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Abstract

Although Branch-and-Bound (BnB) methods are among the most widely used techniques for solving hard problems, it is
still a challenge to make these methods smarter. In this paper, we investigate iterative patching, a technique in which a fixed
patching procedure is applied at each node of the BnB search tree for the Asymmetric Traveling Salesman Problem. Computational
experiments show that iterative patching results in general in search trees that are smaller than the classical BnB trees, and that
solution times are lower for usual random and sparse instances. Furthermore, it turns out that, on average, iterative patching with
the Contract-or-Patch procedure of Glover, Gutin, Yeo and Zverovich (2001) and the Karp—Steele procedure are the fastest, and
that ‘iterative’ Modified Karp—Steele patching generates the smallest search trees.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Asymmetric Traveling Salesman Problem (ATSP) is usually solved exactly by means of Branch-and-Bound
(BnB) algorithms and Branch-and-Cut (BnC) algorithms; see [8]. In BnB type algorithms, an Assignment Problem
(AP) is solved at every node of this tree, and the value of the optimal AP solution serves as a lower bound of the ATSP
solution. A part of the search tree can be discarded when its lower bound exceeds an upper bound. This upper bound
is usually the value of a shortest complete tour found so far. A class of heuristics applied to construct such a tour is
patching. The question is: at which nodes of the search tree should such a tour be constructed? Patching at a node may
reduce the search tree and the solution time, but if the reduction is too small, the overall solution time is increased due
to the time invested in patching.

In the literature, the most effective BnB methods do not patch at each node; see for example, [13,3]. These methods
use a best first search strategy, i.e., the subproblem with the smallest lower bound is solved first. According to these
studies, patching at every node is too time-consuming.

In this paper, we consider a BnB algorithm that applies depth first search, which means that the most recently
generated subproblem is solved first. This strategy requires algorithms to use much less computer memory than do
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Fig. 2. Minimum cycle cover.

best first strategies. Hence, it is useful for solving large problems. We apply iferative patching, in which a fixed
patching procedure is applied at every node of the BnB depth first search tree. Four iterative patching procedures are
considered in our computational experiments. These procedures are described in [5].

Given a set of locations and the distance between any pair of locations, the ATSP is the problem of finding a shortest
Hamiltonian tour; i.e., a shortest round trip visiting each location exactly once. Fig. 1 is an example of an underlying
graph that defines an instance of an ATSP. The nodes of the graph represent locations, and the arcs the connections
between the locations. A number next to an arrowhead denotes the cost of traveling along that arc.

General instances of the ATSP are often solved to optimality by means of enumeration algorithms, in which a
fraction of all feasible solutions are checked. BnB methods explore the solution space by using a search tree. We
discuss BnB algorithms that solve an Assignment Problem (AP) at each node of the corresponding search tree. After
solving the AP a minimum cycle cover F is obtained, say, consisting of k cycles (k > 1). In the example of Fig. 2,
three cycles are generated. If k > 1, the subcycles in F' can be patched into a complete tour. BnB algorithms use the
value of a patching solution as an upper bound by which nodes of the search tree are fathomed.

A patching operation is the simultaneous deletion of two arcs from a cycle cover and the insertion of two other
arcs, such that the number of cycles is reduced by one. In our example, two patching operations are needed for
the generation of a complete tour (see Fig. 3), namely first arcs (2,4), (5,6) are deleted and (2,6) and (5,4) are
inserted, and then we delete (12,9) and (2,6) and insert (2,9) and (12,6). The resulting tour is generally feasible but not
optimal.
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Fig. 4. Best patching solution is not a shortest tour.

In [10], patching is defined as a sequence of k — 1 patching operations on a cycle cover of k cycles, k > 1. Recall
that even a best possible patching procedure consisting of k — 1 patching operations does not always yield a shortest
complete tour. For example, consider the sparse network in Fig. 4. The minimum cycle cover consists of the k = 2
cycles (1,2, 3,4,5, 1) and (6, 7, 8, 9, 6) with total length 29. The unique shortest complete tour is (1, 2, 8,9, 6, 7, 4,
3,5, 1) with length 31. Since four arcs need to be inserted and deleted, this tour cannot be constructed from the cycle
cover by means of one patching operation. Different patching procedures are introduced in the literature; see [5,10,
11,16]. These patching procedures are discussed in Section 3.

Most heuristics for the ATSP apply patching procedures only once, such as to obtain approximations to optimal
solutions; see e.g. [5—7]. BnB algorithms apply patching procedures in order to obtain good feasible solutions with
which parts of the search tree can be discarded. Any heuristic may be used to generate such solutions, but patching
procedures are the most natural choices, since they use the structure of the already constructed minimum cycle cover.
If a fixed patching procedure is applied at every node in a BnB algorithm, we call it iterative patching. (See Fig. 5.)

The currently best BnB algorithms for the ATSP are introduced in [3,13]. We call these the CDT algorithm and
the MP algorithm, respectively. The CDT algorithm uses the patching procedure from Karp and Steele [11] at the top
node of the search tree. Only if the number of zeros in the reduced matrix at the top node exceeds a threshold value
B, then a subtour-merging procedure is carried out at each node of the search tree.

