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Abstract 

We consider the problem of sending flow from a source to a destination where there are flow 
costs on each arc and fixed costs toward the purchase of capacity. Capacity can be purchased 
in batches of C units on each arc. We show the problem to be NP-hard in general. If d is the 
quantity to be shipped from the source to the destination, we give an algorithm that solves the 
problem in time polynomial in the size of the graph but exponential in [d/C]. Thus, for bounded 
values of [d/C] the problem can be solved in polynomial time. This is useful since a simple 
heuristic gives a very good approximation of the optimal solution for large values of [d/C]. We 
also show a similar result to hold for the case when there are no flow costs but capacity can 
be purchased either in batches of 1 unit or C units. The results characterizing optimal solutions 
with a minimum number of free arcs are used to obtain extended formulations in each of the 
two cases. The LP-relaxations of the extended formulations are shown to be stronger than the 
natural formulations considered by earlier authors, even with a family of strong valid inequalities 
added. 6 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In this paper we consider the one-facility, one-commodity (OFOC) network design 

problem which can be stated as follows. Consider a directed graph G = (V, A) with a 

source s and a destination t. Capacity on each arc can be purchased in integer multiples 

of C units with each batch of C units costing w, 20 on arc a. There is a flow cost 

of pa 3 0 per unit of flow on arc a. The total cost of the flow is the flow cost plus 

the cost of purchasing capacity. The objective is to design a minimum cost network to 

send d units of flow from s to t. 
A more general form of the problem with several sources and sinks arises in the 

telecommunications and transportation industry. OFOC arises as a subproblem in these 
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instances. OFOC has been studied by Magnanti and Mirchandani (1993) for the special 

case where the flow cost pa is zero on each arc. They show that the problem reduces 

to the shortest path problem and can thus be solved in polynomial time. They also give 

an inequality description for which they show that all objective functions with pa = 0 

for all arcs a, have at least one optimal solution that is integral. A more general case 

with multiple commodities has been considered by Magnanti et al. and Bienstock et al. 

Another related problem has been considered by Leung et al., and Pochet and Wolsey, 

where they study the capacitated lot sizing problem. They provide families of facet 

defining inequalities for the associated polyhedron. 

In this paper we show the problem OFOC to be NP-hard in general when flow 

costs are present. This is in contrast to the case where all flow costs are zero, which is 

polynomially solvable (see [6]). We provide an algorithm to solve OFOC in polynomial 

time for bounded values of [d/Cl. This is valuable since a simple approximation 

heuristic is asymptotically optimal. 

We also consider the two-facility one-commodity (TFOC) network design problem 

(see [6, 71). The problem is similar to OFOC except that we assume that capacity can 

be purchased either in batches of size 1 at a cost of WA 2 0 or size C at a cost of wi > 0. 

Magnanti and Mirchandani consider the problem for the case where all flow costs pa 

are 0. However the status of the problem in terms of complexity was unresolved. In 

this paper we show TFOC to be NP-hard for the case where all flow costs are 0. For 

the case when flow costs are 0, we provide an algorithm to solve TFOC in polynomial 

time for bounded values of [d/Cj. 

We use the results characterizing optimal solutions to OFOC and TFOC to obtain 

extended formulations in each case. We show that the LP-relaxations of the extended 

formulations are stronger than the natural formulations considered by earlier authors, 

even with a family of strong valid inequalities added. We also characterize objective 

functions for which the LP-relaxations of the extended formulations give integer op- 

tima. Computational tests reported in Section 6 support our claim that the extended 

formulations are much stronger than the natural formulations and are very effective in 

solving OFOC and TFOC. In our computational tests, the extended formulations give 

integer optimal solutions for every problem instance attempted (189 each for OFOC 

and TFOC). 

In Section 2, we show that OFOC is NP-hard in general. In Section 3, we give an al- 

gorithm that allows us to solve OFOC in polynomial time as long as [d/Cl is bounded. 

A simple approximation heuristic is seen to be asymptotically optimal. In Section 4, 

we show TFOC to be NP-hard even when all flow costs are 0. An algorithm similar to 

that given for OFOC allows us to solve TFOC in polynomial time for bounded [d/C] 

if flow costs are 0. Section 5 contains the extended formulations and we show them to 

be stronger than the natural formulations even with additional facet defining inequal- 

ities included. In Section 6 we describe computational tests supporting this claim and 

showing the extended formulation to be very effective in solving OFOC and TFOC. 

We assume basic familiarity with graphs and network flows (see, for instance [2]). 

An arc a, directed from u to u will be referred to as (u, u). A vector indexed by the 
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Fig. 1 

arc set will have variables referred to as x,, or x, depending upon the context. Given 

a node set X C V, define 6+(X) to be the set of arcs directed from X to V \ X and 

6-(X) to be the set of arcs directed from V \ X to X. Given 2 c A, and a vector y 

indexed by A, define y(A) = CnEi ya. 

2. OFOC is NP-hard 

We prove that OFOC is NP-hard by transforming Minimum Cover (see [4]) into an 

instance of OFOC. 

Proposition 2.1. The problem OFOC is NP-hard. 

Proof. In an instance of Minimum Cover, we are given a collection F = {Sj,j = 

1 , . . ..m} of subsets of a finite set S = { 1 , . . . . n}, and a positive integer k <m. The 

question is whether F contains a cover for S of size k or less, i.e., a subset F’ i F 

with 1 F’ 1 d k such that every element of S belongs to at least one member of F’. 

Given the above instance of Minimum Cover, we construct the directed graph GF = 

( VF,AF ), where 

V. = {s, t} U {j;,j,‘, i = 1, . . . . n;j = 0, 1, . . . . m}, 

EF = {(s,jf),j = O,l,..., m} U {tj!,jf),(jf,j:+,),j = l,..., m,i = l,..., H} 

U(Of,O:+,),i= l,..., n}U{(O!,j?),(jj,O?),if iESj, for i= l,..., n}. 

In the above description we have assumed that jt,, = t for all j. The graph GF 

contains a directed path Pj, j = 1, . . . . m from s to t using the nodes jf and j: for each 

subset Sj in F. The arcs (0: ,jF ) and (jj, Of) are present if and only if i E S, . 

For the case where n = 4, k = 2, m = 3, S1 = { 1,3}, S2 = {3,4}, S3 = {2,3}, the 

graph GF is as shown in Fig. 1. 
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On the graph G.P, consider the problem OFOC where kC + E units of flow is to 

be sent from s to t, where E is close to 0. Arcs a along the paths Pj have w, = A4 

and pa = 0. The arcs of the form (s, 01) and (OT, O;+, ), i = 1, . . . . n have w, = 0 and 

pa = 2A4. Here A4 is a large positive integer (M = (2n + 1)k will suffice). All other 

arcs have w, = 0 and pa = 0. 

Note that to send kC units of flow from s to t we must use k of the paths Pj, j = 

1, . . . . m (multiple uses of a path are counted as multiple paths), with each path carrying 

C units, since any other path uses at least one arc with pa = 2M resulting in a 

cost at least as high if not higher. If flow is sent as described above, a total cost of 

(2n + 1)kM is incurred to send the kC units from s to t and we cannot send this 

portion any cheaper. This leaves E units to be sent from s to t. Note that each arc in 

a path Pj, j = 1, . . . . n, that has been used to send C units from s to t can now be used 

in the reverse direction to send the remaining E units without incurring a cost w,. If 

there is a solution to Minimum Cover, send C units along path Pj for each set Sj in 

the cover. Since the sets Sj corresponding to the paths Pj define a cover, for each i, 

1 5 i 5 n, there exists a set S,(i) in the cover with i E SF(i). The path P,(i) has been 

used to send C units of flow from s to t. Since i E ST(i), there exists the arc (O,‘,r(i)‘) 

in EF for i E {l,.,., n}. Consider the path 

The path P, can be used to ship E units from node s to node t, where the E units Ilow 

on each arc (r(i);,r(i)‘), i E (1 , . . . . n}, in the reverse direction and on all other arcs in 

the path the flow is in the forward direction. 

