51.4
32 3(2), 6(2), 11(2) (0.9971, 0.9848, (0.9980, 1), (0.9981, 1) 1285.7 3.4
64 3(2), 6(2), 11(2) (0.9971, 0.9998), (0.9980, 1) (0.9981, 1) 1285.7 3.4

128 3(2), 6(2), 11(2) (0.9971, 1), (1, 0.9980), (0.9981, 1) 1285.7 3.4

0.2 0.5 0.5 8 8 0(2), 3(3), 6(2), 5(2), 11(2) (0.9967, 0.9847), (0.9997, 0.9941), (0.9967, 0.9799), 1447.5 69.2
(0.9965, 0.9814), (0.9972, 0.9891)

16 3(2), 11(2), 12(2) (0.9921, 0.9799), (0.9967, 0.9995), (0.9902, 0.9799) 1313.4 80.7
32 3(2), 6(2), 11(2) (0.9844, 0.9799), ( 0.9942, 0.9999), (0.9972, 1) 1289.0 34.6
64 3(2), 6(2), 11(2) (0.98, 0.9999), (0.9955, 1), (0.9972, 1) 1286.2 4.8

128 3(2), 6(2), 11(2) (0.98, 1), (0.995512, 1), ( 0.99721, 1) 1286.2 4.8

0.2 0.9 0.1 8 8 3(3), 5(3), 6(2), 11(2), 13(2) (0.9990, 0.9799), (0.9995, 0.9916), (0.9955, 0.9799), 1488.1 123.6
(0.9957, 0.9821), (0.9967, 0.9892)

16 3(2), 5(2), 6(2), 11(2) (0.9839, 0.9799), (0.9840, 0.9799), (0.9905, 0.9932), (0.9957, 0.9992) 1337.7 92.8
32 3(2), 5(2), 6(2), 11(2) (0.9839, 0.9987), (0.9807, 0.9977), (0.9921, 0.9999), (0.9957, 0.9999) 1335.5 73.1
64 3(2), 5(2), 6(2), 11(2) (0.9839, 0.9999), (0.9807, 0.9999), (0.9921, 1), (0.9957, 1) 1335.5 72.9

128 3(2), 5(2), 6(2), 11(2) (0.9839, 1), (0.9807, 1), (0.9921, 1), (0.9957, 1) 1335.5 74.0

0.8 0.1 0.9 8 8 3(3), 6(3) (0.9998, 0.9799), (0.9999, 0.9984) 1573.9 57.5
16 3(2), 6(2) (0.9976, 0.9799), (0.9974, 0.9921) 1478.8 60.3
32 3(2), 6(2) (0.9971, 0.9799), (0.9978, 0.9999) 1446.2 24.0
64 3(2), 6(2) (0.9970, 0.9913), ( 0.9979, 1) 1443.4 3.3

128 3(2), 6(2) (0.9970, 1), (0.9979, 1) 1443.4 3.2

0.8 0.5 0.5 8 8 0(2), 3(3), 6(3) (0.9964, 0.98), (0.9995, 0.9799), (0.9997, 0.9950) 1659.9 113.8
16 3(3), 6(3) (0.9987, 0.9881), (0.9951, 0.9973) 1507.5 22.9
32 3(2), 6(2) (0.9834, 0.9799), (0.9908, 0.9992) 1459.7 38.5
64 3(2), 6(2) (0.98, 0.9997), (0.9924, 1) 1447.8 4.3

128 3(2), 6(2) (0.98, 1), (0.9924, 1) 1447.8 4.2

0.8 0.9 0.1 8 8 0(3), 3(3), 6(3) (0.9995, 0.9906), (0.9990, 0.9797), (0.9991, 0.9832) 1752.7 84.2
16 3(3), 6(2), 11(2) (0.9947, 0.9799), (0.9897, 0.9917), (0.9953, 0.9983) 1582.5 85.6
32 3(3), 6(2) (0.9867, 0.9977), (0.9885, 0.9996) 1507.5 20.4
64 3(3), 6(2) (0.9867, 1), (0.9885, 1) 1507.5 20.4

128 3(3), 6(2) (0.9867, 1), (0.9885, 1) 1507.5 21.1

TC = Total Cost; CPU = Computation Time (seconds)
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