

A General Purpose Exact Solution Method for Mixed

Integer Concave Minimization Problems

 Ankur Sinha
 Arka Das

 Guneshwar Anand

 Sachin Jayaswal

 W. P. No. 2021-03-01

A General Purpose Exact Solution Method

for Mixed Integer Concave Minimization

Problems

 Ankur Sinha
 Arka Das
 Guneshwar Anand
 Sachin Jayaswal

 March 2021

The main objective of the working paper series of the IIMA is to help faculty
members, research staff and doctoral students to speedily share their
research findings with professional colleagues and test their research
findings at the pre-publication stage. IIMA is committed to maintain academic
freedom. The opinion(s), view(s) and conclusion(s) expressed in the working
paper are those of the authors and not that of IIMA.

A General Purpose Exact Solution Method for Mixed Integer

Concave Minimization Problems

Ankur Sinha∗ Arka Das† Guneshwar Anand‡ Sachin Jayaswal§

August 12, 2021

Abstract

In this article, we discuss an exact algorithm for mixed integer concave minimization
problems. A piecewise inner-approximation of the concave function is achieved using an
auxiliary linear program that leads to a bilevel program, which provides a lower bound to
the original problem. The bilevel program is reduced to a single-level formulation with the
help of Karush-Kuhn-Tucker (KKT) conditions. Incorporating the KKT conditions lead to
complementary slackness conditions that are linearized using BigM. Multiple bilevel pro-
grams, when solved over iterations, guarantee convergence to the exact optimum of the
original problem. Though the algorithm is general and can be applied to any optimization
problem with concave function(s), in this paper, we solve two common classes of opera-
tions and supply chain problems; namely, the concave knapsack problem, and the concave
production-transportation problem. The computational experiments indicate that our pro-
posed approach outperforms the customized methods that have been used in the literature
to solve the two classes of problems by an order of magnitude in most of the test cases.

Keywords— Concave Minimization, Mixed Integer Non-Linear Programming, Non-Convex Optimiza-
tion

1 Introduction

The interest in non-convex optimization is motivated by its applications to a wide variety of real-
world problems, including concave knapsack problems (Sun et al., 2005; Han et al., 2017), production-
transportation problem (Kuno and Utsunomiya, 2000), facility location problems with concave costs
(Soland, 1974), concave minimum cost network flow problems (Guisewite and Pardalos, 1990; Fontes
and Gonçalves, 2007), etc. Non-convexities often arise, in the above problems, due to the presence of
concave functions either in the objective or in the constraints. It is difficult to solve these optimization
problems exactly, and hence the problem has been of interest to the optimization community since the
1960s.

One of the earliest studies on non-convex optimization problems is by Tuy (1964), where the au-
thor proposed a cutting plane algorithm for solving concave minimization problems over a polyhedron.
The proposed algorithm was based on the partitioning of the feasible region, where the partitions were
successively eliminated using Tuy cuts. However, the algorithm had a drawback that it was not guar-
anteed to be finite, which was tackled later by Zwart (1974); Majthay and Whinston (1974). Apart
from cutting plane approaches, researchers also used relaxation-based ideas. For instance, Falk and
Hoffman (1976); Carrillo (1977) computed successive underestimations of the concave function to solve

∗Production and Quantitative Methods, Indian Institute of Management Ahmedabad, Gujarat, India, 380015,
asinha@iima.ac.in

†Production and Quantitative Methods, Indian Institute of Management Ahmedabad, Gujarat, India, 380015,
phd17arkadas@iima.ac.in

‡Production and Operations Management, Indian Institute of Management Visakhapatnam, Andhra Pradesh,
India, 530003, guneshwar.anand-phd19@iimv.ac.in

§Production and Quantitative Methods, Indian Institute of Management Ahmedabad, Gujarat, India,
380015,sachin@iima.ac.in

1

mailto:asinha@iima.ac.in
mailto:phd17arkadas@iima.ac.in
mailto:guneshwar.anand-phd19@iimv.ac.in
mailto:sachin@iima.ac.in

the problem optimally. Branch-and-bound based approaches are also common to solve these problems,
where the feasible region is partitioned into smaller parts using branching (Falk and Soland, 1969; Horst,
1976; Ryoo and Sahinidis, 1996; Tawarmalani and Sahinidis, 2004). Other ideas for handling concavities
are based on extreme point ranking (Murty, 1968; Taha, 1973) or generalized Benders decomposition
(Floudas et al., 1989; Li et al., 2011). The limitations of some of the above studies are one or more
of the following: applicable only to a specific class of concave minimization problems; strong regularity
assumptions; non-finite convergence; and/or convergence to a local optimum. Due to these limitations,
there is also a plethora of specialized heuristics and meta-heuristics in the literature to obtain good
quality or approximate solutions in less time. However, most of the heuristics and meta-heuristics do
not guarantee convergence. Therefore, the idea of obtaining good quality solutions is often questioned
as there is no way to ascertain how far the solution is from the global optimum.