The subtour-merging procedure constructs first an admissible graph of zero-cost elements in the reduced matrix
and then tries to find a complete tour in the admissible graph. The subtour-merging procedure patches cycles together,
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Fig. 5. Flowchart of a subproblem of a BnB algorithm with iterative patching.

but only when a zero-cost patching operation is available. It usually does not return a complete tour. In Carpaneto
et al. [3], it is found that if 8 is set to 2.5n, the solution times are the shortest, where n is the dimension of the instance.

The MP algorithm applies the Karp—Steele patching procedure, but not at every node of the search tree. Nodes
close to the top node are patched more often than nodes deep in the tree. This algorithm also applies a subtour-merging
procedure at each node.

The CDT and the MP algorithm both use a best first search (BFS) strategy, which means that a node with the
smallest lower bound value is expanded next. BES is the fastest search strategy, but requires exponential memory
space. As a consequence, BFS algorithms are generally restricted to small or easily solvable problems [17]. In depth
first search (DFS), the most recently generated subproblem is solved first, and it requires polynomial memory space.
This makes it suitable for solving large and difficult instances. However, the search trees and solution times of DFS
algorithms are usually large.

Miller and Pekny [13] report that iterative patching is too time-consuming. This may be true for BFS algorithms,
but our algorithms use DFS. DFS algorithms search through deep nodes of the search tree even at an early stage; lower
bounds of such nodes are generally high. A tight upper bound obtained early enables the algorithm to discard a large
fraction of these nodes. Therefore, a DFS algorithm is more likely to benefit from a good upper bounding procedure,
such as iterative patching, than a BFS algorithm.

The computational experiments in Section 4 compare the search tree sizes and the running times of BnB algorithms
that apply iterative patching with a DFS implementation of the CDT algorithm. We apply four patching procedures,
namely the ones discussed in Glover et al. [5]. The main questions that we answer on iterative patching in this
paper are as follows. Is iterative patching effective for DFS algorithms? Is it true that if a patching procedure
returns on average shorter tours than some other one, then, again on average, the search tree sizes are smaller and
the running times are shorter? Hence, does better patching lead to the smaller search trees and shorter running
times?

2. The quality of patching procedures

Let G(V, A) be a graph with vertex set V and arc set A. A minimum cycle cover ' C A can be determined in
O(n?) time by means of the Hungarian algorithm; see for example [9]. The speed of the Hungarian algorithm can
be increased in successor nodes j to O (n?) by starting from the optimal solution in the parent node, i.e., the node in
which subproblem j is generated; see for example Fischetti et al. [8].
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Patching procedures delete pairs of arcs from F and insert pairs of arcs from A\ F in such a way that a Hamiltonian
cycle H C A is obtained. The patching cost of any patching procedure P is then denoted by cp (F) and defined as

cp(F)= Y cla)y— Y cb), M

acH\F beF\H

where c(a) denotes the cost of arc a € A. The first term of (1) indicates the cost of the new arcs introduced by P, and
the second term represents the cost of the arcs removed from the cycle cover. For any subset O C A, c(Q) denotes
the sum of the cost of the arcs in Q.

Let F; C A denote a minimum cycle cover at node j of the BnB search tree in progress. By BnB(Br, S, UBS) we
denote a BnB algorithm for the ATSP that applies branching rule Br, search strategy S, and upper bounding strategy
UBS. A branching rule Br partitions the current feasible regions into subsets. We consider branching rules that only
depend on the current minimum cycle cover. The search strategy S in this paper is DFS. The upper bounding strategy
UBS consists of two components: the first component prescribes at which nodes an upper bounding procedure should
be applied, and the second component specifies the upper bounding procedure to be used. Clearly, iterative patching
is an upper bounding strategy, where a tour is generated at every node of the search tree by means of a fixed patching
procedure. If no confusion is likely, we simply write BnB(UBS), since S and Br are fixed in this study.

Note that, in case of DFS, the order of node expansion is independent of the bounds used at each subproblem.
For instance, if both algorithms BnB(P;) and BnB(P,) explore two subproblems S; and S>, and BnB(P;) explores S;
before S,, then BnB(P,) will explore S; before S, as well.

Let ub;(UBS) be the current upper bound, i.e. the shortest complete tour obtained until node j using upper
bounding strategy UBS. Recall that, when the UBS is iterative patching, we obtain at each node of the search tree
a complete tour, i.e. a candidate for the value of ub; (UBS).

Node £ is called a successor of j in a search tree if j is an intermediate node of the shortest path between k and
the top node of the search tree; we use the notation k o j. Since the feasible region of the AP at node k is a subset of
the feasible region of the AP at node j, we have of course that c(Fy) > ¢(F;) if k o j; see e.g. [17].

In the case of iterative patching, one may expect that if patching costs are low, then upper bounds are tighter and
a larger number of subproblems can be fathomed. Theorem 1 formalizes this assertion: if for each instance patching
procedure Pj is cheaper than patching procedure P,, then the search tree of BnB(P;) will be smaller than the search
tree of BnB(P»).

For any iterative patching procedure P, let BnB(P) be the algorithm that uses P iteratively. Define #BnB(P) as
the size of the solution tree of BnB(P), i.e. the number of nodes in this tree. We assume in Theorem 1 that BnB(P;)
and BnB(P,) use the same AP-solver implementation, since the choice of another AP solver may result another initial
minimum cycle cover. The cycle cover is the starting point of the patching procedure; if the minimum cycle covers are
different, then the resulting patching solutions and their costs may differ, even though the same patching procedure is
applied.

