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A Review on Bilevel Optimization: From Classical
to Evolutionary Approaches and Applications

Ankur Sinha, Pekka Malo, and Kalyanmoy Deb, Fellow, IEEE

Abstract—Bilevel optimization is defined as a mathematical
program, where an optimization problem contains another opti-
mization problem as a constraint. These problems have received
significant attention from the mathematical programming com-
munity. Only limited work exists on bilevel problems using
evolutionary computation techniques; however, recently there has
been an increasing interest due to the proliferation of practical
applications and the potential of evolutionary algorithms in tack-
ling these problems. This paper provides a comprehensive review
on bilevel optimization from the basic principles to solution
strategies; both classical and evolutionary. A number of poten-
tial application problems are also discussed. To offer the readers
insights on the prominent developments in the field of bilevel
optimization, we have performed an automated text-analysis of
an extended list of papers published on bilevel optimization
to date. This paper should motivate evolutionary computa-
tion researchers to pay more attention to this practical yet
challenging area.

Index Terms—Bilevel optimization, evolutionary algorithms,
Stackelberg games.

I. INTRODUCTION

ANY large-scale optimization and decision-making
Mprocesses faced by public and private organizations
are hierarchical in the sense that the realized outcome of
any solution or decision taken by the upper level authority
(leader) to optimize their goals is affected by the response
of lower level entities (follower), who will seek to opti-
mize their own outcomes. Fig. 1 illustrates a general bilevel
problem solving structure involving interlinked optimization
and decision-making tasks at both levels. The figure shows
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Fig. 1. General sketch of a bilevel problem.

that for any given upper level decision vector, there is a
corresponding (parametric) lower level optimization problem
to be solved that provides the rational (optimal) response
of the follower for the leader’s decision. The leader’s deci-
sion vector is represented by x, and the follower’s decision
vector is represented by x;. An (x,, xj) pair, where xj is
an optimal response to x, represents a feasible solution to
the upper level optimization problem provided that it also
satisfies the constraints in the problem. Each level has its
own objectives and constraints. One aspect of bilevel prob-
lems is that it is not symmetric in terms of two levels. The
upper level decision maker usually has complete knowledge
of the lower level problem, while the lower level deci-
sion maker only observes the decisions of the leader and
then optimizes its own strategies. Interestingly, an incomplete
knowledge about the follower’s optimization problem to the
leader may lead to bilevel optimization problems involving
uncertainties.

It is not uncommon that the objectives of generally profit-
seeking private agents can well be in conflict with those of
the controlling authority. What makes such bilevel problem-
solving tasks highly relevant is that they are typically charac-
terized by very large spillover effects to the economy as well
as the surrounding environment. Given the far-reaching future
impacts of the decisions, it is not surprising that the interest
toward bilevel programming has grown strong especially
among researchers and practitioners dealing with large-scale
public sector decision-making problems. For instance, farmers
often tend to overuse fertilizers to increase the productiv-
ity, which leads to negative externalities such as pollution.
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Whittaker ef al. [176] used a bilevel model to design policy
measures to control the overuse of fertilizers and its negative
impact on the environment. Apart from problems concerned
with environmentally sensitive decisions (such as allocation
of mining permits or controlling the use of fertilizers), there
has been widespread interest across a number of fields in
operations research. A good example is homeland security,
where bilevel as well as trilevel optimization frameworks
have been utilized in problems ranging from interdiction of
nuclear-weapons projects to defending critical infrastructure
and solving border security problems [9], [32], [33], [173].
In addition to the public sector challenges, there is abun-
dant research on bilevel decision-making problems in eco-
nomics, logistics, as well as diverse areas of computer
science.

The research on decision-making problems with hierarchical
leader—follower structures (bilevel optimization) can be traced
to two roots. The first root is in the domain of game the-
ory, where von Stackelberg [156] used bilevel programming
to build descriptive models of decision behavior and establish
game-theoretic equilibria. The second root is in the domain
of mathematical programming, where the problems appeared
as bilevel optimization problems containing a nested inner
optimization problem as a constraint of an outer optimization
problem [29]. Since then a substantial body of mathematical
literature on bilevel optimization has emerged. Given that the
hierarchical optimization structure may introduce difficulties
such as nonconvexity and disconnectedness even for simpler
instances of bilevel optimization, the problems have turned out
to be surprisingly difficult to handle mathematically. Bilevel
programming is known to be strongly NP-hard [79], and it has
been proven that merely evaluating a solution for optimality
is also an NP-hard task [165]. Even in the simplest case of
linear bilevel programs, where the lower level problem has a
unique optimal solution for all the parameters, it is not likely
to find a polynomial algorithm that is capable of solving the
linear bilevel program to global optimality. The proof for the
nonexistence of a polynomial time algorithm for linear bilevel
problems can be found in [63].

Due to lack of well-established solution procedures, a
complex practical problem is usually modified into simpler
single level optimization task, which is solved to arrive at
a satisfying instead of an optimal solution. For the com-
plex bilevel problems, classical methods often fail due to
real world difficulties such as nonlinearity and discrete-
ness. Under such circumstances, evolutionary methods can
be useful tools to offset some of these difficulties. Recent
initiatives on bilevel optimization using evolutionary algo-
rithms suggest that a coordinated effort on bilevel optimization
by the evolutionary community could help make significant
progress on this challenging class of optimization problems
(e.g., [11], [56], [144], and [151]).

Fig. 2 provides a network map of different themes on bilevel
optimization that have been studied since 1950s. The network
map shows different theoretical and application topics that
have evolved under bilevel optimization. Each link in the map
connects a subtopic with a higher level topic that are differ-
entiated by font sizes. Subtopics connected with a link denote

an overlap. To provide a more comprehensive overview on
the past as well as recent developments in the field of bilevel
optimization, we have organized this review paper along the
three lines; theory, applications, and text-analysis of the entire
bilevel literature body. First, to formalize the notion of bilevel
programming, we begin by introducing a few central def-
initions and discuss the differences between optimistic and
pessimistic formulations of bilevel problems. Once the com-
mon terminology has been established, we offer an overview
on the algorithms that have been proposed for bilevel optimiza-
tion. After a brief coverage of the commonly used classical
approaches (e.g., descent methods, penalty function methods,
and trust region methods), we move on to discuss the devel-
opments in the field of evolutionary computation, discrete
bilevel optimization and multiobjective bilevel optimization.
The method sections are followed by a review on the central
application areas. Finally, we study the research topics, and
the evolution of interest over time. The entire bilevel litera-
ture is divided into topics and a time series analysis across
each topic is performed. The text-analysis performed in this
paper is based on a recently developed nonparametric topic
model [26], [160] for analyzing unstructured information. The
technical details on the automated text-analysis approach are
provided in an appendix. This paper concludes with a brief
discussion on the directions for future research.

II. GENERAL FORMULATION AND DEFINITIONS

In this section, we provide a general formulation for bilevel
optimization problem. These problems contain two levels
of optimization tasks where one optimization task is nested
within the other. The outer optimization problem is commonly
referred as the leader’s (upper level) optimization problem and
the inner optimization problem is known as the follower’s (or
lower level) optimization problem. The two levels have their
own objectives and constraints. Correspondingly, there are also
two classes of decision vectors, namely, leader’s (upper level)
decision vectors and follower’s (lower level) decision vec-
tors. The lower level optimization is a parametric optimization
problem that is solved with respect to the lower level decision
vectors while the upper level decision vectors act as parame-
ters. The lower level optimization problem is a constraint to
the upper level optimization problem, such that, only those
members are considered feasible that are lower level optimal
and also satisfy the upper level constraints. A summary of
the terminologies and notations used in the context of bilevel
optimization is given in Table I.