In this paper, we discuss an algorithm for minimization problems with concave functions, which
requires few assumptions about the problem structure. The problem studied in this paper is also studied
in the area of difference-of-convex (DC) programming, for instance, the work by Strekalovsky (2015)
comes close to our study. However, there have been challenges in directly implementing many of the DC
programming approaches on operations and supply chain problems, as the problems considered are often
large dimensional mixed integer problems for which obtaining the exact solution in reasonable time is
difficult. We design and implement a piecewise-linear inner approximation method that is able to solve
large dimensional operations and supply chain problems that involve mixed integers and concavities. The
method relies on the piecewise-linear inner approximation (Rockafellar, 1970) approach, which replaces
the concave function to arrive at a bilevel formulation that leads to the lower bound of the original
problem. The bilevel optimization problem is solvable using the Karush-Kuhn-Tucker (KKT) approach.
Through an iterative procedure, wherein multiple bilevel programs are solved, the method converges to
the global optimum of the original problem. The method can be used to solve concave minimization prob-
lems with continuous or discrete variables exactly, as long as the concavities in the optimization problem
are known. We solve two classes of optimization problems in this paper to demonstrate the efficacy of
our method: (i) concave knapsack problem; and (ii) concave production-transportation problem. For the
concave production-transportation problem, we further consider two sub-classes: (a) single sourcing; and
(b) multiple sourcing that have quite different formulations. We show that the proposed exact method,
which is general, beats the existing specialized methods for solving the application problems by a large
margin.

The rest of the paper is organized as follows. We provide the algorithm description, followed by
the convergence theorems and proofs in Section 2. The concave knapsack problems and production-
transportation problems are discussed in Section 3 and Section 4, respectively. Each of these sections
contains a brief survey, problem description, and computational results for its respective problem. Finally,
we conclude in Section 5. The paper also has an Appendix, where we show the working of the algorithm
on two sample problems.

2 Algorithm Description

We consider optimization problems of the following kind

min
x
f(x) + φ(x) (1)

subject to gi(x) ≤ 0, i = 1, . . . , I (2)

xlk ≤ xk ≤ xuk , k = 1, . . . , n (3)

where f(x) and g(x) are convex, φ(x) is strictly concave and x ∈ Rn. Note that there is no restriction
on x, which may be combinatorial, integer or continuous. The functions are assumed to be Lipschitz
continuous. For a given set of points Sc = {z1, z2, . . . , zτ} (let c = 1), the function φ(x) can be
approximated as follows (see Section 12 in Rockafellar (1970)):

φ̂(x|Sc) = max
µ


τ∑
j=1

µjφ(zj) :

τ∑
j=1

µj = 1,

τ∑
j=1

µjz
j
k = xk, k = 1, . . . , n, µj ≥ 0, j = 1, . . . , τ

 (4)

which is a linear program with x as a parameter and µ as a decision vector. For brevity, we will represent
the approximation φ̂(x|Sc) as φ̂(x). Figures 1 and 2 represent the approximation graphically and show
how the approximation improves with addition of a new point in the approximation set. Note that the

2

Feasible region for

inner approximation

linear program

𝜙(𝑥)

𝑥

𝑥1 𝑥2 𝑥3 𝑥4

෠𝜙(𝑥)

Figure 1: Inner-approximation of φ(x) with a
set of points (τ = 4, n = 1).

Feasible region for

inner approximation

linear program

𝜙(𝑥)

𝑥

𝑥1 𝑥2 𝑥3 𝑥4

෠𝜙(𝑥)

𝑥5

Figure 2: Inner-approximation of φ(x) with
an additional point (τ = 5, n = 1).

feasible region of (4) in Figure 2 is a superset of the feasible region in Figure 1. We will use this property
later while discussing the convergence properties of the algorithm. The above approximation converts
the concave minimization problem (1)-(3) into the following lower bound program, as φ̂(x) is the inner
piecewise linear approximation of φ(x).

min
x
f(x) + φ̂(x) (5)

subject to gi(x) ≤ 0, i = 1, . . . , I (6)

xlk ≤ xk ≤ xuk , k = 1, . . . , n (7)

Theorem 1. The formulation (5)-(7) provides a lower bound for the formulation (1)-(3).