If there is no solution to Minimum Cover, no such path as P, exists to send E units 

of flow where the E units flow on arcs (r(i)f,r(i)f) in the reverse direction (this can 

only occur if the path P,(i) has been used to send C units of flow as described earlier). 

Thus the cost incurred to send k + E units from s to t is at least (2n + 1)kM + M, 

since at least one of the arcs in the paths Pj must be used in the forward direction to 

carry the E units. On the other hand, if there exists a solution to Minimum Cover, the 

k + E units can be sent at a cost of (2n + 1)kM + 2(n + 1)M.s < (2n + 1)kM + M, for 

E sufficiently small. Thus OFOC on GF has an optimal solution of value (2n + 1)kM 

+ 2(n + 1 )ME if and only if there exists a solution to Minimum Cover. The result thus 

follows. 0 

Note that for the example in Fig. 1, there is no cover using two or fewer subsets. 

To send 2 + E units from s to t in the graph GF in Fig. 1, we have to use at least two 

of the paths Pj (multiple uses of a path being counted as multiple paths) to send 2 

units and at least one of the arcs in the paths Pj in the forward direction to send the 

remaining E units. The total cost incurred in this case is at least 19M. On the other 

hand, if we set S, = {2,4}, there is a cover using two subsets. In the corresponding 

graph GF, it is possible to send 2 + E units from s to t at a cost of 18M + lOA4s. 
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3. OFOC for bounded Ld/C] 

In this section we show that if d = kC + r, 1 <r < C - 1, and k is bounded from 

above by some constant, then OFOC can be solved in polynomial time. We also give 

a polynomial heuristic that is shown to be asymptotically optimal. Thus, if the flow to 

be sent from s to t is small we can rely on the first algorithm to obtain the optimal 

solution, while if the flow to be sent is large we can rely on the polynomial heuristic 

to obtain a good approximation. 

3.1. Structure of optimal solutions for OFOC 

We identify certain structural properties of optimal solutions to OFOC. Consider an 

optimal solution vector (y*, f * ) where y,* is the capacity installed on arc a and f ,* is 

the flow through arc a. Note that since w, 3 0 and pa 3 0, given the flow vector f * 

in any optimal solution, the optimal capacity installed can be assumed to be given by 

v,* = If :/Cl. G' iven a solution (y*, f * ), define an arc a with f ,* < Cyz to be a free 

arc. We now characterize optimal solutions of OFOC with the minimum number of 

free arcs. 

Proposition 3.1. Let (y*, f *) be an optimal solution to OFOC with the minimum 

number of free arcs. All the free arcs defined by (y*, f * ) lie on a path (ignoring 

direction) from s to t. Free arcs directed forward along this path have a jlow from 

{ IC+r}fE,, and those directed backward have a flow from { IC - r}‘;=, , in the optimal 

solution. 

Proof. We first show that the free arcs define exactly one path (ignoring direction) 

from s to t. Given the optimal solution (y*, f *), the flow f * is an optimal solution 

to the min-cost flow problem on the graph G with arc capacities y,* and flow costs 

pa. Since (y*, f *) has the minimum number of free arcs, y* is an extreme optimal 

solution to the min-cost flow problem. 

Define a path in G from s to t (ignoring arc direction) to be a free path if each 

arc a in the path has 0 < f ,* < y,*. Using standard network flow results (see [l]), 

since y* is an extreme solution to the capacitated min-cost flow problem, there exists 

at most one free path from s to t. For any node set X C V’,s E X, t E V \ X, note 

that 

f *(S+(X)) - f *(X(X)) = kC + r. (1) 

Thus, for every choice of X, at least one of the the sets 6’(X) or 6-(X) contains a 

free arc. This implies a path from s to t (ignoring direction) using only free arcs (using 

Menger’s Theorem, see [2]). Thus, there exists exactly one free path from s to t. 

Now we prove that all the free arcs must be on the free path P,=. To the con- 

trary assume that there is a free arc (u, v) that does not belong to PF. Assume that 
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u @ PF. Since flow is conserved at all nodes other than s and t, there must be an- 

other free arc incident to U. One can proceed from u along that arc. Continuing this 

procedure, one can extend the arc (u, u) using free arcs till it either forms a cy- 

cle (ignoring direction), or a path (ignoring direction) with both end points in PF. 

In either case, by adjusting the flow on the cycle or the path and the flow on PF, 
one can show that there exists another optimal solution with at least one less free 

arc than (y*, f *). This contradiction proves that all free arcs must be on the free 

path PF. 
Let A; be the set of forward arcs in PF and Ai be the set of reverse arcs in PF 

when moving from s to t. The nodes in the free path PF have a natural ordering as 

one proceeds from s to t. Assume that the nodes in P,c, between s and t, are ordered as 

{~i}j”=i. Define X, = {s}U{~~}~=~. Note that exactly one of S’(&) or 8-(X4) contains 

one free arc u4. If a4 E Ai, then a4 E @(X4) and if x4 E A: then a4 E S-(X,). From 

(1) we thus have 

The result thus follows. 0 

From this point on we restrict attention to optimal solutions to OFOC with the 

minimum number of free arcs. Further, we can assume that there does not exist another 

optimal solution (y’, f’) # (y*, f*), such that yla < y,’ and f’, <f,* for all arcs a. Such 

optimal solutions will be referred to as minimal free arc extreme optimal solutions. 
Given an optimal solution (y*, f *) to OFOC, let G* = (V*,A*) be the graph induced 

by the arcs with f,’ > 0. Since all costs are non-negative, the graph G* can be 

assumed to be acyclic. We next prove that the optimal flow f * can be decomposed 

into the sum of flows along 2k + 1 paths {Pi}~~~’ from s to t, where the first k paths 

each carry a flow of C - r and the last k + 1 paths each carry a flow of Y. 

Proposition 3.2. Let (y*, f *) be a minimal free arc extreme optimal solution to 
OFOC. There exist 2k + 1 paths (Pi);!:‘, from s to t, such that 

f,* =(C-r)kPF+r ‘j?J P,“, 
i=l i=k+l 

(2) 

where Pi” = 1 if a E Pi, 0 otherwise. 

Proof. By Proposition 3.1, each arc has a flow f,* E {IC+r}f=,U{ZC-r}f=,U{ZC):=,. 
Construct the graph G’ = (V*,A’) as follows. If f,’ = ZC + r, construct 1 + 1 copies 

of the arc a in A’, I with a flow of C and one with a flow of r. If f,* = ZC, construct 

I copies each with a flow of C. If f,* = IC - r, construct 1 copies of the arc, 1 - 1 

with a flow of C and one with a Aow of C - r. 
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C=lO 
d=kC+r = 17 
k= l;r=7 

WI =w,,= 10 
wsz=w,,=o 

PSI = p21= 1 
Psz = PI1 = 2 
%= Plz=o 

Fig. 2 

Let n)(i){n7(i)} be the number of arcs in G’ with a flow of f entering {leaving} 

node i. By Proposition 3.1, each node in V* \{s, t} satisfies exactly one of the following 

conditions: 

(i) n:(i) = n;(i); n,+(i) = n;(i)< 1; n:_,(i) = no_,< 1. 