Theorem 1. Let F be the set of minimum cycle covers of a given instance of the ATSP, and let P\ and P, be two
patching procedures such that their respective patching costs satisfy c1(F) < c2(F) for each F € F. It then follows
that #BnB(P1) < #BnB(P,).

Proof. For any given instance of the ATSP, let 7 (Br) be the complete search tree based only on branching rule Br,
i.e. the search tree in which all possible solutions are enumerated. Usual BnB procedures apply the following pruning
operations:

(1) If at a certain node of T'(Br) F is a complete tour, then all successor nodes are deleted from 7' (Br).
(2) If at a certain node of T'(Br), say j, it holds that ¢(F;) > ub;(P), then this node and all its successors are
fathomed.

For any patching procedure P, BnB(P) deletes nodes from the complete search tree 7' (Br) until the usual BnB
tree remains, which we denote by 7' (P). Clearly, pruning operation (1) is independent of the patching procedure used,
since the AP-solver implementation is taken fixed. Actually, at each node the same minimum cycle cover is found.

We now show that T (P;) € T (P») by showing that if node j is fathomed under P,, then it is also fathomed under
Py. This is the case, if for each node j, it holds that ¢(F;) > ub;(P2) = c(F;) > ub;(P;). So we need to show
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that ub;(P1) < ub;(P,) for each node j on the path obtained by the search strategy S. Thus, BnB(P,) is only able to
discard nodes if BnB(P;) discards them, which implies that #BnB(P;) < #BnB(P»).

Obviously, for the first node j = 0, it holds that uby(P1) < ubo(P>). Now assume that ub;(P1) < ub;(P,)
at node j. Let k be the next unsolved subproblem after node j according to the search strategy S. We show that
ubr(P1) < ubr(P>). Let Hp(F) be the patching solution of procedure P given minimum cycle cover F.

After solving the AP at node j, both algorithms compare c(F;) with their current upper bounds. Three scenarios
are possible:

(1) If ubj(P1) < ubj(P2) < c(F;), then both algorithms fathom node j and both procedures proceed to node k.
Clearly, uby (P1) = ubj(P1) < ubj(P2) = ubi(P).

) If ¢(Fj) < ubj(P1) =< ub;(P), then both algorithms execute patching at node j. Since c{(F;) =<
c2(Fj), it follows that c(H\(F;)) = c(Fj) + c1(Fj) < ¢(Fj) + c2(Fj) = c(Hx(F})). Since uby(P;) =
min{ub;(P;), c(H;(F;))} fori =1, 2, we have that uby (P1) < uby(P2).

(3) If ubj(P1) < c(Fj) < ubj(P>), then BnB(Py) fathoms node j, and ubr(P1) := ub;(P1). BnB(P>) solves an
additional patching problem at node j and possibly at the successor nodes of j. Let g be the successor node of j in
which the best patching solution is obtained, i.e. ¢ = arg min;{c(H2(F})); ! < j,I = j}. After searching through
all successors of j, or after discarding them, BnB(P,) arrives at node k with uby (P2) > min{ub;(P,), c(H2(Fy))}.
Clearly, uby(P1) = ub;(Pr). Furthermore, it holds that ub;(P2) > ub;(P1) = uby(P1), and that c(H2(Fy)) >
c(Fy) = c¢(Fj) = ub;j(P1) = ubr(P1). Hence, uby (P2) > ubr(P).

Hence, for all nodes j on the path according to S through 7T'(Br), we have that ub;(P1) < ub;(P). Therefore,
#BnB(P)) < #BnB(P;). 0O

Theorem 1 can be extended to upper bounding strategies UBS for which the upper bound generated at node j is at
least ¢(F;). In that case, upper bounds are only obtained at nodes at which a complete tour is constructed; elsewhere,
the patching costs are infinite. For example, consider a BnB algorithm BnB(P; ni) that applies patching procedure
P not iteratively. It follows from Theorem 1 that its search tree is always at least the size of the search tree of the
algorithm BnB(P) that applies P iteratively.

In general, there are few iterative patching procedures that always return better patching solutions than some other
one. Therefore, it makes more sense to consider the average performance of patching procedures. To this end, we
conduct computational experiments in Section 4.

The most important measure of the quality of algorithms are solution times. Actually, high quality patching
solutions may lead to long solution times of subproblems. So usually, a trade-off is made between the quality of
the patching and time invested in patching. For instance, if patching procedure P is only applied at the top node, the
search tree is larger than the tree with iterative patching procedure P. However, the average solution time at the nodes
is smaller. In Section 4, solution times are taken into account more explicitly.

The following observation allows to increase the speed of iterative patching without losing quality. Recall that, if
a cycle cover F consists of k cycles, patching is a sequence of k — 1 patching operations. Call the cycle cover after
the i-th patching operation F;, and denote its cost by c(F;),i = 1,...,k — 1. If ¢(F;) exceeds the cost of the current
best solution ub, the patching procedure will certainly not lead to a better solution, since the cost of each patching
operation is nonnegative. Hence, we can abort the patching after i steps and save running time.