Definition 1: For the upper-level

objective  function

F : R" x R" — R and lower-level objective function
f:R" x R™ — R, the bilevel problem is given by
(13 . 2 F ,
wekymen, TG
subject to
x € argmin {f(x,, xp) © gj(xy, x1) <0,j=1,....J}
x1€XL
Gi(xy,x) <0,k=1,...,K

where Gy Xy x X — R, &k = 1,...,K denote

the upper level constraints, and g : Xy x Xp — R
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Fig. 2. Bilevel network-map showing connections between various applications and theory since 1950s. Each connecting link represents either a topic
connected with a subtopic, or an overlap between two subtopics.
TABLE 1
SUMMARY OF CENTRAL NOTATIONS
Category Notation(s) Description
Decision vectors T, € Xy Leader’s (upper level) decision variable and decision space.
z; € X1, Follower’s (lower level) decision variable and decision space.
Objectives F Leader’s (upper level) objective functions.
f Follower’s (lower level) objective functions.

Constraints Gg, k=1,...,|K

9j» ]:17¢J

Leader’s (upper level) constraint functions.
Follower’s (lower level) constraint functions.

Lower level feasible region Q: Xy =3 Xt Qzu) = {z; ¢ gj(xu,z;) < 0V j}, represents the lower level
feasible region for any given upper level decision vector

Constraint region (Relaxed feasible set) ® = gph = {(zu,2) : Gr(zu, 1) < 0V E, gj(zu,z) < 0V 5},
represents the region satisfying both upper and lower level constraints

Lower level reaction set v Xy = X U(zy) = {2 : ¢; € argmin{f(zu, ;) : x; € Q(zy)}}, represents

v €Xy
the lower level optimal solution(s) for an upper level decision vector
. . . I =gphV¥ I = {(zu,z;) : (Tu,x;) € P,21 € VU(zy)}, represents the set

Inducible region (Feasible set) of upper level decision vectors and corresponding lower level optimal
solution(s) belonging to feasible constraint region

Choice function Y Xy - X1 1(x,) represents the solution chosen by the follower for any upper
level decision vector. It becomes important in case of multiple lower
level optimal solutions.

Optimal value function p: Xy >R w(zy) = : @ € Q(xy)} represents the minimum

min Ty, T
zlGXL{f( s l)
lower level function value corresponding to a given upper level decision
vector.

represent the lower level constraints, respectively. Equality
constraints may also exist that have been avoided for
brevity.

An equivalent formulation of the above problem can be
stated in terms of set-valued mapping (multivalued function)
as follows.



SINHA et al.: REVIEW ON BILEVEL OPTIMIZATION: FROM CLASSICAL TO EVOLUTIONARY APPROACHES AND APPLICATIONS 279

Definition 2: Let W : R" = R™ be a set-valued mapping

W(x,) = argmin{f(xu,xz) D g, x) <0,j=1,..., J}
x1eXL
which represents the constraint defined by the lower-level
optimization problem, i.e., V(x,) C X for every x, € Xy.
Then the bilevel optimization problem can be expressed as a
constrained optimization problem as follows:

min F(x,, x
xu€Xy,x1€XL ( " 1)
subject to  x; € W(xy)

Gi(xy, x) <0,k=1,...,K

where W can be interpreted as a parameterized range-
constraint for the lower-level decision vector x;.

In the above two definitions, quotes have been used while
specifying the upper level minimization problem because of
an ambiguity that arises in case of multiple lower level opti-
mal solutions for any given upper level decision vector. In
the presence of multiple lower level optimal solutions there is
lack of clarity at the upper level as to which optimal solution
from the lower level should be utilized. This ambiguity can be
sorted by defining different positions that may be assumed by
the leader. The two common positions that have been widely
studied are optimistic (weak) position and pessimistic (strong)
position, which we discuss next.

A. Optimistic Position

In an optimistic position, in the presence of multiple lower
level optimal solutions, the leader expects the follower to
choose that solution from the optimal set W’ (x,), which leads
to the best objective function value at the upper level. The
choice function of the follower in this case may be defined as
follows:

W (x,) = argmin{F (x,, x;) : x; € ¥(x,)}.
x1eXy
This formulation assumes some extent of cooperation between
the two players. The bilevel optimization problem under an
optimistic position has been defined as follows:

min F(x,, x
X €Xy,x1eXL ( u I)
subject to  x; = W(x,)

Gi(xy,x)) <0,k=1,...,K.

Optimistic position is more tractable as compared to the
pessimistic position; therefore, most of the studies handle opti-
mistic version of the bilevel optimization problem. The opti-
mistic formulation is guaranteed to have an optimal solutions
under reasonable assumptions of regularity and compactness
that are stated in the theorem below.

Theorem 1: If the functions F,f, Gy, and g; are suf-
ficiently smooth, the constraint region & of the bilevel
optimization problem is nonempty and compact, and the
Mangasarian—Fromowitz constraint qualification holds at all
points, then the problem is guaranteed to have an optimistic
bilevel optimum provided there exists a feasible solution.

See [58], [60], [80], [105], [106], [126] for further discus-
sion on existence of optimistic bilevel optimum and additional
results on optimality conditions.

B. Pessimistic Position

In a pessimistic position, in the presence of multiple lower
level optimal solutions, the leader optimizes for the worst case,
i.e., she assumes that the follower may choose that solution
from the optimal set which leads to the worst objective func-
tion value at the upper level. Such a worst case choice function
of the follower may be defined as

WP (x,) = argmax{F(x,, x;) : x; € V(x,)}.
X
This formulation does not assume any form of cooperation.
The bilevel optimization problem under a pessimistic position
has been defined as

min F(xu, x1)
xueXy,xieXp
subject to  x; = WP (x,)

Gr(xy,x) <0,k=1,...,K.

Pessimistic position is relatively less tractable when compared
to optimistic position. In case of an optimistic formulation
with a convex lower level problem, it is possible to reduce the
bilevel problem to single level using the variational inequality
corresponding to the lower level problem. However, such a
straightforward single level reduction is not possible in case
of a pessimistic bilevel program. This poses significant chal-
lenges in designing methodologies that can handle pessimistic
bilevel problems. For every lower level optimization problem
solved one has to keep track of that lower level optimal solu-
tion that is worst for the upper level. This essentially makes
a pessimistic bilevel optimization a three level task. The pes-
simistic formulation is guaranteed to have an optimal solutions
under stronger assumptions, as compared to the optimistic
formulation, that are given below.

Theorem 2: 1If the functions F, f, Gy, and g; are sufficiently
smooth, the constraint region & of the bilevel optimization
problem is nonempty and compact, and the set-value map-
ping, W7, is lower semicontinuous for all upper level decision
vectors, then the problem is guaranteed to have a pessimistic
bilevel optimum.

For discussion on existence of pessimistic bilevel optimum
and additional results on optimality conditions, the authors
may refer to [60], [62], [109], [111], and [177].