(ii) n:(i) = n;(i) + 1; n,+(i) + 1 = n;(i) = 1; n:_,(i) + 1 = n:_,(i) = 1. 

(iii) n:(i) = n;(i) - 1; n,+(i) = n;(i) + 1 = 1; n:_,(i) = n;_,(i) + 1 = 1. 

For the nodes s and t we have n;(s) = n:(t) = k and n;(s) = n:(t) = 1. 

From the graph G’ construct the graph G = (V*,A), where each arc with a flow of 

C in G’ is replaced by two parallel arcs, one with a flow of r and the other with a 

flow of C - r. Each arc in 2 has a flow of C - r or r. Define m)(i){mj(i)} to be 

the number of arcs in G with a flow of f entering {leaving} node i. Note that in the 

graph G we have 

m;_,(t) = m;_,(s) = k m:_,(i) = m;_,(i) for i E v* \ {.Gt>. 

A how of k(C - r) is sent from s to t using only the arcs in 2 with a flow of C - r. 

Thus by Menger’s theorem (see [2]), there exist k arc disjoint paths from s to t in G 

using only the arcs with a flow of C - r. These correspond to k paths {Pi}tl in G”. 

Also observe that in the graph G we have 

m,+(t) = m,(s) = k + 1, m,f(i> = m;(i) for i E V* \ {s,t}. 

A flow of (k + 1)r is sent from s to t using only the arcs in A with a flow of r. 

Once again by Menger’s theorem we have k + 1 arc disjoint paths from s to t in G 

using only the arcs with a flow of r. These correspond to k + 1 paths {Pi}fLllf:l in 

the graph G*. The paths {P,}fzt’ satisfy (2). Since (v*, f *) is an extreme solution, 

each arc in 2 with positive flow must be in one of the paths {Pi}f:t’. The result thus 

follows. q 

AS an example consider the graph in Fig. 2. Assume that d = 17, C = 10. Assume 

that W,I = ~2~ = 10, w,2 = wit = 0, psi = p21 = 1, ps2 = pit = 2, w12 = p12 = 0. 
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Fig. 3. 

Consider the solution (v*, f*) where fir = f;, = 10, f,*2 = f Tt = 7,fT2 = 3. The 

flow f * can be decomposed into a flow of 3 units along the path {(s, 1 ), (1,2), (2, t)} 

and a flow of 7 units along the paths {(s, l),(l,t)} and {(s,2),(2,t)}. 

3.2. Polynomial algorithm to solve OFOC for bounded Ld/C] 

We use the results from Section 3.1 to devise an algorithm to solve OFOC. The 

complexity of the algorithm is polynomial for bounded k, where d = kC + r. The 

algorithm is based on the decomposition of the flow in the optimal solution into a flow 

along 2k + 1 paths. As shown in Proposition 3.2, the paths {Pi}Fzl, have a flow of 

C - r, while the paths {Pi}~~%, have a flow of r. 
Given the graph G = (V,A), construct an auxiliary graph H = (N,E) to mimic 

flow along the 2k + 1 paths. Each node v in N corresponds to a (2k + 1 )-tuple 

(v(l),v(2) ,..., v(2k + l)), where v(i) E V for i = l,..., 2k + 1. The graph H thus 

contains 1 V 1 2k+1 nodes. Let SH be the node in H corresponding to the (2k + I)-tuple 

(s,s, . . . . s), and tH be the node in H corresponding to the (2k + 1 )-tuple (t, t, . . . . t). In 

the graph H, the arc directed from node u to node v is included if and only if for 

each i E Cl,..., 2k + l}, either u(i) = v(i), or (u(i),v(i)) is an arc in A. Thus, a path 

PH = {(~H,ul),(ul,u:!),..., (u,.,tH)} in H defines 2k + 1 paths {Pi};::’ in G, for 

pi = {(s, ul(i>>, (ul(i), u2(i)), . . . . (k(i>, t>). 

Note that our definition allows for ui(i) = uj+l(i) for some i and j. 

Consider the graph in Fig. 2. In this case we have k = 1. The corresponding graph 

H thus contains 43 nodes, each corresponding to a 3-tuple (u(l),u(2),u(3)) for u(i) E 
{ 1,2,3,4}, i = 1,2,3. We show the graph H in Fig. 3 with all 64 nodes. However, 

for the sake of clarity, we only show the arcs leaving the node in H corresponding to 
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(s,s,s) or entering the node corresponding to (t,t,t). In the graph H there is an arc 

directed from the node u to node v where u corresponds to the 3-tuple (s,s,s) and z! 

corresponds to the 3-tuple (1,2,s), since (u(l), v(1)) = (s, 1) and (u(2), v(2)) = (s,2) 

are arcs in G while u(3) = v(3) = S. The path in H corresponding to the 3-tuples 

(s,s,s), (l,l,s),(2,1,2), (t, t, t), defines three paths in G where 

Pl = ((~~1),(1,2),(2,~)}, p2 = {b, l),(l?f>}> p3 = {W),(2,t)}. 

For each pair of arcs e = (u, v) E E and a E A, define 

$(a) = Ii E { l,..., k} : a = (u(i),v(i))l, 

n;(a) = Ii E {k + 1, . . . . 2k + l} : a = (u(i),v(i))l. 

Once again consider the graph G from Fig. 2 and the corresponding graph H. Let 

e = (u, v) E E, where u corresponds to the 3-tuple (1, 1,s) and v corresponds to 

the 3-tuple (2,1,2). For n = (1,2) E A, we have $(a) = 1 and n:(a) = 0, since 

(u(i),v(i)) = (1,2) only for i = 1. 

The arc e in E corresponds to a flow of C-r from u(i) to v(i), i = 1, . . . . k, and a flow 

of r from u(i) to v(i), i = k + 1, . . . . 2k + 1, along the arcs (u(i), v(i)), i = 1, . . . . 2k + 1. 

If u(i) = v(i), no flow is assumed to have taken place. Define 

fz = (C - r>nT(a> + rnz(a), (3) 

for each arc a E A and e E E. The flow j”: corresponds to the total flow along arc a 

in A defined by arc e in H. Define 

b,p = c P,fZ> b; = c w, [f:/Cl ; b, = b,P + b;. 

UEA atA 

b{ represents the cost of sending C - Y units of flow from u(i) to v(i), i = 1, . . . . k, 

and Y units from u(i) to v(i), i = k + 1, . . . . 2k + 1. br represents the cost of purchasing 

sufficient capacity for the flow described above. 

Once again returning to the example in Fig. 2, and considering e to be the arc in H 

from the node corresponding to the 3-tuple (1, 1,s) to the node corresponding to the 

3-tuple (2,1,2), we have 

f,$ = 0, f$ = 7, fPz = 3, f;, = 0, f;, = 0. 

This implies that 

b,P=2x7+Ox3=14, b;=Oxl+Oxl=O. 

Consider the shortest path in I!! from SH to tH, using arc costs b,. We prove that 

such a shortest path defines the optimal solution to OFOC. 

Theorem 3.1. Given the problem OFOC, let the auxiliary graph H be dejined as 

above. Arc weights b, are as dejined above for e E E. Let P$ represent the shortest 
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1 paths in G corresponding to 

f,* = (C - r) C P,‘(a) + r C P:(a), 
i=l k+l 

in which P:(a) = 1 if a E Pi*, 0 otherwise. Let y,* = [f,*/Cl. The vector (y*, f*) is 

an optimal solution to OFOC. 