3. Patching procedures

We now compare the performance of four iterative patching procedures based on the four most well-known
patching algorithms. We start with a short description of these four patching procedures. All these procedures have a
worst-case time complexity of 0(n3); see [5].

Karp—Steele patching (KSP) was introduced in [11]. Starting with the minimum cycle cover F, KSP patches the
two longest subcycles successively by using a cheapest patching operation. In our example, KSP patches cycles 1 and
3 by deleting (10,2) and (9,8), and adding (10,8) and (9,2); see Fig. 6. The new cycle is then patched with cycle 2 by
removing (12,9) and (5,6), and inserting (5,9) and (12,6).

Modified Karp—Steele patching (MKS), also called Greedy Karp—Steele patching, see [5], performs the cheapest
patching operation among all pairs of cycles in the current cycle cover. The patching costs are then updated and the
procedure is repeated until a complete tour is obtained. Since it compares in general more patching operations than
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Fig. 7. RPC patching solution.

KSP, MKS is more time-consuming. In our example, MKS joins cycles 2 and 3 by deleting arcs (5,6) and (12,9), and
inserting (5,9) and (12,6). Cycle 1 is included by inserting (2,9) and (5,4) and removing (2,4) and (5,9); see Fig. 6.

Recursive Path Contraction (RPC) was introduced in [16]. From all, say k, cycles a most expensive arc is deleted
and the remaining paths are contracted, so transformed into single nodes. On these k nodes an AP is solved. So
every contracted path is connected to another contracted path. The procedure is carried out recursively until one cycle
is obtained. The calculations of Section 4 use the implementation from Glover et al. [5]. In our example, the most
expensive arc from every cycle is deleted, namely (3,1), (5,6) and (12,9). The end nodes 3, 5 and, 12 are assigned to
nodes 9, 1, and 6, respectively. Finally, the tour depicted in Fig. 7 is obtained.

Contract-or-Patch (COP) is a two-stage procedure consisting of RPC in the first stage and, either MKS or KSP in
the second stage; see [5,6]. All cycles with length less than a user-defined threshold value ¢ are patched using RPC. In
[6], it is shown that the threshold value r = 5 is the most robust choice for different types of instances. Given the cycle
cover from Fig. 2, cycles 2 and 3 are patched using the RPC procedure. The long cycles in the current cycle cover are
patched with either KSP or MKS. In Section 4, the faster procedure KSP is selected, since in [7] it is asserted that
there is no significant difference in the patching cost of COP using either KSP or MKS.
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Table 1

Patching strategies tested

Name Patching strategy
BnB(KSP) Iterative KSP
BnB(MKS) Iterative MKS
BnB(RPC) Iterative RPC
BnB(COP) Iterative COP
BnB(CDT) CDT algorithm

4. Computational experiments

In this section, we compare both the tree sizes and the running times of the algorithms presented in Table 1.
Recall that the size of a BnB tree is the number of subproblems solved before the first optimal solution is determined,
i.e. the number of nodes visited on the path followed through T (Br) according to search strategy S. The results of
iterative patching procedures are compared with the results of the DFS implementation of the CDT algorithm. The
DFS implementation is of practical use, because it solves ATSPLIB and symmetric instances which a BFS approach
cannot solve; see for example [3,13].

The experiments are performed on a Pentium 4 computer with speed 2 GHz and 256 MB RAM under Windows
2000. The programming language is C and the compiler is GNU with speed -02. Our branching rule branches by a
largest cost arc in the shortest subcycle of a minimum cycle cover. In a forthcoming study we will apply tolerance-
based branching rules, where branching is performed on an arc with the smallest tolerance value (the amount at which
the cost can be changed without changing the solution at hand). The iterative patching procedures are tested for the
following types of instances:

(1) Asymmetric TSPLIB instances (see [15]).

(2) Randomly generated instances with varying degree of symmetry.

(3) Randomly generated instances with varying degree of sparsity.

(4) Random instances with a large number of different intercity distances.
(5) Almost symmetric Buriol instances (see [2]).

From all asymmetric TSPLIB instances we have selected 16 instances that are solvable within reasonable time
limits. The random instances have degree of symmetry 0, 0.33, 0.66, and 1, where the degree of symmetry is defined
as the fraction of off-diagonal entries in the cost matrix {c;;} that satisfy ¢;; = c;;. The third class of instances
consists of instances with varying degree of sparsity, defined as the fraction of the total possible number of arcs that
are missing. We study instances with degree of sparsity of 0, 0.25, 0.5, and 0.75.

If both the degree of symmetry and degree of sparsity of an instance is unrestricted, we call such an instance
usual random. The usual random instances have problem size 60, 70, 80, 100, 200, 300, 400, and 500. Random
instances with degree of symmetry larger than 0 have problem size 60, 70, and 80. Only these samples of
(quasi-)symmetric instances are considered, since computation times for larger symmetric instances tend to be
extremely long. The instances with varying degree of sparsity have problem size 100, 200, and 400. The arc costs
are drawn from a discrete uniform distribution supported on {1, 2, ..., 104}; for each problem set and for all problem
sizes, 10 instances are generated. In comparison with other studies, namely [3,13], our random instances are relatively
small, whereas our symmetric instances are relatively large. For example, the MP algorithm given by Miller and
Pekny [13] solves random instances of size 500 000, but solves symmetric instances of size less than 30 only.