C. Example

Below we provide a simple example of a bilevel opti-
mization problem [71] that arises in case of two firms in
a Stackelberg competition. The leader has complete knowl-
edge about the follower’s inverse-demand function and the cost
function, and desires to maximize it’s own profits by taking
into account the actions of the follower firm. The two firms
compete solely by choosing their production levels that maxi-
mize their profits (I1; and ITy), and the follower acts only after
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observing the actions of the leader. Formally, this model can
be presented as follows:

max I1; = P(q1. qr)q1 — Ci(q1) (D
q1.45

s.t. gr € argmax{Ily = P(q1, qr)qr — Cr(qr)}  (2)
ar
qi,qr =0 3

where P(q;, gr) is the unit price of the goods sold, which
depends on the total production. The assumption is that at
the optimum, all demand is satisfied. C;(-) is the cost of pro-
duction of the leader and Cy(-) is the cost of production of
the follower. The variables in this model are the production
levels of each firm g; and gy. The leader sets its production
level first, and then the follower chooses its production level
based on the leader’s decision. This simple model assumes
homogeneity of the products manufactured by the firms.

By assuming that the firms produce and sell homogeneous
goods, we may assume a single linear price function for both
firms as an inverse demand function of the form

P(qi, qr) = a — B(qi, qr) 4

where @ and B > 0 are constants. Additionally, since costs
often tend to increase with the amount of production, we
assume convex quadratic cost functions for both firms to be
of the form

Clq) = 817 + viqi + <1 (5)
Clgr) = qu]% + yrar +cr (6)

where ¢; denotes the fixed costs of the respective firm, and §;
and y; are positive constants. It is possible to solve the above
model analytically, using the first order conditions of the lower
level problem to reduce it to single level, and then using the
first order conditions of the reduced problem.

The optimal level of production of the leader (¢;) and the
follower (qj?) in terms of the constants of the model is given
as follows:

_2B+¥)@—y) —Ble—y)

* 7
U= 4B+ 5B+ o) — 282 @
Bl -y — G4
«_ a=y 2(B+3r)
208+68) 4(B+)(B+)—28

IIT. CLASSICAL APPROACHES

In this section, we provide a brief overview of the classical
algorithms that have been proposed for bilevel optimization.
Given the difficult nature of bilevel problems, it is not sur-
prising that much of the classical literature considers bilevel
problems that are mathematically well-behaved; i.e., contains
functions that are linear, quadratic or convex. Strong assump-
tions like continuous differentiability and lower semicontinuity
are quite common. A significant amount of attention has been
given to linear bilevel optimization problems with continu-
ous [20], [174] and combinatorial [166] variables. For more
complex bilevel problems, the readers may refer [10] and [48].

A. Single-Level Reduction

When the lower level problem is convex and sufficiently
regular, it is possible to replace the lower level optimiza-
tion problem with its Karush—Kuhn—Tucker (KKT) conditions.
The KKT conditions appear as Lagrangian and complemen-
tarity constraints, and reduce the overall bilevel optimization
problem to a single-level constrained optimization problem.
For example, the problem in Definition 1 can be reduced to the
following form, when the convexity and regularity conditions
at the lower level are met:

min F(xy,, x1)
xu€Xy,x1€XL, A

subject to
Gi(xy,x) <0,k=1,....K
VyL(xy, x;,4) =0
g, x) <0,j=1,...,J
AigiGu, x) =0,j=1,...,J
A=0j=1,....J

where

J

L X1 A) = f s x0) + Y 2 (s ).
j=1

The above formulation, though a single level optimization
task, is not necessarily simple to handle. The Lagrangian
constraints can lead to nonconvexities even when suitable
convexity assumptions are made on all the objectives and
constraints in the bilevel formulation. The complementar-
ity condition, inherently being combinatorial, renders the
single-level optimization problem as a mixed integer program.

Interestingly, for linear bilevel optimization problems, the
Lagrangian constraint is also linear. Therefore, the single-
level optimization problem is a mixed integer linear program.
Approaches based on vertex enumeration [25], [45], [161], as
well as branch-and-bound (B&B) [16], [70] have been used
to solve these problems. It is noteworthy that B&B methods
constitute an exponentially slow algorithm with the number of
integer variables. But, B&B approaches have been successfully
applied to single-level reductions of linear-quadratic [17] and
quadratic-quadratic [5], [64] bilevel problems. An extended
KKT approach has also been considered [138] for handling
linear bilevel problems.

B. Descent Methods

In addition to KKT-based approaches, a number of descent
methods have been proposed for solving bilevel optimization
problems. A descent direction in bilevel optimization leads
to decrease in upper level function value while keeping the
new point feasible. Given that a point is considered feasible
only if it is lower level optimal, finding the descent direction
can be quite challenging. To resolve the problem, researchers
have investigated ways to approximate the gradient of the
upper level objective [95] as well as considered formulation
of auxiliary programs [136], [165] to determine the direction
of descent.
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C. Penalty Function Methods

In penalty function methods the bilevel optimization
problem is handled by solving a series of unconstrained opti-
mization problems. The unconstrained problem is generated
by adding a penalty term that measures the extent of vio-
lation of the constraints. The penalty term often requires a
parameter and takes the value zero for feasible points and
positive (minimization) for infeasible points. For bilevel prob-
lems, the first attempt toward using a penalized approach
was made by Aiyoshi and Shimizu [1], [2]. They replaced
the lower level problem by a penalized problem; however,
the bilevel hierarchy was still maintained and the reduced
problem was still difficult to solve. Later double penalty
method was introduced in [84], where both upper and lower
level objective functions were penalized. The problem was
reduced into a single level task by replacing the penalized
lower level problem with its KKT conditions, and then solv-
ing the single level formulation by penalization. In a number
of studies, the lower level problem is directly replaced by
its KKT conditions and then a penalized approach is used
to solve the single level problem. Few studies where penalty
function approach has been used for linear bilevel problems
are [112] and [175]. White and Anandalingam [175] con-
verted the linear bilevel program into a penalized bilinear
optimization problem, and then solve a series of bilinear
problems to find the optimum. Lv et al. [112] reduced the
linear bilevel program into single level using KKT condi-
tions, and then append the complementary slackness condition
to the upper level objective function with a penalty. The
penalized problem is then handled using a series of linear
programs.

D. Trust-Region Methods

In trust-region methods, the algorithms approximate a cer-
tain region of the objective function with a model function.
The region is expanded if the approximation is good, otherwise
it is contracted. The first study using trust-region method to
solve nonlinear bilevel programs was presented in [108], where
the lower level problem had a convex objective function and
linear constraints. However, no upper level constraints were
considered. Later, a more general idea was proposed in [116],
where the authors locally approximate the bilevel program
with a model involving a linear program at the upper level and
a linear variational inequality at the lower level. Trust-region
and line search ideas have been combined to approach the
bilevel optimum over iterations. Similarly, Colson et al. [50]
approximated the bilevel program around an iterate with a
model that itself is a linear-quadratic bilevel program. The
authors proposed to solve the linear-quadratic bilevel program
using a mixed integer solver after reducing it to a single level
problem using its lower level KKT conditions. Convergence
is achieved by sequentially solving linear-quadratic bilevel
models.

Next, we discuss about evolutionary algorithms for bilevel
optimization. At this point, we would like to refer the read-
ers to other review papers [49], [57], [90], [150], [164] and
books [18], [60], [61], [140], [159] on bilevel optimization.