Proof. Consider any path p = {ei,e2, . . ..e.} from SH to tff in H. Let 

b(P) = c b,. 

.SP 

Let {~i}j=l , 2k+1 be the 2k + 1 paths in G corresponding 

where 

k 2ktl 

7, = (C - r) CPj(a) + r C Pi(a), 
i=l k+l 

where pi(a) = 1, if a E Pi, 0 otherwise. Let j, = [T,, - , . /Cl 

Note that 

to p. Define the flow vector f, 

f&f:, 
i=l 

where f 2 is defined for each arc a in A as in (3). Note that 

~b~=~~p,f~=~~p,f~=CP,f, 
i=l i=l aEA aEA i=l UEA 

and 

Thus, for each path p in H from SH to tH, there exists a corresponding solution to 

OFOC whose cost is no more than the length of the path. 

Now we prove that given an extreme optimal solution to OFOC, there exists a path 

in H from sH to tH with length no more than the cost of the optimal solution. 

Let (y’, f’) be an extreme optimal solution to OFOC. Since all costs are non- 

negative, we can assume that the subgraph G’ = (V’,A’) of G, induced by the arcs 

with fa’ > 0 is acyclic. 

By Proposition 3.2, the flow f’ can be decomposed into 2k + 1 paths {Pi’}f:t’, 
in G’. Let Pi’ = {(v~,v~),(v~,v~) ,..., (vf’,vf’+‘)}, i = l,..., 2k + 1, where vj = s 

and ,!I+’ = t. Since G’ is acyclic, each path P( has at most IV’1 nodes, i.e., li + 

l<jr;/l. If Zi + 1 < IV/I, define 4 = t for Zi +2<j<)V’l. In the auxiliary graph 
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H, consider the path P’ = {q’, ez’, . . . . elvrl’}, where f,’ is the arc in H directed 

from the node corresponding to the 2k + 1 -tuple (G{, L$, . . . . I&+, ) to the node corre- 

sponding to the 2k + 1-tuple (11/1+‘, II?’ , . . . . I_$~,), where the nodes L{ are as defined 

above. 

The above procedure defines the path P’ in H given paths {PL’}fL:‘, in G’. Note 

that by construction, given any arc a E A’, there is exactly one arc ej’ in P’, such that 

.f:l’ > 0, where ,f?’ is as defined in (3). Note that 

IV’1 IV’1 IV’/ 

xbg. =~~p,f? =~~PJ?’ -UP&,’ 

j=l j=l aEA aEA j=l UEA 

and 

The last equality holds since there is exactly one arc cj’ in P’ such that f:' > 0. Thus 

the length of the path P’ is no more than the value of the optimal solution (y’,f”). 

We have thus shown that the shortest path in H from SH to TV must have length equal 

to the value of the optimal solution to OFOC. The flows and capacities corresponding 

to this path define the optimal solution. The result thus follows. 0 

Once again consider the graph G in Fig. 2. In the corresponding graph H, the shortest 

path from (s,s,s) to (t, t, t) is given by the path corresponding to the node sequence 

(s,s,s), (1, l.s), (2,1,2), (t, t, t). The length of this path in H is given by 20+14+34 = 

68. This path corresponds to three paths in G with 

PI = {(s, 1),(1,2),(2,t)}, P? = {(s, l),(l,t)};P3 = {(&2),(2,f)}. 

A flow of C - r = 3 is sent along PI and a flow of r = 7 is sent along each of P2 

and P3. The total cost of this flow is also 68. 

3.3. An asymptotically optimal heuristic 

We provide a simple heuristic that is shown to be asymptotically optimal. This is 

similar to the heuristic given by Magnanti and Mirchandani for the case without flow 

costs. The heuristic solution is obtained as follows: 

(1) 

(2) 

(3) 

In the graph G find the shortest path from s to t using arc costs Cp, + w,. Send 

kC units of flow through this shortest path. 

Find the shortest path in G from s to t using arc costs rp, + w,. Send r units of 

flow through this path. 

Let j”,” be the resulting flow on each arc a. Define y,” = [,f,h/Cl. (yh,,fh) is the 

heuristic solution. 
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Proposition 3.3. Let Zh be the cost of the heuristic solution and Z* be the cost of 
the optimal solution. We have 

g d(k + 1)/k. 

Proof. Consider the problem where kC units are to be sent from s to t. The optimal 

solution to this problem is to find the shortest path from s to t with arc costs Cp, + w, 
and send kC units along this path. Let Z be the cost of this solution. Note that 

The result thus follows. 0 

Note that as k increases the heuristic solution is asymptotically optimal. 

Remark 3.1. Note that the heuristic gives the optimal solution if d = kc. In general, 

if we are seeking a solution no worse that (1 + 6)Z* and 6 3 l/k, use the heuristic to 

obtain a suitable approximate solution. If 6 < l/k, use the algorithm in Section 3.2 to 

obtain an exact solution. 

4. The two-facility one-commodity problem 

In this section we consider the two-facilty one commodity problem discussed earlier. 

For the case where flow costs pa are not all zero, TFOC is clearly NP-hard since it 

contains OFOC as a special case if we set WA = w,‘, i.e., it costs the same to buy 1 

unit or C units of capacity. We can thus restrict attention to the special case where all 

flow costs are 0. Note that in this case we may as well assume that d is integer, since 

if d is fractional the total cost of sending d or Id] units of flow is the same. 

TFOC without flow costs is very similar in structure to OFOC with flow costs. In 

fact, all the results from Sections 2 and 3 can be extended to TFOC, with minor mod- 

ifications. Rather than repeat all the proofs, we simply discuss the minor modifications 

that can be used to obtain all the results. 

Proposition 4.1. The problem TFOC is NP-hard for the case when all flow costs 
are 0. 

Proof. The proof is similar to that of Proposition 2.1. Consider an instance of Minimum 

Cover as in the proof of Proposition 2.1. Construct the graph GF as described. On the 

graph GF, consider the problem TFOC, where kC + 1 units of flow is to be sent from 

s to t for C > 10n. Arcs a along the paths Pj have WA = w,’ = M. The arcs of 

the form (s,O,‘) and {(O?,O,!+,)}F==, have w, ’ = 4M/C,wi = 4M. All other arcs have 

WA = wf = 0. The flow cost pa is 0 on all arcs. 
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The rest of the proof is identical to that of Proposition 2.1. TFOC on GF has a 

solution of value (2n + I)kM + 4(n + l)M/C or less if and only if, there exists a 

solution to minimum cover. The result thus follows. 0 

To obtain an algorithm for TFOC we need structural properties similar to those 

obtained in Section 3.1. The key result to obtain is one similar to Proposition 3.1, 

since the rest would then follow as in Section 3. We need to modify some of the 

definitions in Section 3.1 to obtain such a result. A solution to TFOC is a vector 

(y;, y;, f *), where y;(a) corresponds to the number of units of facility 1 purchased 

(of capacity 1 each) for arc a, y;(a) corresponds to the number of units of facility 2 

purchased (of capacity C each) for arc a, and f*(a) corresponds to the flow on arc a. 

Given a solution (y;,y;,f*), define an arc a to be a free arc if f*(a) < [f*(a)/Cl C. 

Note that this definition is consistent with the definition of free arcs in Section 3.1. 