Proof. Given that φ̂(x) is a piecewise inner-approximation of φ(x), the function φ̂(x) always bounds φ(x)

from below. Therefore, at any given x, φ̂(x) will always take a smaller value than φ(x). This implies the
following:

f(x) + φ̂(x) ≤ f(x) + φ(x)

Formulation (5)-(7) is a bilevel program, which can be written as follows:

min
x,ζ

f(x) + ζ

subject to µ ∈ argmax
µ


τ∑
j=1

µjφ(zj) :

τ∑
j=1

µj = 1,

τ∑
j=1

µjz
j
k = xk, k = 1, . . . , n, µj ≥ 0, j = 1, . . . , τ


τ∑
j=1

µjφ(zj) ≤ ζ

gi(x) ≤ 0, i = 1, . . . , I

xlk ≤ xk ≤ xuk , k = 1, . . . , n

A bilevel problem, where the lower level is a linear program, is often solved by replacing the lower
level with its KKT conditions. Substituting the KKT conditions for the lower level program using α as
the Lagrange multiplier for

∑τ
j=1 µj = 1, β as the Lagrange multiplier for

∑τ
j=1 µjz

j
k = xk and γ as the

3

Lagrange multiplier for µj ≥ 0, the above formulation reduces to the following.

Mod-Sc min
x,α,β,γ,ζ

f(x) + ζ (8)

subject to (9)

gi(x) ≤ 0 i = 1, . . . , I (10)
τ∑
j=1

µjφ(zj) ≤ ζ (11)

τ∑
j=1

µj = 1 (12)

τ∑
j=1

µjz
j
k = xk k = 1, . . . , n (13)

φ(zj)− α−
n∑
k=1

βjz
k
j + γj = 0 j = 1, . . . , τ (14)

µjγj = 0 j = 1, . . . τ (15)

µj ≥ 0 j = 1, . . . τ (16)

γj ≥ 0 j = 1, . . . τ (17)

xlk ≤ xk ≤ xuk k = 1, . . . , n (18)

Note that the above program contains product terms in the complementary slackness conditions (µjγj =
0), which can be linearized using binary variables (u) and BigM (M1 and M2) as follows:

γj ≤M1uj , j = 1, . . . τ (19)

µj ≤M2(1− uj), j = 1, . . . , τ (20)

From constraints (12) and (16), we observe that the maximum value that µj can take is 1. Hence, M2 = 1
is acceptable. We may choose M1 to be any big number.

After linearization of the complimentary slackness conditions, (8)-(14), (16)-(20) is a convex mixed
integer program (MIP), which represents a lower bound for (1)-(3). Solving (8)-(14), (16)-(20) leads to
zτ+1 as an optimal point, which is a feasible point for the original problem (1)-(3). Therefore, substituting
zτ+1 in (1) provides an upper bound for the original problem. The optimal point zτ+1 to the convex MIP
is used to create a new set Sc+1 = Sc∪zτ+1 corresponding to which a new convex MIP is formulated. The
new convex MIP formulated with an additional point is expected to provide improved lower and upper
bounds in the next iteration of the algorithm. This algorithm is referred to as the Inner-Approximation
(IA) algorithm in the rest of the paper. A pseudo-code of IA algorithm is provided in Algorithm 1. The

Algorithm 1 IA Algorithm for solving concave problem

1: Begin
2: UBA ← +∞, LBA ← −∞, c← 1
3: Choose an initial set of τ points Sc = {z1, z2, . . . , zτ}
4: while ((UBA − LBA)/LBA > ε) begin do
5: Solve Mod-Sc ((8)-(18)) with an MIP solver after linearizing (15)
6: Let the optimal solution for Mod-Sc be zτ+c

7: LBA ← f(zτ+c) + φ̂(zτ+c)
8: UBA ← f(zτ+c) + φ(zτ+c)
9: Sc+1 ← Sc ∪ zτ+c

10: c← c+ 1;

11: End

algorithm starts with an initial set of points S1 = {z1, . . . , zτ}, such that dom φ(x) ⊆ conv S1.

4

𝑦2

𝑦1

(0,0)

(1,1)

(1,0)

(0,1)

𝑔𝑖 𝑦 ≤ 0

0 ≤ 𝑦𝑘 ≤1

Polyhedron

𝑆1 = { 0,0 , 1,0 , 0,1 , 1,1 }

Figure 3: Smaller polyhedron with larger
number of points.