In addition to the usual random instances, we generate random instances with a large number of different intercity
distances. The reason for considering these instances is given in [19,20], where it is shown that if the number of
different intercity distances exceeds a threshold value, the instance becomes relatively hard to solve. Suppose the arc
costs of an instance are uniformly distributed on {1, ..., R}, where R is the range of the distribution. It is shown
in [19] that, as the range increases, the number of intercity distances increases as well. Moreover, uniform random
instances are hard to solve if the range R is at least n2; see [20]. This result implies that our randomly generated
instances with size larger than 100 are relatively easy to solve. Therefore, we use additional ‘hard’ random instances
with arc costs drawn from a uniform distribution supported on {1, . .., 103} for n = 200, 300, and on {1, ..., 2 x 103}
for n = 400.
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Table 2
Normalized size of search tree for usual BnB (CDT = 100)

CDT KSp MKS RPC cop
ATSPLIB 100.00 95.03 94.27 101.40 95.37
Buriol, k' = 5 100.00 98.37 97.39 98.97 98.01
Buriol, k¥ = 50 100.00 78.64 39.95 102.95 95.70
Usual random 100.00 47.27 43.97 129.98 47.27
Random, large range 100.00 48.99 48.99 167.83 48.99
Degree of symmetry 0.33 100.00 50.81 50.65 106.75 51.16
Degree of symmetry 0.66 100.00 74.52 73.66 101.45 75.44
Full symmetry 100.00 99.79 99.77 99.97 99.80
Degree of sparsity 0.25 100.00 51.66 51.20 113.26 51.66
Degree of sparsity 0.50 100.00 56.13 56.13 126.68 56.13
Degree of sparsity 0.75 100.00 56.43 56.35 129.98 56.43
Table 3
Normalized running times

CDT KSP MKS RPC (6(0)
ATSPLIB 100.00 114.81 139.56 114.44 116.01
Buriol, ¥’ =5 100.00 111.31 158.72 130.00 125.56
Buriol, k¥ = 50 100.00 91.25 57.53 116.91 112.69
Usual random 100.00 55.81 60.24 140.44 54.45
Random, large range 100.00 61.05 81.07 191.03 64.88
Degree of symmetry 0.33 100.00 72.22 72.22 170.83 55.56
Degree of symmetry 0.66 100.00 93.33 103.70 132.22 85.00
Full symmetry 100.00 108.24 126.76 114.98 111.54
Degree of sparsity 0.25 100.00 62.64 73.57 125.13 62.33
Degree of sparsity 0.50 100.00 69.05 90.16 144.79 77.44
Degree of sparsity 0.75 100.00 73.79 85.33 153.29 73.88

Finally, the almost symmetric Buriol instances are asymmetric TSP instances which are derived from symmetric
instances from the TSPLIB. They are constructed as follows. Let o be the average of all distances of the original
symmetric TSPLIB instance, and let k¥’ be a user-defined percentage. Then each entry in the lower diagonal of the
cost matrix C of the symmetric instance is increased by ko, where k is randomly drawn from the uniform distribution
supported on {0, ..., k'}. However, the costs of edges belonging to a chosen optimal tour of the original symmetric
instance are not modified. Note that the smaller the value of k’, the higher the degree of symmetry of the instances
generated. We construct eight instances for which ¥’ = 5, and twelve for which k¥’ = 50, respectively, using the
instance generator from Buriol et al. [2]. These are instances which are solvable within reasonable time limits.

The average size of the search tree of the algorithms is shown in Table 2. In order to make the results more
comparable, we have used normalized results, i.e., we have fixed the results of BnB(CDT) at 100. The number
‘50.65’ in the MKS-column means that the BnB(MKS) generates on average about half the number of subproblems of
BnB(CDT) for instances with degree of symmetry 0.33.

Table 2 shows that, except for the RPC procedure, iterative patching leads to smaller search trees. The search tree
reductions of iterative patching are large for usual random and sparse instances; the sizes of the trees of BnB(KSP),
BnB(MKS) and BnB(COP) are half the size of the search tree of BnB(CDT). The reductions of iterative patching
are smaller for symmetric and ATSPLIB instances. BnB(MKS) and also BnB(KSP) have relatively large search tree
reductions for the almost symmetric Buriol instances with k' = 50, but BnB(COP) is performing considerably worse.
On average, the search trees generated by BnB(MKS) are the smallest, whereas BnB(RPC) only generates reasonably
small search trees for symmetric instances.