IV. EVOLUTIONARY APPROACHES
A. Nested Methods

Nested evolutionary algorithms are a popular approach
to handle bilevel problems, where lower level optimization
problem is solved corresponding to each and every upper
level member [153]. Though effective, nested strategies are
computationally very expensive and not viable for large scale
bilevel problems. Nested methods in the area of evolution-
ary algorithms have been used in primarily two ways. The
first approach has been to use an evolutionary algorithm at
the upper level and a classical algorithm at the lower level,
while the second approach has been to utilize evolutionary
algorithms at both levels. Of course, the choice between two
approaches is determined by the complexity of the lower level
optimization problem.

One of the first evolutionary algorithms for solving bilevel
optimization problems was proposed in the early 1990s.
Mathieu et al. [118] used a nested approach with genetic
algorithm at the upper level, and linear programming at the
lower level. Another nested approach was proposed in [184],
where the upper level was an evolutionary algorithm and the
lower level was solved using Frank—Wolfe algorithm (reduced
gradient method) for every upper level member. The authors
demonstrated that the idea can be effectively utilized to solve
nonconvex bilevel optimization problems.

Nested particle swarm optimization (PSO) was used in [103]
to solve bilevel optimization problems. The effectiveness of the
technique was shown on a number of standard test problems
with small number of variables, but the computational expense
of the nested procedure was not reported. A hybrid approach
was proposed in [102], where simplex-based crossover strategy
was used at the upper level, and the lower level was solved
using one of the classical approaches. The authors report the
generations and population sizes required by the algorithm that
can be used to compute the upper level function evaluations,
but they do not explicitly report the total number of lower
level function evaluations, which presumably is high.

Differential evolution (DE) based approaches have also
been used, for instance, Zhu et al. [188] used DE at the
upper level and relied on the interior point algorithm at the
lower level; similarly, Angelo er al. [11] have used DE at
both levels. Authors have also combined two different spe-
cialized evolutionary algorithms to handle the two levels,
for example, Angelo and Barbosa [12] used an ant colony
optimization to handle the upper level and DE to handle
the lower level in a transportation routing problem. Another
nested approach utilizing ant colony algorithm for solving
a bilevel model for production-distribution planning is [36].
Scatter search algorithms have also been employed for solving
production-distribution planning problems, for instance [39].

Through a number of approaches involving evolutionary
algorithms at one or both levels, the authors have demonstrated
the ability of their methods in solving problems that might oth-
erwise be difficult to handle using classical bilevel approaches.
However, as already stated, most of these approaches are
practically nonscalable. With increasing number of upper
level variables, the number of lower level optimization tasks
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required to be solved increases exponentially. Moreover, if the
lower level optimization problem itself is difficult to solve,
numerous instances of such a problem cannot be solved, as
required by these methods.

B. Single-Level Reduction

The idea behind single-level reduction, in the context
of evolutionary algorithms, is similar to the discussion in
Section III-A. A number of researchers in the area of evo-
lutionary computation have also used the KKT conditions of
the lower level to reduce the bilevel problem into a single-
level problem. Most often, such an approach is able to solve
problems that adhere to certain regularity conditions at the
lower level because of the requirement of the KKT condi-
tions. However, as the reduced single-level problem is solved
with an evolutionary algorithm, usually the upper level objec-
tive function and constraints can be more general and not
adhering to such regularities. For instance, one of the ear-
liest papers using such an approach is by Hejazi et al. [82],
who reduced the linear bilevel problem to single-level and then
used a genetic algorithm, where chromosomes emulate the ver-
tex points, to solve the problem. Wang et al. [171] reduced
the bilevel problem into a single-level optimization problem
using KKT conditions, and then utilized a constraint handling
scheme to successfully solve a number of standard test prob-
lems. Their algorithm was able to handle nondifferentiability at
the upper level objective function, but not elsewhere. Later on,
Wang et al. [172] introduced an improved algorithm that was
able to handle nonconvex lower level problem and performed
better than the previous approach [171]. However, the number
of function evaluations in both approaches remained quite high
(requiring function evaluations to the tune of 100000 for 2-5
variable bilevel problems). Wang et al. [169] used a simplex-
based genetic algorithm to solve linear-quadratic bilevel prob-
lems after reducing it to a single level task. More recently,
Jiang et al. [86] reduced the bilevel optimization problem into
a nonlinear optimization problem with complementarity con-
straints, which is sequentially smoothed and solved with a PSO
algorithm. Along similar lines of using lower level optimality
conditions, Li [101] solved a fractional bilevel optimization
problem by utilizing optimality results of the linear fractional
lower level problem. Wan et al. [167] embedded the chaos
search technique in PSO to solve single-level reduced problem.

C. Metamodeling-Based Methods

Metamodeling-based solution methods are commonly used
for optimization problems [168], where actual function evalu-
ations are expensive. A meta-model or surrogate model is an
approximation of the actual model that is relatively quicker
to evaluate. Based on a small sample from the actual model,
a surrogate model can be trained and used subsequently for
optimization. Given that, for complex problems, it is hard
to approximate the entire model with a small set of sample
points, researchers often resort to iterative meta modeling tech-
niques, where the actual model is approximated locally during
iterations.

Bilevel optimization problems contain an inherent complex-
ity that leads to a requirement of large number of evaluations to
solve the problem. Metamodeling, when used with population-
based algorithms, offers a viable means to handle bilevel
optimization problems. In this section, we discuss four ways
in which metamodeling can be applied to bilevel optimization.
The discussion related to approximation of the rational reac-
tion set and lower level optimal value function is a review of
some recent work. However, before starting, we refer the read-
ers to Fig. 3, which provides an understanding of these two
mappings graphically for a hypothetical bilevel problem. We
also provide a brief discussion on approximating the bilevel
problem with an auxiliary problem.

1) Reaction Set Mapping: One of the approaches to solve
bilevel optimization problems using evolutionary algorithms
would be through iterative approximation of the reaction set
mapping V. If the W-mapping (introduced in Table I) in a
bilevel optimization problem is known, it effectively reduces
the problem to single level optimization. However, this map-
ping is seldom available; therefore, the approach could be to
solve the lower level problem for a few upper level members
and then utilize the lower level optimal solutions and cor-
responding upper level members to generate an approximate
mapping U, It is noteworthy that approximating a set-valued
W-mapping offers its own challenges and is not a straightfor-
ward task. Assuming that an approximate mapping, U, can
be generated, the following single level optimization problem
can be solved for a few generations of the algorithm before
deciding to further refine the reaction set:

min F(x,, x;
xu€Xy,x1€XL ( ! )
subject to
x; € W(x,)

Gk(xu,xl) §O,k= 1,...,K.

Evolutionary algorithms that rely on this idea to solve bilevel
optimization problems are [13], [144], [145], and [149].
Sinha et al. [144], [145] have used quadratic approximation
to approximate the local reaction set. This helps in saving
lower level optimization calls when the approximation for the
local reaction set is good. In case the approximations gener-
ated by the algorithm are not acceptable, the method defaults
to a nested approach. It is noteworthy that a bilevel algorithm
that uses a surrogate model for reaction set mapping may need
not be limited to quadratic models but other models can also
be used.