𝑦2

𝑦1

(0,0)

(1,1)

(1,0)

(0,1)

𝑔𝑖 𝑦 ≤ 0

(2,0)

(0,2)

Polyhedron

𝑆1 = { 0,0 , 2,0 , 0,2 }

Figure 4: Larger polyhedron with smaller
number of points.

2.1 The Initial Set

In this section, we discuss the choice of the initial set S1 = {z1, . . . , zτ}, such that dom φ(x) ⊆ conv S1.
The bound constraints in (1)-(3) are important so that the initial set S1 may be chosen easily. One of
the ways to initialize S1 would be to choose the corner points of the box constraints xlk ≤ xk ≤ xuk , k =
1, . . . , n. Additional points may be sampled randomly between the lower and upper bounds at the start
of the algorithm for a better initial approximation of φ(x), but are not necessary. However, note that for
a problem with n variables, choosing the corner points of the box constraints, amounts to starting the
algorithm with the cardinality of S1 as 2n. For large dimensional problems, the size of the set may be
very large, and therefore the approach would be intractable. For large dimensional problem we propose
an alternative technique to choose S1, such that dom φ(x) ⊆ conv S1, but the number of points in S1 is
only n+ 1.

Without loss of generality, assume that the lower bound is 0 and the upper bound is 1, as one can
always normalize the variables by replacing variables xk with yk(xuk − xlk) + xlk such that 0 ≤ yk ≤ 1. In
such a case, Figure 3 shows the feasible region gi(y) ≤ 0 ∀ i, enclosed in the polyhedron 0 ≤ yk ≤ 1 ∀ k.
Another polyhedron that encloses gi(y) ≤ 0 ∀ i completely is shown in Figure 4. While the polyhedron
in Figure 3 is smaller in terms of the area (or volume), the polyhedron in Figure 4 is comparatively
larger. However, the number of points required to form the polyhedron in Figure 3 for an n dimensional
problem would be 2n, whereas the polyhedron in Figure 4 will require only n + 1 points for an n
dimensional problem. For the second case, in an n dimensional problem the points can be chosen as
follows, (0, 0, . . . , 0), (n, 0, . . . , 0), (0, n, . . . , 0), . . . , (0, 0, . . . , n). These points from the y space can be
transformed to the corresponding x space by the following substitution xk = yk(xuk −xlk) +xlk. One may
of course choose any other polyhedron that completely encloses gi(x) ≤ 0 ∀ i.

2.2 Convergence Results

Next, we discuss the convergence results for the proposed algorithm. First we prove that if the algorithm
provides the same solution in two consecutive iterations, then the solution is an optimal solution to the
original concave minimization problem (1)-(3).

Theorem 2. If two consecutive iterations i and i + 1 lead to the same solution then the solution is
optimal for (1)-(3).

Proof. Say that zτ+i is the solution at iteration i. Note that Si+1 = Si ∪ zτ+i, which implies that at
iteration i+1, φ̂(zτ+i|Si+1) = φ(zτ+i). From Theorem 1, at iteration i+1, f(zτ+i+1)+ φ̂(zτ+i+1|Si+1) ≤
f(zτ+i+1) + φ(zτ+i+1). Since zτ+i+1 = zτ+i and φ̂(zτ+i|Si+1) = φ(zτ+i), f(zτ+i+1) + φ̂(zτ+i+1|Si+1) ≤
f(zτ+i+1) + φ(zτ+i+1) holds with an equality, it implies that zτ+i is the optimal solution.

5

Theorem 3. When the algorithm proceeds from iteration i to i + 1 then the lower bound for (1)-(3)
improves, if zτ+i at iteration i is not the optimum for (1)-(3).

Proof. It is given that zτ+i is the solution for (5)-(7) at iteration i, which is not optimal for the original
problem ((1)-(3)). Say that zτ+i+1 is the solution for (5)-(7) at iteration i + 1, so from Theorem 2 we
can say that zτ+i 6= zτ+i+1.