In Table 3, we present the normalized running times. For usual random and sparse instances, iterative patching
is clearly more effective; the search tree reduction outweighs the time invested in patching at nodes. Although
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Table 4
Search tree sizes and solution times (seconds) of ATSPLIB instances
Instance CDT KSP MKS RPC COopP
Size Time Size Time Size Time Size Time Size Time
ft53 21189 2.20 20111 2.31 20111 2.64 21189 2.36 20111 2.42
ft70 26025 3.57 25831 3.85 25831 4.40 26025 4.01 25831 4.07
ftv33 7455 0.16 7065 0.22 7061 0.27 7307 0.22 7065 0.22
ftv3s 7305 0.16 6945 0.16 6939 0.22 8267 0.22 6951 0.22
ftv38 7325 0.22 6195 0.22 6195 0.27 10101 0.38 6195 0.16
ftv44 3753 0.11 619 0.01 619 0.05 3753 0.16 3083 0.16
ftvd7 29539 1.10 29025 1.26 29017 1.76 29539 1.32 29031 1.37
ftv55 114403 4.73 92447 4.51 92447 5.82 114785 5.44 103839 5.55
ftvo4 252755 11.87 43441 3.19 43441 4.18 252755 15.93 43441 3.52
ftv70 326827 23.41 253873 24.95 206195 27.36 410545 35.60 261199 24.73
ftv170 1796 439 1073.63 1796 149 1300.88 1796 159 1614.56 1796 459 1198.96 1796 149 1276.87
rbg323 3 0.05 3 0.05 1 0.05 9 0.05 3 0.01
rbg358 3 0.05 3 0.05 1 0.16 7 0.11 5 0.05
rbg403 3 0.05 3 0.05 1 0.11 7 0.11 3 0.05
rbgd43 3 0.05 3 0.05 1 0.11 3 0.11 3 0.05
brl7 3674 829 16.59 3674 829 24.23 3674 829 32.69 3674 829 24.51 3674 829 24.40
Table 5
Search tree sizes and solution times (seconds) of usual random instances
n CDT KSP MKS RPC COP
Size Time Size Time Size Time Size Time Size Time

60 6508 0.60 3808 0.38 3808 0.44 12880 1.10 3808 0.33

70 10828 1.21 4528 0.44 4528 0.71 18522 2.14 4528 0.55

80 21834 2.75 9014 1.26 8622 1.48 27822 4.1 9014 1.26
100 13454 2.42 9002 1.92 6814 1.81 17424 3.73 9002 1.98
200 138522 114. 36390 33. 3639 40. 172054 151. 36390 33.
300 412930 798. 178498 481. 178498 551. 500 100 1081. 178498 424,
400 525088 2142. 284994 1410. 284982 1746. 640440 2825. 284994 1349.
500 951188 6428. 434576 3687. 432000 5284. 1456 440 10 868. 434576 3889.

BnB(MKS) often requires the smallest search trees, BnB(COP) and BnB(KSP) mostly display smaller running times.
This indicates that the speed of solving patching problems is relevant. Solution times of iterative patching are longer
for instances from the ATSPLIB and for symmetric instances than of BnB(CDT), although in both cases the differences
are small.

The following tables show the absolute search tree sizes and solution times in more detail. For most ATSPLIB
instances, the search tree reductions of iterative patching are minor, and the solution times increase; see Table 4. For
the usual random instances, the iterative patching procedures BnB(KSP), BnB(MKS), and BnB(COP) have clearly
smaller search tree sizes and solution times than BnB(CDT); see Table 5. These benefits appear to be independent of
the instance size. Finally, Tables 6 and 7 present the absolute tree sizes and solution times of sparse and symmetric
instances.

The results for the almost symmetric instances from [2] are presented in Tables 8 and 9. They indicate that patching
does not lead to shorter solution times for most instances with k€’ = 5, but it becomes worthwhile if the deviation &’ is
increased to 50.

Table 10 presents the results for the random instances with a large number of different intercity distances. We
obtain similar results as for the usual random instances: the solution times of BnB(KSP), BnB(MKS), and BnB(COP)
are clearly lower than those of BnB(CDT) and BnB(RPC). So iterative patching is not sensitive to changes in the
range of the uniform distribution.