2) Optimal Lower Level Value Function: Another way to
use metamodeling would be through the approximation of
the optimal value function ¢. If the ¢-mapping (introduced
in Table I) is known, the bilevel problem can once again be
reduced to single level optimization problem as follows [183]:

min F(x,, x
quXU,)C[EXL ( " l)
subject to  f(xy, x1) < @(xy)

g, x) <0,j=1,...,J
Gr(xy,x) <0,k=1,...,K.
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¢ (Xu)

Inset 3

Inset 1 provides the relationship of the lower level function with
respect to the upper and lower level variables. The surface of the
lower level function is sliced with three planes, wherein first
upper level member has multiple lower level optimal solutions
while other members have unique lower level optimal solution.

Inset 2 provides the rational reaction set of the follower, which
maps follower’s optimal solutions with leader’s decision vectors.
The mapping is set—valued in regions that have multiple lower
level optimal solutions corresponding to leader’s decision vectors.

Inset 3 provides the follower’s optimal value function, which is
the minimum value of follower’s objective function for any given
leader’s decision vector.

Fig. 3.

However, since the value function is seldom known, one
can attempt to approximate this function using metamodel-
ing techniques. The optimal value function is a single-valued
mapping; therefore, approximating this function avoids the
complexities associated with set-valued mapping. As described
previously, an approximate mapping ¢, can be generated with
the population members of an evolutionary algorithm and the
following single level optimization problem can be solved with
refinements at every few generations:

min F(xy,, x,
Xy €Xy . x1€XL Ot 21
subject to £y, x1) < @(xy)

gixu,x) <0,j=1,...,J
Gr(xy,x) <0,k=1,..., K.

An evolutionary approach that relies on this idea can be found
in [143] and [148].

3) Bypassing Lower Level Problem: Another way to use a
meta-model in bilevel optimization would be completely by-
pass the lower level problem, as follows:

in  F
erg(lu €]
subject to  Gr(x,) <0,k=1,...,K.

Given that the optimal x; are essentially a function of x,,
it is possible to construct a single level problem by ignor-
ing x; completely. However, the landscape for such a single
level problem can be highly nonconvex, disconnected and non-
differentiable. Advanced metamodeling techniques might be

£ (xQxp)

Inset 1

Xy

Inset 2

¥ ~Mapping

wx)
PxP) <
P

Graphical representation of rational reaction set (W) and lower level optimal value function (¢).

required to use this approach, which may be beneficial for
certain classes of bilevel problems. A training set for the
meta-model can be constructed by solving few lower level
problems for different x,. Both upper level objective F and
constraint set (Gy) can then be meta-modeled using x, alone.
Given the complex structure of such a single-level problem, it
might be sensible to create such an approximation locally. We
are currently pursuing such an approach using artificial neural
network as the metamodeling approach.

4) Auxiliary Bilevel Meta-Model: Building up on the trust-
region methods for solving bilevel optimization problems, it is
possible to utilize the population members in an evolutionary
algorithm to formulate auxiliary bilevel problem(s). The aux-
iliary bilevel problem(s) may be simple enough to be solved
using faster specialized techniques. The population members
could then be updated based on the obtained auxiliary solu-
tion(s). For the moment, there does not exist any evolutionary
algorithm based on this idea, but it may be an interesting
direction to pursue in the future.

V. DISCRETE BILEVEL OPTIMIZATION

In this section, we would like to discuss the contributions
made toward solving discrete bilevel optimization problems.
The formulation of the bilevel problem remains the same as
described in Definitions 1 and 2, along with one or more
variables at either of the levels being discrete. Presence of
discrete variables can pose a variety of challenges depending
upon, whether the discrete variables are present at upper level,
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Fig. 4. Inducible region in different cases when the upper and lower level
variables belong to continuous or discrete sets.

lower level or both levels. In the classical literature, B&B and
branch-and-cut are some of the commonly used techniques to
handle discreteness in variables. Most of the work on discrete
bilevel optimization employs an extension of these ideas from
single-level optimization. To highlight the kind of complexi-
ties induced in the presence of discrete variables, we consider
a simple linear bilevel problem described in [18] and [166] to
show how the inducible region changes based on the upper,
lower or both level variables being discrete or continuous.

Consider the following lower level optimization problem
which we use for identifying the inducible region of a bilevel
problem:

min x;
X1
subject to  x, +x7 <2, —x, +x; <2
S5x, —4x; < 10, —5x, — 4x; < 10.

For the above lower level problem there are four possible
scenarios based on the variables being continuous or discrete.
1) Continuous—Continuous Bilevel Program: Consider x,, €
R and x; € R.
2) Discrete—Continuous Bilevel Program: Consider x, € Z
and x; € R.
3) Discrete—Discrete Bilevel Program: Consider x, € Z
and x; € Z.
4) Continuous—Discrete Bilevel Program: Consider x, € R
and x; € Z.
For each scenario, the inducible region can be very different
that has been shown in Fig. 4. The figure clearly demonstrates
how a discrete variable at any level of the problem can lead
to a disconnected search space. Of course there could also
be situations where each level has a mix of continuous and
discrete variables.

A. Discrete Bilevel Optimization Survey

One of the early works on discrete bilevel optimization
was by Vicente et al. [166], which focused on discrete linear
bilevel programs, and analyzed the properties and existence
of the optimal solution for different kinds of discretizations
arising from the upper and lower level variables. The authors
have shown in this paper that certain compactness conditions
guarantee the existence of optimal solution in continuous—
continuous linear bilevel programs, discrete—continuous linear
bilevel programs, and discrete—discrete linear bilevel pro-
grams. The conditions are equivalent to stating that the
inducible region is nonempty. However, the existence condi-
tions in the case of continuous—discrete linear bilevel programs
are not straightforward. For instance, the inducible region for
the continuous—discrete linear bilevel problem in Fig. 4 is a
noncompact set that may lead to nonexistence of a bilevel
optimal solution even when the inducible region is nonempty.

A few studies preceded the study by Vicente et al. [166].
For instance, Moore and Bard [123] solved mixed integer
linear bilevel problems. The authors pointed out the difficul-
ties involved in fathoming while solving mixed integer bilevel
problems using traditional B&B techniques. Certain fathom-
ing rules used in case of mixed integer linear programming,
like fathoming when the relaxed subproblem is worse than
the value of the incumbent or fathoming when the solution
of the relaxed subproblem is feasible for the mixed integer
problem, are not directly applicable to mixed integer linear
bilevel problems. Therefore, the authors proposed a B&B
approach involving stricter fathoming conditions. However, the
algorithm has a nested structure and is not scalable beyond
few integer variables, and to counter which the authors also
proposed some heuristics. This paper was followed by [19],
where the same authors solved discrete linear bilevel programs
involving only binary variables using an implicit enumeration
scheme. In this approach, the authors place a cut, similar to
the one used by Bialas and Karwan [25] (for the continuous
linear bilevel program), seeking incremental improvements in
the upper level objective function. A cutting plane method
utilizing the Chvatal-Gomory cut for the continuous—discrete
bilevel program was proposed in [59]. Benders-decomposition-
based techniques have also been employed to solve bilevel
problems with mixed integers at the upper level and continu-
ous linear programs at the lower level. The original problem
is decomposed into a master and a slave problem. Fixing the
integer values converts the slave problem into a bilevel linear
program which is solved by KKT-based reduction techniques,
and the solution to the slave is utilized to create a cut for
the master problem. The algorithm switches between master
and slave problems until the optimality criteria is met. Certain
studies in this direction are [40], [69], and [135].