Proposition 4.2. Let (~7, y;, f *) be an optimal solution to TFOC with the minimum 

number of free arcs. All the free arcs dejined by (y;,,vT, f *) lie on a path (ignoring 

direction) from s to t. Free arcs directed J&ward along this path have a flow Jiom 

{lC + r}t=“, and those directed backwards have a jlow from { IC - r}!,,. 

Proof. The proof is similar to that of Proposition 3.1. As in the proof of Proposition 
3.1 we can show that for any node set X C V,s E X, t E V \ X, at least one of the 

sets S+(X) or S-(X) contains a free arc. This implies at least one path from s to t 

(ignoring direction) using only free arcs. 

Assume that there are two such paths PI and P2 defined by the free arcs. Without 

loss of generality we can assume that the two paths have no arc in common. If this 

is not the case we can restrict attention to the distinct set of arcs in the two paths. 

Define 

A,={aEP,UPz:y;(a)>o}, 

AZ=P, uP2\A,. 

Note that for a E Al, we can assume that y;(a) = f*(a) - Cy;(a) since w’(a)>O. 

For each arc in AI, we have f*(a) < Cy;(a). 

Let Pf(PF) be the arcs in Pi in the forward (backward) direction. For each arc a 

in PI U PI (with a flow of f*(a)), let IV’(a,f*(a)) be the cost (in terms of the cost 

of capacity to be purchased) of increasing flow by one unit from f*(a) to f*(a) + 1, 

and @(a) be the savings (in terms of the cost of capacity to be purchased) from 

decreasing flow by one unit, from f*(a) to f*(a) - 1. If a E AZ, then W’(a, f *(a)) = 

0. If a E Al, then W’(a, f *(a))<wl(a) and WD(a, f *(a)) = WI(~). Therefore, 

W’(a, f *(a))< J@(a,f*(a)) for all arcs a E PI U P2. 

This implies that either 

c I+%,f*@))d c ~%,f”(4) 
aEP;UP; aEP$P; 
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or 

c ma, f*(a)) Q c @$4 f*(a)>. 
aEPyUP; aEP:UP; 

Without loss of generality assume that 

c @(a, f*(a)) G c ~% f*(a)). (4) 
nEPfLJP,b UEPpP; 

Further note that if [ft/C] = [fz/CJ and Lfr/CJC < ft < f2 < [ft/Cl C, we have 

W’(G j-1) 3 ma, f 2 ), and WD(a, fl> B WD(a, f2>. (5) 

Define 

a = min{$(u) + Cy2*(u) - f*(u) : a E Py UP,“}, 

b = min{f*(u) - ([f*(u)/Cl - l)C : a E Pf U Pi} 

Consider the solution (j,, j& T), where, 

7, = 

i 

f,* - min{B,cr} for a E Pf U Pi, 

f,* + min{/I, U} for a E P2f U Pi, 

f,* otherwise. 

For each arc a, v,(u) and J,(u) are defined so as to minimize the cost of installing 

sufficient capacity on arc a for a flow of f(u). From (4) and (5) we thus have 

C(w’(a)j,(a) + w2(a)Ma)) d ~(wl(a)JG(a) + w2(a)$(a)). 
UEA UEA 

Thus (Jt, j2, f) is also an optimal solution to TFOC. However, it has one fewer free 

arc than (VT, y;, f * ), contradicting our assumption. Thus, the free arcs define exactly 

one path from s to t. 

The rest of the proof is identical to the proof of Proposition 3.1. 0 

We can thus prove an equivalent of Proposition 3.2. Define minimal free arc extreme 
optimal solutions as in Section 3.1. 

Proposition 4.3. Let (~7, y;, f *) be a minimal free urc extreme optimal solution to 
TFOC. There exist 2k + 1 paths {Pi}f:t’, from s to t, such that 

f,* = (C - r)ePF + r ‘5 P,“, 
i=l i=k+l 

where Pi” = 1 if a E Pip 0 otherwise. 
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Given the graph G = (V,A), we can construct an auxiliary graph H = (N,E) exactly 

as described in Section 3.2. Define ,fE as in (3). Define 62 to be the minimum cost of 

installing sufficient capacity (using both types of facilities) on arc a to support a flow 

of fz. Define 

b, = c 6;. 
aEd 

Using a proof identical to that of Theorem 3.1, we can thus prove that the short- 

est path in H from SH to tH, using arc cost b,, defines the optimal solution to 

TFOC. 

Theorem 4.1. Given the problem TFOC, let the auxiliary graph H be defined as 

above. Arc weights b, are as defined above for e E E. Let Pg represent the shortest 

path in H from sn to tn. Let {Pt}fL:’ be the 2k + 1 puths in G corresponding to 

Pg. Dejne the flow vector f *, where 

f,* =(C-r)&P:(a)+r2FP:(a), 
i=l k+l 

in which P;“(a) = 1 if a E Pi”, 0 otherwise. Let ,$(a),)~;(~) be the minimum cost 

capacity to support a jlow of ,f,* on arc a. The vector (yT, y;,,f*) is an optimal 

solution to OFOC. 

From Theorem 4.1 it thus follows that for a fixed Ld/C], TFOC can be solved in 

polynomial time if all flow costs are 0. Magnanti and Mirchandani have provided a 

heuristic as in Section 3.3 that is asymptotically optimal for TFOC if all flow costs 

are 0. This heuristic also provides the optimal solution if d = kc. 

5. Extended formulations for OFOC and TFOC 

In this section, we use the characterization of extreme optimal solutions from Section 

3 to obtain extended formulations for OFOC and TFOC. In each case we show that the 

LP-relaxation of the extended formulation gives a better lower bound for the integer 

optimum, compared to the natural formulation, with a family of “cut set” inequalities 

added. This is valuable because the LP-relaxation of the extended formulation can be 

solved in polynomial time, while the separation problem for the “cut set” inequalities 

is hard. In each case, we also characterize objective function coefficients for which the 

LP-relaxation of the extended formulation gives integer optima. 

5.1. Extended formulation for OFOC 

We first consider a natural formulation for OFOC. For each arc (i,j), let fi, be 

the flow and yi,, the batches of capacity installed (each batch provides C units of 
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capacity). OFOC can be formulated using the natural formulation NFO (see also [6]) 

below: 

Min C wijYij + C Pijf ij 

(ij)EA (ij)EA 

1 

-kc-r for i = s, 

S.t. C fji - C fij = kC + r for i = t, 

i i 0 otherwise, 

CYij - f ij 2 0, Y, f 2 0; Y integer. 

(6) 

(7) 

Define the polytopes 

LPOl = {(y,f )>Ol(y,f) satisfies (6), (7)}, 

IPO = {(y, f) E LPOl, y integer}. 

We describe a set of strong valid inequalities for ZPO that are similar to, and ex- 

tend inequalities described by Magnanti and Mirchandani. Given X c V, define S+(X) 

(6-(X)) to be the arcs in the cut directed out of (into) X. Given XC V, s E X, 

t E V \ X, partition the arcs in S+(X) into the sets Bt and B2. For any arc set 

D c S-(X), define the cut set inequality 

CfafrCYn+(C-r)Cyo-Cfo~rrd/~l 
CZEB, C&B2 CZED UED 

(8) 

For any arc set S c A, and any vector x E RA, define xs = CaES x,. Given a vector 

(y, f) satisfying inequalities (8), and a set S LA, define ks = l(fs - 1)/C] and 

rs = fs - Cks. We also assume hereafter that k = [(d - 1)/C] where d = kC + r. 
Notice that therefore r > 0. We now prove that the cut set inequalities are valid for 

IPO. 

Theorem 5.1. The cut set inequalities (8) are valid for IPO. 