Symmetric and ATSPLIB instances can be considered ‘hard’, i.e., even small instances have large search trees
and running times. For these instances, cycle covers often consist of many short cycles. Hence, tours obtained by
patching are long, and only minor parts of the search tree can be discarded, so the small reductions of the search tree
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Table 6
Search tree sizes of symmetric and sparse instances
Instance CDT KSP MKS RPC COP
Size Size Size Size Size
Degree of symmetry 0.33 122520 58878 58724 129914 59458
Degree of symmetry 0.66 259626 202 894 200630 264 444 204470
Full symmetry 114984 046 114912026 114908 592 109 843207 114915850
Degree of sparsity 0.25 637872 362188 354610 732500 362188
Degree of sparsity 0.50 653016 368736 368736 801526 368736
Degree of sparsity 0.75 704 832 386468 386392 883026 386468
Table 7
Solution times (seconds) of symmetric and sparse instances
Instance CDT KSP MKS RPC COP
Time Time Time Time Time
Degree of symmetry 0.33 13 8 8 19 7
Degree of symmetry 0.66 33 33 38 45 32
Full symmetry 17584 19182 22521 19271 19972
Degree of sparsity 0.25 1935 1451 1801 2386 1434
Degree of sparsity 0.50 1797 1341 1746 2350 1345
Degree of sparsity 0.75 1998 1467 1909 2857 1472
Table 8
Running times and search tree sizes for almost symmetric Buriol instances, k' = 5
Instance CDT KSP MKS RPC COP
Size Time Size Time Size Time Size Time Size Time
ulysses16 10607 0.05 10165 0.05 10139 0.11 10877 0.16 10123 0.11
ulysses22 863039 8.41 857027 13.08 818327 11.65 863039 12.31 832311 10.33
bayg29 12443 0.27 6555 0.16 5563 0.16 12443 0.44 6555 0.22
bays29 17283 0.33 13931 0.33 12355 0.33 16471 0.49 14687 0.33
eil51 1197 185 57.64 1193015 64.89 1193015 89.78 1197 185 79.34 1196 191 72.25
fri26 12891 0.22 12725 0.22 9187 0.27 12891 0.33 12759 0.27
ar24 2311 0.05 1329 0.05 1329 0.00 2311 0.05 2299 0.05
ard8 3400347 155.55 3331593 168.90 3322435 250.88 3344327 196.15 3331611 195.82
Table 9
Running times and search tree sizes for almost symmetric Buriol instances, k' = 50
Instance CDT KSP MKS RPC COP
Size Time Size Time Size Time Size Time Size Time
ulysses16 2553 0.00 2481 0.05 2481 0.00 12025 0.11 7655 0.05
ulysses22 94831 0.88 35577 0.44 17711 0.27 99963 1.21 89035 1.10
att48 181943 7.53 147201 7.42 5967 0.38 186 547 9.45 147201 7.25
bayg29 217 0.00 177 0.00 13 0.05 217 0.00 211 0.00
bays29 2289 0.11 323 0.00 223 0.00 2613 0.05 521 0.05
eil51 21689 1.10 16 869 0.99 951 0.05 26399 1.65 20497 1.26
fri26 2495 0.05 2481 0.05 2481 0.05 2495 0.05 2481 0.05
er24 141 0.00 49 0.00 49 0.00 141 0.00 141 0.00
grd8 5213 0.33 4503 0.33 2405 0.16 5213 0.33 5177 0.38
pr76 1659 0.27 1643 0.27 415 0.05 17229 2.64 5293 0.88
eil76 567 0.05 243 0.05 239 0.00 567 0.11 243 0.00
2r96 1038 095 26291 851473 239.73 507019 156.15 1038 095 303.85 1015109 296.87
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Table 10
Search tree sizes and solution times (seconds) of random instances with a large number of different intercity distances
n CDT KSP MKS RPC COP

Size Time Size Time Size Time Size Time Size Time
200 153792 146.32 42358 43.85 42358 52.36 42358 54.73 185116 174.40
300 363 654 824.01 184752 470.33 184752 608.13 184752 600.93 454114 1065.38

400 589 564 2640.22 271034 1394.23 271034 1815.71 271034 1739.07 1035296 4775.33
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Fig. 8. Normalized search tree sizes of instances with varying degree of symmetry (n = 60) and sparsity (» = 100), CDT = 100.

do not compensate for the time invested in patching at each node. This explains the special behavior of symmetric and
ATSPLIB instances. The same holds for the almost symmetric Buriol instances.

Table 6 and Fig. 8 show that, as the degree of symmetry increases, the search trees of BnB(CDT) and BnB(RPC)
converge to the size of the other trees. Hence, applying iterative patching makes no sense for symmetric instances. On
the other hand, the degree of sparsity does not influence the relative search tree sizes of the algorithms; see Fig. 8. So
sparsity does not influence the usefulness of iterative patching.

The major drawback of BnB algorithms is their time consumption: it may take very long before an optimal solution
is obtained. When the BnB process is terminated and the best solution so far is taken, the procedure is called Truncated
Branch-and-Bound (TBnB); see [18]. Usually, the TBnB algorithm is terminated if a predefined number of nodes in
the search tree is expanded. Currently, TBnB uses KSP only. An interesting question for future research is whether
TBnB can be improved by including other iterative patching procedures.

Premature termination of BnB is effective if good solutions are found at an early stage of the BnB process, and
a large portion of the time is spent on proving optimality. In Table 11, we present the solution quality for difficult
practical instances from [2] with ¥’ = 5. The solution quality reported in the table is the relative gap between the
optimal solution of the instance and the best solution found by the BnB algorithm after a fixed number of subproblems.
The results indicate that, even after solving a large number of subproblems, the BnB solutions are still far from optimal.
For example, solving problem instance pr76 takes about 12 h; about 50% of the time is spent on finding an optimal
solution. So when our BnB methods are terminated in an early stage, the resulting solutions are not competitive with
metaheuristic solutions for these instances. Table 11 also shows that iterative KSP finds good solutions in an early
stage, whereas the top node patching algorithm has to solve a very large number of subproblems before achieving the
same solution quality.

All BnB algorithms presented in this paper are able to solve small instances in more or less the same amount of
time as most metaheuristics do. However, our computational experiments indicate that these BnB methods are not
able to find optimal solutions within reasonable time limits for large, almost symmetric, Buriol instances with k' = 5,
or for fully symmetric instances. On the other hand, metaheuristics generate solutions to these instances within a few
per cent from the optimal solution value in fractions of seconds; see for example the survey paper Buriol et al. [2]. The
errors of metaheuristics are in the range 0 to 0.44% for ATSPLIB instances, and below 0.6% for the almost symmetric
Buriol instances. However, these results do not imply that metaheuristics are always preferable over BnB methods.
Although the errors appear pretty small, a solution with 0.5% higher cost than optimal may be very costly in practice.