Despite the attempts made toward algorithm development
for discrete bilevel programs, the research is still open for
new methods and ideas as none of the proposed techniques
would scale well for problems with larger number of vari-
ables. Apart from a few nested approaches and KKT-based
single level reduction approaches, to our best knowledge, there
does not exist any algorithmic study involving evolutionary
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algorithms for mixed integer bilevel problems that attempt
to solve the problem efficiently by utilizing its properties.
However, given that the evolutionary approaches are, in partic-
ular, potent for handling difficulties such as discreteness and
nondifferentiabilities they offer a significant scope for solving
discrete bilevel optimization problems. Some attempts toward
mixed integer bilevel optimization using evolutionary methods
are [4], [14], [37], [43], [78], [81], [100], and [120].

There is no dearth of application problems involving dis-
crete variables. While mixed integer bilevel problems are
ubiquitous, even combinatorial bilevel programs find innu-
merable applications in the areas of network design, facility
location, hub-and-spoke networks, etc. In these areas, these
problems are commonly studied in the context of interdiction,
protection, robust design, competition and supply chain man-
agement, among others. Some of the related applications are
highlighted in Section VII.

VI. MULTIOBJECTIVE BILEVEL OPTIMIZATION

In many of the practical problems, a leader and/or the
follower might face multiple objectives. This gives rise to
multiobjective bilevel optimization problems that we define
below.

Definition 3: For the upper-level objective function
F : R" x R" — R’ and lower-level objective function
[ R" x R" — RY, the multiobjective bilevel problem is
given by

min F(xy,, x) = (Fr1(xy, xp), ..., Fp(xy, x
xyeXyaeX, (xus x1) ( 1 (X X1) p( u 1))
subject to
x; € argmin{f (x,, x) = (f1(xXu, X1), - - -, fg(Xu, X1)):
x€XL

gi(xu,x) <0,j=1,...,J}
Grlxy,x1) <0,k=1,....K

where Gy : Xy x Xp — R, k = 1,..., K denote the upper
level constraints, and g; : Xy x X, — R represent the lower
level constraints, respectively.

The set-valued mapping in this case can be defined as fol-
lows and an equivalent definition can be written as in the
single-objective case:

W (x,) = argmin{ f(xy, x1) = (fi Cus X0)s -+« fy (o 1))

x1€Xp

&, x) <0,j=1,....J}.

A. Optimistic Versus Pessimistic

The optimistic or pessimistic position becomes more promi-
nent in multiobjective bilevel optimization. In the presence
of multiple objectives at the lower level, the set-valued map-
ping W(-) normally represents a set of Pareto-optimal (PO)
solutions corresponding to any given x,, which we refer as fol-
lower’s PO frontier. A solution to the overall problem (with
optimistic or pessimistic position) is expected to produce a
tradeoff frontier for the leader that we refer as the leader’s PO

Follower’s
problem

for x‘(,l)
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~
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Fig. 5. Leader’s PO frontiers for optimistic and pessimistic positions. Few

follower’s PO frontiers are shown (in insets) along with their representations
in the leader’s objective space.

frontier. From the perspective of the leader, it becomes impor-
tant that what kind of position she seeks to take while solving
the problem, as it determines that which solution(s) from the
lower level frontier should be considered at the upper level.

Though optimistic positions have commonly been studied
in classical [66] and evolutionary [56] literature in the context
of multiobjective bilevel optimization; it is far from realism to
expect that the follower will cooperate to an extent that she
chooses any point from her PO frontier that is most suitable
for the leader. This relies on the assumption that the follower
is indifferent to the entire set of optimal solutions, and there-
fore decides to cooperate. The situation was entirely different
in the single-objective case, where, in case of multiple optimal
solutions, all the solutions offered an equal value to the fol-
lower. However, this cannot be assumed in the multiobjective
case. Solution to the optimistic formulation in multiobjective
bilevel optimization leads to the best possible PO frontier that
can be achieved by the leader. Similarly, solution to the pes-
simistic formulation leads to the worst possible PO frontier at
the upper level.

If the value function or the choice function of the follower is
known to the leader, it provides an information as to what kind
of tradeoff is preferred by the follower. A knowledge of such
a function effectively, casually speaking, reduces the lower
level optimization problem into a single-objective optimiza-
tion task, where the value function may be directly optimized.
The leader’s PO frontier for such intermediate positions lies
between the optimistic and the pessimistic frontiers. Fig. 5
shows the optimistic and pessimistic frontiers for a hypotheti-
cal multiobjective bilevel problem with two objectives at upper
and lower levels. Follower’s frontier corresponding to x}{, xﬁ,
and xf{, and her decisions A;, B;, and C; are shown in the insets.
The corresponding representations of the follower’s frontier
and decisions (A,, By, and C,) in the leader’s space are also
shown.
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B. Example

Below, we provide a bilevel optimization problem involving
design of a tax policy [152]. The upper level in this example
is the government that wants to tax the lower level, a mining
company, based on the pollution it causes to the environment.
The government here has two objectives: the first objective
is to maximize the revenues generated by the mining project,
which may include the additional jobs, taxes, etc.; and the
second objective is to minimize the harm caused to the envi-
ronment as a result of mining. Obviously, there is a tradeoff
between the two objectives, and the government as a decision
maker needs to choose one of the preferred tradeoff solutions.
The mining company has a sole objective of maximizing its
profit under the constraints set by the government. In this sce-
nario, the government would like to have a tax structure such
that it is able to maximize its own revenues in addition to being
able to restrain the mining company from causing extensive
damage to the environment. It is possible for the leader to opti-
mally regulate the problem in its favor, provided that it has
complete knowledge of the follower’s strategies. The hierar-
chical optimization problem in this case can be formulated as
follows:

max F(g,7) = (R, —D) )
n(g) = p(g)g —c(g) — R
s.t. g€ argf]nax{ 7(g) > 0 } (10)

g>0,7>0. (11)

In (9), the first objective deals with the tax revenue, where
R = tg; 7 is the per unit tax imposed on the mine, and g is the
amount of metal extracted from the ore by the follower. The
second objective denotes the environmental damage caused by
the mine that the government ultimately wants to minimize.
D = kq, where k is the pollution coefficient signifying the neg-
ative impact of extraction on the environment. The damages
are thus linear and scale proportionately with the amount of
gold extracted from the earth since a larger base of operation
implies larger environmental damage.

Equation (10) gives the profit of the mine, where p(q)q
(price function times amount of metal extracted) is the revenue
function, and c(g) is the extraction cost function followed by
the additional tax levied on the mine. The mine is most likely
to be a price taker when it comes to the price of gold and
must base its mining decisions on the possible price paid by
their customers. It would therefore be plausible to replace the
price function for gold in the above equation by a constant.
However, given the assumption that the mine can extract a
large amount of ore, and subsequently gold, at one time, it
might be possible for it to affect the price of gold slightly.
Therefore, we assume the price function to be linear with a
small slope. Extraction cost can be considered to be quadratic.
Thus, we have the following model:

max F(q, 1) = (tq, —kq) (12)
T.q

s.t.
m(g) = (o« — Bg)g

g € argmax —(84* +vg+¢)—1q
T \7@=0

(13)
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Fig. 6. PO frontier for the government showing the tradeoff between tax

revenues and environmental pollution.

q=0,7>0 (14)

where «, 8,6, y, and ¢ are constants, and ¢ represents the
fixed costs of setting up operations. The above problem can
be solved analytically by taking a weighted sum of squares of
the upper level objectives (wrg — (1 —w)kg : w € [0, 1]). The
optimal solution to the above problem is given as follows:

" _a—y—k k 5
T(W)_T+ﬁ (15)
o wa—y)— (1 —wk
q (w) = (B +9) (16)

We assume the parameters as ¢ = 100,8 = 1,§ = 1,
y = 1, and ¢ = 0. By varying the government’s preference
weights (w) in its domain, one can generate the entire PO solu-
tions for the leader. Note that a very high taxation (or weight
to the environmental objective) may lead to no production at
the lower level, for instance, we find that w < 0.01 does not
lead to any production. The Pareto frontier generated using
weights 0.01 < w < 1 has been provided in Fig. 6 for the
above model.