Proof. TO prove validity, we have to show that f & + ry& + (C - r)yD - f D 2 r [d/Cl. 
There are two cases to consider. 

Case 1: fo = 0. Since the net flow across any cut is d units, fB, ad - fB, . Since 

CY& 2 f Bz ad - f B1, _I$ 3 [f Bz/cl 2 [(d - f B, )/Cl = [( Ck + r - CkB, - rB, )/Cl. 
Since we assume that r > 0 and rs, <C, we have 

YBz 2 
{ 

k - ks, if r<re,, 

k-kB, +1 if r > rs,. 

Therefore, if r < rB, , we have 

f& + ry& = CkB, + rB, + ryB, = (c _ r)kB, + rB, + rks, + rysz 

k(C-r)kg, +r+rk>r[d/c], 
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where the last inequality follows from the fact that k+ 1 = [d/Cl. Similarly, if r > Q, 

we have 

.fB, + YYL?Z = (c - r)kE, + ye, +- &, + ryE2 

2 (c - r)ks, + r~, + r(k + 1) 3 r [d/cl. 

Cuse 2: f~ > 0. In this case, the flow across the arcs Bt u B2 is at least d + fn. 

Thus, JQ> 3 [j-&/C] > [(d + fD - fs, )/cl = [(ck + Y + CkD + rD - CkB, ~ rB, )/Cl. 
Therefore. 

k + ko - ks, if r + rD - rB, 60, 

YBz 2 k + ko - ks, + 1 if 0 < r+rD-r&<C, 

k + ko - k& + 2 if C < r + rD - 1’5,. 

Since f n > 0, YD >kD f 1. Therefore, the left-hand side of the inequality K = 

fB, +rYBz + (c - r)yD - fD>(c - r)ks, + rB, + & + ry& + C - rkD - r - I’D. lf 

r+rD-rBl 60, thenK>(C-r)b, +rk+C>r(k+ 1). If 0 < r+q-rB, <C, then 

K3(C-r)ks, +rk+r>r(k+l). If C < r+rD-ra,, thenK>(C-r)ks, +rk+r 

$- C + Q, - rD 3 r(k + 1) where the last inequality follows from the fact that C > rD, 

Define the polytope 

LP02 = {(y, f) E LPOl/(y, f) satisfies (8)). 

In general, optimizing over LPO2 is hard because the separation problem for the cut 

set inequalities is hard. 

We now define an extended formulation for OFOC, based on the characterization of 

extreme optimal solutions in Proposition 3.1. By Proposition 3.1, all free arcs in an 

extreme optimal solution lie on a single path from s to t. Free arcs directed forward 

along this path have a flow from { IC + r}t,, free arcs directed backward on this free 

path have a flow of {IC - r}%, . All other arcs have flow that is a multiple of C. 

Define variables hij which takes the value 1 if the flow on arc (i,j) equals IC, 

IC + Y, or (I + 1)C - r. In other words, h, takes the value I if the flow on arc (i,.j) 

is at least 1C but less than (I + l)C. The variable eij(gij) takes the value 1 if the 

flow on arc (i,j) is of the form ZC + r (ZC - r). The variable yij is as defined for 

the naural formulation. OFOC can now be formulated using the extended formulation 

EFO shown below: 

Min C wijYq + C Pij(Chlj + reij + (C - r)Qij) 
(ij)tA (ij)EA 

s.t. C(e,i - .4ji - eij + Sij) = r ’ 

for i = s, 

for i = t 

i 0 
othenvlsk (9) 
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yij - eij - hij - gq 3 0, eij, hij, gij, yij 3 0, integer 

(10) 

(11) 

Define the polytopes, 

EPO = {(Y,e,g,h)~Ol(y,e,g,h) satisfies (9),(10),(11)}, 

EIPO = {(y,e,g,h) E EPOle,g E (0, l}, y,h integer}. 

Let 4 denote the linear transformation defined by fa = t-e, + (C - r)ga + Ch,. The 

next result shows that IPO = 4(EZPO). It is stated here without proof, since the proof 

is fairly straightforward and uses the fact that any extreme vector (y, f) E ZPO if and 

only if there exists a vector (y, e, g, h) E EIPO, where f a = ye, + (C - r)ga + Ch,. 

Theorem 5.2. Any vector (y, f) E IPO if and only if there exists a vector (y, e, g, h) E 

EIPO where f a = re, + (C - r)ga + Ch,. 

The next result shows that &EPO) C LPO2, i.e., the linear transformation of the 

polytope EPO (from the LP-relaxation of the extended formulation) is contained in 

the polytope LPO;! (from the LP-relaxation of the natural formulation and all cut set 

inequalities). 

Lemma 5.1. Given any vector (y, e, g, h) E EPO, the vector (y, f) E LP02, where 

fa = re, + (C - r)ga + Ch,. 

Proof. Consider any vector (y, e, g, h) E EPO. Define f a = re, + (C - r)ga + Ch, for 

each arc a. Since e, g, h satisfy constraints (9) and (lo), 

r (~~ej~~,j.~e~j+LJi,I) = { rr 

0 otherwise, 

-Ck for i = s, 

C(hji + gji - hij - gij) Ck for i = t, 

i 0 otherwise. 

Adding the two sets of equations, we obtain 

C(fji- fij)= 
.i 

This implies that (y, f) satisfies all equations in (6). 
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Since CYij - Cc, - Cgij - Ch, 2 0, and Ceij + Cgij + Ch, a,f,j, it follows that 

C.Yij - flj 3 0. Therefore, (Y, f), satisfies all inequalities (7). 

The equality constraints in EFO imply that xj(hS, + e,T,) = Cj(h,, + ej,) = k + 1. 

Therefore, ee, + hs, + eB2 + hsz - eo - hD 3 k + 1 = [d/Cl across any cut x c v such 

that 3 E x, t E V\x. Observe that the vector (Y, e, y, h) satisfies the following: 

r(ee, f hs, + eBz + hB2 - en - hr,) 2 r[d/q, 

.f~, = ChB, + reg, + (C ~ r)gs,: 

rys, B reB, + rhB2 + rgBz, 

(c - r)YD > (C - r)(eo + hD + go), 

reD f Cb + (C - r)gD = f D. 

This implies that 

f~, +VE, +(C - r>.m - f~>r[d/Cl 

+(C - r)(hs, + gB, + eo> + rgB2 > r [d/Cl. 

Thus, the vector (.Y,f) satisfies all the cut set inequalities (8). The result thus follows~ 
0 

Therefore, EPO provides a LP-relaxation for OFOC that is at least as strong as the 

one provided by LPO2 in terms of the lower bound. 

Theorem 5.3. Comparing EPO and LPO2 we have 

min CWaYa + c p,(Ck + ye, + (C - r)&)l(y,e,g,h) E EPO 
aEA lIEA 

>, min 

i 
c W,YQ + c Pafal(Y4> E LPO2 . 

UEA lIEA I 

The LP-relaxation of the extended formulation is thus at least as strong as the LP- 

relaxation of the natural formulation, even after the addition of all cut set inequalities 

(8). 
We now establish conditions on the cost function coefficients that guarantee integer 

solutions for OFOC. Let a(i,j) (b(i,j)) denote the minimum distance from node i to 

node j if arc costs are set to Wij + Cp,, (Wij + rplj) and let P”(i,j) (P”(i,j)) be the 

shortest such path. The next result gives a condition under which optimizing over EPO 

results in a integer optimal solution. 