A new line of research is combining the force of BnB and metaheuristics, in particular memetic algorithms [14].
In evolutionary algorithms the elements, paths in case of the ATSP, inherited from the parents are recombined, but



M. Turkensteen et al. / Discrete Optimization 3 (2006) 63-77 75

Table 11
Solution quality after number of subproblems solved for almost symmetric instances with k' = 5
Subproblems BnB(KSP) BnB(CDT)
1000 (%) 10000 (%) 100000 (%) 1000 (%) 10000 (%) 100000 (%)
pr76 9.78 9.78 9.78 20.28 19.22 16.08
eil76 7.25 7.25 7.06 21.38 19.52 13.57
2r96 7.02 7.02 7.02 14.47 13.77 11.55
kroD100 13.17 13.17 13.17 39.34 38.85 37.11
rd100 13.50 13.50 13.50 40.09 39.12 30.78
lin105 10.60 10.60 10.60 26.64 25.88 24.14
ch130 15.04 15.04 15.04 32.09 31.93 28.82
ch150 16.56 16.56 16.56 36.57 36.57 36.17
brg180 16.77 16.41 14.46 18.62 18.51 15.03
Average time (s) 0.48 4.05 35.11 1.30 2.78 28.75
Table 12
Ordering of the top node solution quality and the number of iterations
Average relative excess over AP lower bound Normalized search tree size
(CDT = 100)
ATSPLIB MKS 3.36% MKS 86.15
KSP 4.29% KSP 87.99
COP 4.77% cop 88.81
RPC 18.02% RPC 103.38
Usual random COP 1.88% MKS 43.97
MKS 3.36% (6(0) 47.27
KSP 3.11% KSP 47.27
RPC 106.65% RPC 129.98
Full symmetry Ccop 79.87% MKS 99.77
RPC 183.57% KSP 99.79
MKS 586.92% CcopP 99.80
KSP 744.22% RPC 99.97

memetic algorithms use optimization methods to construct good feasible solutions. Similar to BnB, the question is
how much time should be spent on the optimization of each agent’s tour. Buriol et al. [2] use a type of patching
algorithm for the optimization, and the memetic algorithm by Cotta and Troya constructs such tours by means of a
Branch-and-Bound subroutine [4].

The results indicate that it is worthwhile to invest time in finding good upper bounds in BnB algorithms with a
DFS strategy. The method for finding a good upper bound need not be patching, and need not be iterative as well.
Another interesting question is whether it is worthwhile to invest more time in finding a tight upper bound at the top
node of the BnB search tree. For that purpose, a metaheuristic can be applied instead of patching. Klau et al. apply
a memetic algorithm initially for preprocessing and to obtain a good starting solution for the Biobjective Flowshop
Scheduling Problem [12]. The same strategy is followed by Basseur et al. for the Prize-Collecting Steiner Tree [1]. A
hybrid application of metaheuristics and Branch and Bound may form fertile area of future research.

In [5], the performance of patching heuristics on solution quality is studied. The results show that MKS returns
the best patching solutions for ATSPLIB instances, and COP for random instances, both symmetric and asymmetric.
In Table 12, the solution quality results from Glover et al. [5] are compared with our search tree sizes. The results
show that the ordering with respect to solution quality of patching procedures differs from the ordering with respect to
search tree sizes of the corresponding iterative patching procedure. This phenomenon may be caused by the following
effect. Recall that, when iterative patching is applied, patching solutions are constructed at each node of the search
tree. It may be misleading to take into consideration the patching quality only at the top node of the search tree, and
expect that for all nodes in the search tree on average the same quality holds. Actually, it is more likely that good
upper bounds are found deep in the search tree and that the average patching solution quality deep into the tree differs
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from the average top node patching quality. In fact, top node cycle covers may consist of many short cycles, whereas
subcycles tend to become longer as the BnB algorithm proceeds deeper into the search tree, because our branching
rule attempts to break short cycles. This may explain the differences in the orderings according to the average patching
quality and to the average search tree size of the iterative patching procedures.

Consider for example the iterative patching procedures RPC and COP. BnB(RPC) needs long running times and
large search trees for random instances, because RPC deletes an arc from every cycle without calculating patching
costs. Therefore, if cycles are long, bad patching operations are likely. COP, on the other hand, patches long cycles
carefully, leading to smaller search trees.

5. Conclusion

We studied the performance of four iterative patching procedures, which are fixed patching procedures at every
node of the search tree, which we compared with the performance of a depth first search implementation of the CDT
algorithm given by Carpaneto et al. [3]. Our performance measures are the size of the search tree and the running
times of the algorithms. Clearly, there is a trade-off between the quality of patching, leading to smaller search trees,
and the speed of solving each patching problem. We conclude with an answer to the main questions.

Is it worthwhile to use iterative patching procedures? At least, search trees are always smaller. However, only for
‘practical’ instances are the solution times shorter when BnB(CDT) is applied. A side effect of iterative patching is
that, if calculations are finished prematurely, a satisfactory solution is often at hand; see [17]. An interesting direction
of future research is to study iterative patching procedures in Truncated BnB algorithms and other metaheuristics.
Another interesting direction is finding intermediate strategies between full iterative patching and top node patching.
To this end, the nodes of the search tree must be identified at which a good patching solution can be expected.

Which iterative patching procedure is the most efficient one? On the whole, the algorithm using MKS generates the
smallest solution trees, and our COP and KSP implementations achieve the best solution times. The most important
performance criterion is usually the solution time. However, if the memory of the computer is the restrictive factor,
then it also becomes important to keep the search trees small.
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