C. Multiobjective Bilevel Optimization Survey

There exists a significant amount of work on single
objective bilevel optimization; however, little has been done
on multiobjective bilevel optimization primarily because
of the computational and decision making complexities
that these problems offer. For results on optimality condi-
tions in multiobjective bilevel optimization, the readers may
refer to [15], [72], and [182]. On the methodology side,
Eichfelder [65], [66] solved simple multiobjective bilevel
problems using a classical approach. The lower level problems
in these studies have been solved using a numerical optimiza-
tion technique, and the upper level problem is handled using
an adaptive exhaustive search method. This makes the solu-
tion procedure computationally demanding and nonscalable
to large-scale problems. In another study, Shi and Xia [139]
used e-constraint method at both levels of multiobjective
bilevel problem to convert the problem into an e-constraint
bilevel problem. The e-parameter is elicited from the decision
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maker, and the problem is solved by replacing the lower level
constrained optimization problem with its KKT conditions.

One of the first studies, utilizing an evolutionary approach
for multiobjective bilevel optimization was by Yin [184]. The
study involved multiple objectives at the upper lever, and a sin-
gle objective at the lower level. The study suggested a nested
genetic algorithm, and applied it on a transportation planning
and management problem. Later Halter and Mostaghim [76]
used a PSO-based nested strategy to solve a multicompo-
nent chemical system. The lower level problem in their
application was linear for which they used a specialized lin-
ear multiobjective PSO approach. Recently, a hybrid bilevel
evolutionary multiobjective optimization algorithm coupled
with local search was proposed in [56] (for earlier ver-
sions, refer [53]-[55] and [142]). In this paper, the authors
handled nonlinear as well as discrete bilevel problems with
relatively larger number of variables. The study also pro-
vided a suite of test problems for bilevel multiobjective
optimization.

There has been some work done on decision making aspects
at upper and lower levels. For example, in [141] an opti-
mistic version of multiobjective bilevel optimization, involving
interaction with the upper level decision maker, has been
solved. The approach leads to the most preferred point at
the upper level instead of the entire Pareto-frontier. Since
multiobjective bilevel optimization is computationally expen-
sive, such an approach was justified as it led to enormous
savings in computational expense. Studies that have considered
decision making at the lower level include [146] and [151].
Sinha et al. [146] have replaced the lower level with a value
function that effectively reduces the lower level problem to
single-objective optimization task. In [151], the follower’s
value function is known with uncertainty, and the authors
propose a strategy to handle such problems. Other work
related to bilevel multiobjective optimization can be found
in [107], [128], [129], [134], and [187].

VII. APPLICATIONS

Bilevel optimization commonly appears in many practical
problems. They are often encountered in the fields of eco-
nomics, transportation, engineering, and management, among
others. The following list will provide an insight to the readers
on the relevance of these problems to practice.

1) Toll Setting Problem: Toll-setting problem is essentially

a part of network problems. In this problem, there is an
authority that wants to optimize the tolls for a network
of roads. The authority acts as a leader and the network
users act as followers. Papers on toll-setting problem
and its multiobjective extensions can be found in [31],
[51], [67], [75], [89], [91], [97], [115], [121], [147],
[170], and [185]. Bilevel optimization is quite com-
monly used in network design problems. Instead of
going through specific problems, we refer the readers
to a variety of applications of bilevel optimization to
the area of network design [21], [38], [42], [44], [68],
[73], [99], [114], [119], [133], [178], [180], [181], [184].

2)

3)

4)

5)

0)

Environmental Economics: Bilevel optimization com-
monly appears in environmental economics, where an
authority wants to tax an organization or individ-
ual that is polluting the environment as a result of
its operations. Finding an optimal level of tax that
offers a compromise between revenues and pollution
results in a bilevel optimization problem with the reg-
ulator as the leader and the polluting entity as a
follower [8], [27], [28], [152], [176].

Chemical Industry: In chemical industries, the chemists
often face a bilevel optimization problem where they
have to decide upon the conditions (state variables and
quantity of reactants) for the reaction to achieve opti-
mal output. While optimizing the output is the upper
level problem, the lower level appears as an equilibrium
condition, which is an entropy functional minimization
problem. Such applications of bilevel optimization can
be found in [47], [77], [130], and [155].

Optimal Design: Bilevel problems are very common
in structural optimization or optimal shape design. For
instance, in structural optimization one often requires to
minimize the weight or cost of a structure as an upper
level objective with the decision variables as shape of
the structure, choice of materials, amount of material,
etc. The constraints at the upper level involve bounds
on displacements, stresses and contact forces whose
values are determined by solving the potential energy
minimization problem at the lower level. The equilib-
rium condition in many optimal shape design problems
appears in the form of variational inequalities which
require the overall problem to formulated as a two level
task. For optimal design applications, the readers may
refer to [22], [46], [83], [93], and [94].

Defense  Applications: Bilevel optimization has
a number of applications in the defense sec-
tor [30], for example attacker—defender Stackelberg
games [9], [34], [85], [125], [131], [132], [137].
Specifically, some recent applications include planning
the prepositioning of defensive missile interceptors
to counter an attack threat [32], interdicting nuclear
weapons project [33], homeland security applica-
tions [110], [173], and location problems [3]. The
bilevel problem, while offending, involves maximiz-
ing the damage caused to the opponent by taking
into account the optimal reactions of the opponent.
Conversely, while defending, the bilevel problem
involves minimizing the maximum damage that an
attacker can cause.

Facility Location: Facility location problems may take
the form of a Stackelberg game if a firm, while locating
its facility, decides to account the actions of its com-
petitors. For instance, Kiiciikaydin er al. [96] studied
the scenario where a firm enters a market by locating
new facilities, and its competitor reacts by adjusting
the attractiveness of its existing facilities. Another study
considers location of logistics distribution centers by
minimizing the planners’ cost at the upper level and cus-
tomers’ cost at the lower level [157]. Other applications
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of bilevel optimization to facility location problem may
be found in [7], [35], [37], [40], [87], [113], [117], [127],
[157], and [162].

7) Inverse Optimal Control: Inverse optimal
control problems are essentially bilevel in
nature [6], [88], [122], [158] with wide applica-
tions in robotics, computer vision, communication
theory and remote sensing to name a few. One of
the major challenges in control theory is deriving the
performance index or reward function which fits best
on a given dataset. Such tasks lie in the category of
inverse optimal control theory, where one solicits the
calculation of the cause based on the given result.
Such a requirement necessitates solving a parameter
estimation problem with an optimal control problem.