Theorem 5.4. Zf for every arc (i,j), a(s, j) - a(s, i) + b(s, i) - b(s, j) < wii + (C - r)pij, 

then the the optimal solution over EPO (the linear programming relaxation of EFO) 

is an integer. 
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Proof. The dual DEFO of the LP-relaxation of EFO is 

S.t. Cij - cli - Yij d Cpij, 

Bj - Pi - Ylj G rPij> 

OIj - Mi - pj + pi - Yij d (C - r)pij, 

Yij G Wij, 

ai, Bi, Yij 3 0. 

Set cli = a(s, i) and pi = b(s,i) for every node i. Set ~0 = wij for every arc. Send 

kC units of flow from s to t on the shortest P”(s,t) path and r units of flow on the 

shortest Pfi(s, t) path. Set yij = I if flow on arc (i,j) equals IC and yij = I + 1 if flow 

equals ZC + Y. This gives a primal feasible solution. It is easy to verify that the Et, 

pi and yij values satisfy dual feasibility. Clearly, if flow value eij or fij on any arc is 

positive, the corresponding dual constraint is satisfied at equality since flow is along 

shortest paths. Hence, complementary slackness conditions are satisfied and therefore, 

we have an optimal solution. 0 

As a corollary to this result we obtain 

Corollary 5.1. Zf Wq/pij = q for all arcs (i, j), then the optimal solution over EPO 
is integer. 

Proof. Let Q(i) (Qs(i)) denote the set of arcs on the shortest P”(s,i) (Pp(s,i)) path 

from node s to node i. Then a(& j) = Cckr)EQ,(i)(Wkl+ CPU) = (q + C) Cck()ce,(i) pkl. 

Simi1ar1y, b(s2 j) = (4 + r, c(k[)QJb(i) p k[. Let 6; denote the shortest distance from 

node s to node i using p,+l as arc lengths. Then, a(s, j) - a(s, i) + b(s,i) - b(s, j) = 

(C - r)(Si - &)<(C - r)pv<wif + (C - r)pu. The result thus follows by Theorem 

5.4. Notice that we can send the entire how d on the shortest s - t path with pij as 

arc costs. 0 

5.2. Extended formulation for TFOC 

We first consider a natural formulation for TFOC as in Magnanti and Mirchandani. 

For each arc (i, j), let fij be the flow, J$ the batches of facility 1 (each batch has 1 

unit), and JJ$ the batches of facility 2 (each batch has C units) installed. TFOC can 

be formulated using the natural formulation NFT shown below: 

Min C Why; + C Wi_YG + C Pijfij 

(i&A (ij)EA (i,j)~A 

-kc-r for i = s, 
s.t. C fji - C fij = kC + r for i = t, 

i i 0 otherwise. 
(12) 

(13) C_Yi + _Yi - f ij 2 0, 

y’,y2,f 30;y’,y2 integer. 
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Define the polytopes 

LPTl = {(~‘,~~,f)~Ol(y’,y’,f) satisfies (12),(13)), 

ZPT = {(y,,y~,f) E LpT~,y’,y’ integer}. 

We describe cuf set inequalities similar to inequality (8). Given X c V,s E X, t E V\X, 

let B denote the set of arcs in the cut 6+(X). For any arc set DC E(X), define the 

cut set inequality 

(14) 

The validity of the cut set inequalities (14) can be proved as for the cut set in- 

equalities (8). 

Theorem 5.5. The cut set inequalities (14) are valid .for IPT. 

Define the polytope 

LPT2 = {(y’,y2,f) E LPT~j(y’,y~,f) satisfies (14)). 

For the extended formulation, define variables hh. (hs) which take the value I if the 

flow on arc (i,j) equals lC, IC + Y, or (1 + 1 )C - Y and the capacity is provided 

by type 1 (type 2) facilities. Thus if flow on arc (i,j) is kC + r and yt = 1 and 

yt = (k - 1)C + r, then hh = 1 and h$ = k - 1. The variable eb(ek) takes the value 

1 if the flow on arc (i,j) is 1C + r and the capacity for the last Y units is provided 

by type 1 (type 2) facilities. Similarly gb(gfj) takes the value 1 if the flow on arc 

(i,,j) is 1C - r and the capacity for the last C - r units of flow is provided by type 1 

(type 2) facilities. TFOC can be formulated using the extended formulation EFT shown 

below: 

Min c 2 w:y$ 
(I/)EA u=l 

S.t. C e(eJ!; - g/“i - et + gyj) = 

I u=l otherwise, 

2 f -k for i = s, 

fori = t, 

.i Li=l (0 
yh - rej, - Ch$ - (C - r)gf, 2 0, 

y~-e~i-h~-g~>O, 

e&h:, g$, yt > 0, integer. 

otherwise, 

(15) 

(1’5) 

(17) 

(18) 
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Define the polytopes 

EPT = {(y*,e*,g’,h”;u = 1,2) 

>O((yU,e”,g”,h”;u = 1,2) satisfies (15) - (18)}, 

EIPT = {(yU,eU,gU,hU;u = 1,2) E EPTle”,g” E {O,l},y,h integer}. 

Let 8 denote the linear transformation defined by fa = ~~=,(Ch~ + rez + (C - r)gl). 

The next result (stated without proof) shows that IPT = B(EIPT). 

Theorem 5.6. Any vector (y, f ) E IPT if and only if there exists a vector (y, e, g, h) E 
EIPT where f a = ye, + (C - r)g, + Ch,. 

For any subset of arcs S c A, and any quantity x,“, define .I$ = CaES x,” for u = 1,2. 

The next result shows that B(EPT) C LPT2. 

Lemma 5.2. Given any vector (y”, e“, g’, h”; u = 1,2) E EPT, the vector ( yl, y2, f) E 
LPTz, where f a = C,(rei + (C - r)gz + Chi ). 

Proof. One can show that the vector (y’, y2, f) satisfies (12) and (13) similar to the 

proof of Lemma 5.1. We now prove that the vector (y’, y2, f) satisfies all cut set 

inequalities (14). 

The equality constraints in EFT imply that Cj(hij + hzj + eij + es’;.> = cj(hjt + h$ 

+ ej, + eI:> = k + 1. Therefore, hi + hi + e; + ei - hb - hi - eb - ei > k + 1 = 

[d/C], across any cut X c V such that s E X, t E V\X. Observe that the vector 

(y’, e”, g*, h”; u = 1,2) satisfies the inequalities 

y; > re; + Ch; + (C - r)gh, 

ryi 2 r(ei + hg + gi), 

yb 3 reb + Ch; + (C - r)gb, 

(C - r)yi 3 (C - r><ei + hi + gi), 

r(hL+hi+eL+eg-hb-hi-eb-ei) 3 r[d/C], 

and the equalities 

reb + Chb + (C - r)gb = fh, 
rei + Chi + (C - r)gi = f & 

This implies that 

yL+ryi+yb+(C-r)y$- fD>r[d/Cl. 

The result thus follows. •! 

Therefore, EPT provides a LP-relaxation for TFOC that is at least as strong as the 

one provided by LPT2 in terms of the lower bound. 
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Theorem 5.7. Comparing EPT and LPT2 we have 
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rnin ~j:w~y~,(y’,e~,g’,h”;u = 1,2) E EPT) 
rrEA n=l 

If wi 3 Cwj,, then we need not consider facility 2 on arc (i, j). Therefore, we assume 

that w$ < Cw,:. Hence, the minimum cost of sending ZC units on any arc (i,,j) is 

always Iwi.. Let a(i, j) (b(i, j)) be the shortest distance from i to j if we set arc 

costs to w~l(min{rw~l,~~,}), and let wii(r) = min{rw:,,wir}. We now give a sufficient 

condition under which optimizing over EPT results in an integer solution. 