8) Machine Learning: Most of the machine learning and
evolutionary optimization techniques often involve a
number of parameters. A proper choice of these param-
eters has a substantial effect on the accuracy and
efficiency of the approach. Tuning of these parameters is
often achieved using brute force strategies, such as grid
search and random search. A bilevel formulation of this
problem allows for systematic and more efficient search
when the number of parameters are large. Some of the
approaches that have acknowledged the bilevel nature of
this problem are [23], [24], [104], and [154].

9) Principal-Agent Problems: Principal-agent
problem [98] is a classical problem in economics,
where a principal (leader) subcontracts a job to an
agent (follower). Given that the agent prefers to act
in his own interests rather than those of the princi-
pal, it becomes important for the principal to have
an incentive scheme that aligns the interests of the
agent with the principal. Design of such contracts
appears as a bilevel optimization problem. In real life,
principal-agent relationships are commonly found in
doctor—patient, senior management—lower management,
employer—employee, corporate board—shareholders, and
politician—voters scenarios. Studies that the readers may
refer to are [41], [74], [163], [179], and [187].

VIII. INTEREST OVER TIME

In this section, we perform a text analysis of papers on
bilevel programming (and Stackelberg games) that are indexed
in SCOPUS. To begin with, we analyze the volume of pub-
lications every year on bilevel programming since 1950s to
present, and then closely look at the themes within bilevel pro-
gramming that have contributed to the growth over the years.
The themes were discovered using a nonparametric Bayesian
approach [160], which clusters the documents together based
on similarities. The documents may probabilistically belong
to multiple clusters at the same time.

Fig. 7 shows how the interest on bilevel programming has
been growing at a slow pace until early 2000s and then picked-
up significantly at the middle of the previous decade. The
studies on bilevel programming using evolutionary algorithms
appeared for the first time during the mid 1990s that took
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another decade to pick up to the extent that almost 10% of
all studies on bilevel optimization utilize evolutionary meth-
ods. Fig. 7 shows the growth of evolutionary methods in the
context of bilevel optimization from the 1990s to present.
While the early papers on bilevel programming (pre-2000)
were mainly focused on solution methods and optimality con-
ditions, the growth in the post-2000 period was fueled by
papers on applications of bilevel programming.

To identify the themes that have contributed toward the lit-
erature on bilevel optimization we used topic models. “Topic
models are algorithms for discovering the main themes that
pervade a large and otherwise unstructured collection of
documents” [26]. These models can be used to organize
unstructured collections as well as develop insights from large
text databases that made it suitable for our purposes. The
results from the topic model for the documents retrieved from
SCOPUS are given in Figs. 9-24. The figures consist of
themes that have a volume at least to the order of around 1%.
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Along with the identification of themes, the analysis helped
in determining the attention received by particular themes at
any point in time.

Each figure contains a word cloud in the inset that describes
the theme and volume of papers as the other inset that
describes the number of papers published on that theme over
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the years. Interestingly, we observe that number of papers
on classical bilevel methods and optimality conditions peaked
during 1995-2000. Since 2000, a number of bilevel applica-
tions picked-up, for example, we see a growth in supply chain
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applications, electricity transmission applications, telecom-
munication applications, facility location applications, rail-
way applications, and machine learning applications. Defense
applications that appeared to be minimally present before

2000 show a significant presence later. Network design, opti-
mal design, and business applications do not show a trend
but represent the highest volume of applications on bilevel
optimization.

IX. CONCLUSION

In this concluding section, we will raise a few perspec-
tives that have not yet received much attention but may
offer interesting directions for future research. Apart from
metamodeling-based techniques to solve bilevel problems, we
would like to highlight the importance of being able to account
for different forms of uncertainties that are often encountered
when solving practical problems. Another interesting direc-
tion is concerned with scalability of bilevel algorithms and
ability to leverage distributed computing platforms to handle
large scale problems. Further information about evolutionary
bilevel optimization can be found at http://www.bilevel.org.

A. Metamodeling-Based Algorithms

Though we have already highlighted the importance of
metamodeling-based methods in an earlier section, we have
decided to discuss it once again because of its potential in
solving practical bilevel optimization problems. Bilevel opti-
mization problems inherit a number of mappings, and any
knowledge about the structure of these mappings can sim-
plify the solution procedure extensively. In this paper, we
have highlighted approaches that are based on approximating
the reaction set mapping and the optimal lower level value
function mapping. Knowing one of these mappings reduces
any bilevel optimization problem to a single-level optimiza-
tion problem. For solving large scale bilevel problems, one
has to exploit the structure and properties of bilevel problems
that are essentially contained in these mappings. Other ways
of utilizing metamodeling for bilevel problems that we have
discussed are: approximating the bilevel problem by bypass-
ing the lower level problem completely; and utilizing auxiliary
bilevel models to locally approximate a bilevel optimization
problem. Only few studies in the context of evolutionary algo-
rithms utilize such a strategies and offer opportunities for
future contributions.

B. Multiobjective Bilevel Optimization and
Decision Making

Multiobjective bilevel optimization has received only luke-
warm interest from researchers. A number of issues, like
decision interaction between the two levels and uncertainties in
decision making, remain unexplored. It might be of interest for
researchers working in the area of multicriteria decision mak-
ing and multiobjective evolutionary optimization to explore
how two levels of decision makers interact to arrive at a com-
promising or an equilibrium solution in different situations.
Similarly, the notion of uncertain decision-maker’s preferences
at one or both levels has also not received enough atten-
tion [151]. In the field of decision analysis, however, plenty
of research has been carried out to extend traditional frame-
works of decision making such as expected utility theory [124]
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and multiattribute utility theory [92] to account for uncer-
tain preferences on, for instance, the tradeoffs among multiple
decision objectives or the risk-attitude. However, preferen-
tial uncertainty in bilevel optimization problems still requires
development of theory as well as methods to account for deci-
sion behavior in a hierarchical setting. The approaches that
have been proposed so far are still very preliminary and require
substantial future research.

C. Bilevel Optimization Under Variable Uncertainty

Another important research topic is concerned with the
inherent uncertainty of decision variables. This poses several
challenges for the existing more deterministic optimization
frameworks that may fail to find solutions that are robust and
sufficiently close to the optimal solutions. The fact that bilevel
problems have nested optimization tasks makes the search
of robust solutions substantially more challenging compared
with single-level optimization problems. A few preliminary
ideas for handling variable uncertainty have already been sug-
gested [52], but the required algorithm side innovations that
would make these problems accessible to practitioners are still
missing.

D. Scaling of Evolutionary Bilevel Algorithms

Bilevel problems are well-known for being highly compu-
tationally intensive already before considering any types of
uncertainties. One of the promising directions for handling
larger bilevel problems could be the use of the recent dis-
tributed computing platforms such as Apache Spark project.
The programming model of Spark is quite different from the
Hadoop MapReduce framework, and it has managed to over-
come many of the earlier limitations. In particular, its current
form has turned out to support the use and development of
iterative algorithms quite well. Therefore, it may be interest-
ing to investigate whether this novel platform will be able to
offer a helping hand for researchers and practitioners who seek
to solve bigger bilevel problems faster.

Though considerable progress has already been made during
the last few years, evolutionary bilevel optimization is still a
relatively young field with numerous opportunities for both
computational as well as theoretical innovations. The growing
availability of algorithms is also opening the field to more
applied research, and we believe that in the future we are
likely to see a considerable amount of novel applications.
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