Theorem 5.8. IJ‘.for every urc (i, j), a(.~, j) - a(s, i) + b(s, i) - b(s,j) d min{( C - 

WI/, wf,] then the optimal solution over EPT is integer. 
f-1 

Proof. Set x, = a(s, i) and pi = b(s, i) for every node i. Set ~1/ = w; and 7; = wan for 

every arc. It is easy to verify that this gives a dual feasible solution. Send kC units 

of flow on the shortest P’(s, t) path and r units of flow on the shortest Pfi(s, t) path 

from s to t. If flow on arc (i,,j) equals IC, set yt = h$. = 1. Suppose flow on arc (4 j) 

equals IC + r. If rw;. <w$, set y& = Y, et = 1 and yt = h$ = 1. If PW~. > w$ set 

yc = 1-t 1, hfi = 1 and ek = 1. This gives a primal feasible solution. If flow value ej,, 

ef,, hfi or hf, on any arc is positive, then the corresponding dual constraint is satisfied 

at equality since flow is along shortest paths. Complementary slackness conditions are 

therefore satisfied and hence, we have an optimal solution. 0 

As a corollary to this result we obtain 

Corollary 5.2. If w$/wb = q for all urcs (i, j), then the optimal solution over EPT 

is integer, with no reverse arcs on the JLee path. 

Proof. We assume that q < C, since otherwise, we need not consider facility two in 

any optimal solution. Let Q?(i) denote the set of arcs on the shortest P”(s,i) path from 

node s to node i. Then a(s, i) = C (k/)@,(i) w,k = 9 C(kl)EL),(i) Wkl. ’ There are two cases 

to consider. 

Cuse 1: Suppose q6r. Then wii(r) = WC. for all arcs. Therefore, the shortest P’(s,i) 

path is the same as the shortest P”(s,i) path. 

Hence, 

a(s, j) - a(.~. i) + b(s, i) - b(s, j) = 06 min{(C - y)wh., w;.}. 

Case 2: If r < q, then wij(r) = rwh.. Let 6i denote the shortest distance from s to i 

if we set all arc costs to wb. 



188 S. Chopra et al. IDiscrete Applied Mathematics 85 (1998) 165-192 

Table I 
Graphs used in computational tests 

Graph name No. of nodes No. of arcs 

Graph I 27 102 

Graph 2 30 120 

Graph 3 40 160 

Graoh 4 50 200 

Then, 

U(S,j) - U(S, i) + b(S, i) - b(S,j) = q(6j - Si) + t”(6i - Sj) 

= (4 - r)(CSj - Si) <(q - r)Wb 

d min{(C - Y)w$, w;}. 

The result thus follows by Theorem 5.8. 0 

6. Computational results 

In the previous section we saw a theoretical justification for using extended formu- 

lations for both OFOC and TFOC. In this section we present computational results 

showing the efficacy of the extended formulations in practice. 

At the outset of the computational tests, we were seeking answers to the following 

questions: 

(1) How much more effective is the extended formulation compared to the natural 

formulation? 

(2) How effective is the extended formulation in solving OFOC and TFOC? 

To try and obtain answers to these questions, we solved a total of 378 problems 

(189 for each of OFOC and TFOC), using each of the two formulations (natural and 

extended). All problems were generated from four basic graphs described in Table 1. 

Graph 1 comes from a real world problem while graphs 2, 3, and 4 are randomly 

generated. Given the graphs the graphs and costs, new problems are generated by 

randomly generating a new source and sink. Figs. 4 and 5 contain results for OFOC 

while Figs. 6 and 7 contain results for TFOC. Each point in the graphs represents an 

average over three problems. 

All computational tests are on an HP Apollo 715150 and the LP-solver used is 

CPLEX version 2.1. 

For OFOC, Graph 1 was used to generate three problems each for flow values of 

kC + r for k E { 1,3,6,9} and r E { 1,2,. . ,9}. In all the problems we use a batch 

size of C = IO. Each of the three problems were generated by randomly generating a 

new source and sink. Optimal solutions for the LP-relaxation of the natural formulation 

(Zl) as well as the extended formulation (22) were recorded for each problem. The 

graph in Fig. 4 records the average percent gap (over three problem instances) between 
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the two solutions given by lOO(Z2 - Zl)/Z2 for different flow values. Fig. 5 records 

the average percent gap for the four graphs in Table 1 for flow values of 10 + Y, for 

Y E {1,2 ,..., 9). 

From our computational test solving OFOC we make the following observations: 

1. For each problem instance attempted (189 in all), the LP-relaxation of the extended 

formulation gives an integer optimal solution for OFOC. This is not the case for 

even one problem instance using the natural formulation. The percent gaps (lOO(Z2- 

Zl)/Z2) observed are as large as 38% between the optimal solution of the LP- 

relaxation of the natural and extended formulation (see Figs. 4 and 5). 

2. The largest amount of time taken to obtain the integer solution for OFOC using the 

extended formulation is under 6 s. 

3. The gap between the natural and extended formulations tends to be large (over 30%) 

for small remainders (i.e., flow = kC + Y where r = 1) and declines significantly 

(to as low as 3%) when the remainder is close to batch size of capacity (i.e., flow 

= kC + I” for r = 9 where C = 10). 

4. The gap between the natural and extended formulations declines (see Fig. 4) as the 

total flow increases. For example, the gap is 25.7% when flow is 11 (=l x 10 + 1) 

and declines to 4.2% when flow is 91 (=9 x 10 + 1 ), even though the remainder is 

the same in both cases. 

To test performance of the two formulations for TFOC, we used the same four 

graphs listed in Table 1. Facility 1 was assumed to provide a capacity of 1 unit while 

facility 2 was assumed to provide a capacity of 10 units. The costs for facility 2 are 

as in the problem instances for OFOC. The costs of facility 1 are randomly generated 

such that between 4 and 6 units of facility 1 cost the same as 1 unit of facility 2. 

Flow costs are assumed to be zero in each case. Figs. 6 and 7 contain the average 

percent gap (over three problem instances for each point) between the LP-relaxation 

of the natural and extended formulations for TFOC. From the computational results we 

make the following observations: 

1. For each problem instance (189 in all), the LP-relaxation of the extended formulation 

gives an integer optimal solution for TFOC. This is not the case for even one 

problem instance using the natural formulation. The percent gap between the LP- 

relxation to the natural and extended formulations are as large as 25% (see Figs. 6 

and 7). 

2. The largest amount of time taken to obtain the optimal solution using the extended 

formulation was under 8 s. 

3. The percent gap between the natural and extended formulation tends to be large 

(about 25%) for remainders around 5 (see Fig. 6) and declines significantly (to 

about 2-3%) as the remainder declines to 1 or increases to 9 (recall that facility 2 

has a batch size of 10). 

4. The gap between the natural and extended formulations declines (see Fig. 6) as the 

total flow increases. For example, the gap is 25% when flow is 15 (= 1 x 10 + 5) 

and declines to 5% when flow is 95 (=9 x 10 + 5). 
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From our computational experiments we conclude that the extended formulations 

given in Section 5 are very effective in solving OFOC and TFOC and are far superior 

to the natural formulations. In each instance attempted by us, the extended formula- 

tion results in an integer optimal solution without resorting to branch-and-bound. This 

supports our claim that the extended formulations are effective for solving OFOC and 

TFOC. 
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