Note that for any given x, φ̂(x|Si) ≤ φ̂(x|Si+1), as the linear program corresponding to φ̂(x|Si+1) is

a relaxation of φ̂(x|Si). This is shown in the next statement. If µτ+1 = 0 is added in the linear program

corresponding to φ̂(x|Si+1), it becomes equivalent to the linear program corresponding to φ̂(x|Si), which

shows that φ̂(x|Si+1) is a relaxation of φ̂(x|Si).
Since φ̂(x|Si) ≤ φ̂(x|Si+1) for all x, we can say that f(x)+ φ̂(x|Si) ≤ f(x)+φ(x|Si+1) for all x. This

implies that for (5)-(7) comparing the objective function at the optimum, we get f(zτ+i) + φ̂(zτ+i) ≤
f(zτ+i+1) + φ(zτ+i+1). Strict concavity of φ and zτ+i 6= zτ+i+1 ensure that the equality will not hold,

implying f(zτ+i) + φ̂(zτ+i) < f(zτ+i+1) + φ(zτ+i+1). Therefore, the lower bound strictly improves in
the next iteration.

Theorem 4. If φ(x) is Lipschitz continuous with Lipschitz constant K, then φ̂(x|Si) : x ∈ conv Si is
also Lipschitz continuous with the maximum possible value of Lipschitz constant as K.

Proof. From the Lipschitz condition |φ(x1)−φ(x2)| ≤ K||x1−x2|| and the concavity of φ(x) : x ∈ conv Si,

we can say that ||ω|| ≤ K ∀ ω ∈ ∂φ(x), where ∂φ(x) represents the subgradient. The function φ̂(x|Si) :
x ∈ conv Si is a concave polyhedral function, i.e. consisting of piecewise hyperplanes. Therefore, consider
bounded polyhedra Xj , j = 1, . . . , s on which the hyperplanes are defined, such that ∇φ̂(x) is constant

in the interior of Xj . Note that φ̂(x|Si) = φ(x) on the vertices, otherwise φ̂(x|Si) ≤ φ(x). From the

property of concavity, it is clear that ∇φ̂(x) ∈ ∂φ(x) : x ∈ Xj . This implies that ||∇φ̂(x)|| ≤ K ∀ x ∈ Xj ,
which can be generalized for all hyperplanes.

Theorem 5. If zτ+i is the solution for (5)-(7) at iteration i, zτ+i+1 is the solution for (5)-(7) at
iteration i+1, and ||zτ+i+1−zτ+i|| ≤ δ, then the optimal function value, v∗ for (1)-(3) has the following

property: 0 ≤ f(zτ+i+1)+φ̂(zτ+i+1|Si+1)−v∗ ≤ (K1+K2)δ, where K1 and K2 are the Lipchitz constants
for f(x) and φ(x), respectively.

Proof. Note that at iteration i+1, φ̂(zτ+i|Si+1) = φ(zτ+i) with zτ+i being a feasible solution for (1)-(3).

Therefore, f(zτ+i) + φ̂(zτ+i|Si+1) is the upper bound for v∗. Also f(zτ+i+1) + φ̂(zτ+i+1|Si+1) is the
lower bound for v∗ from Theorem 1.

f(zτ+i+1) + φ̂(zτ+i+1|Si+1) ≤ v∗ ≤ f(zτ+i) + φ̂(zτ+i|Si+1)

If K2 is the Lipschitz constant for φ(x), then it is also the Lipschitz constant for φ̂(x) from Theorem 4.
From the Lipschitz property,

f(zτ+i+1) + φ̂(zτ+i+1|Si+1) ≤ v∗ ≤ f(zτ+i) + φ̂(zτ+i|Si+1) ≤ f(zτ+i+1) + φ̂(zτ+i+1|Si+1) + (K1 +K2)δ

which implies 0 ≤ f(zτ+i+1) + φ̂(zτ+i+1|Si+1)− v∗ ≤ (K1 +K2)δ.

To illustrate the working of the algorithm, an example has been provided in the Appendix (see
Section A). Next, we apply the algorithm on two common classes of concave minimization problems.

3 Concave Knapsack Problem

The integer/binary knapsack problem requires determining the items to be chosen from a given collection
of items with certain weights and values so as to maximize the total value without exceeding a given
total weight limit. Over the last sixty years, integer/binary knapsack problems have received consider-
able attention mostly due to their wide variety of applications in financial decision problems, knapsack
cryptosystems, combinatorial auctions, etc. (Kellerer et al., 2004). The integer/binary Knapsack prob-
lem is known to be NP-complete, for which a variety of algorithms have been reported in the literature,
including Lagrangian relaxation (Fayard and Plateau, 1982; Fisher, 2004), branch-and-bound (B&B)
(Kolesar, 1967), dynamic programming (Martello et al., 1999), and hybrid methods combining B&B and
dynamic programming (Marsten and Morin, 1978), etc. The literature has also seen a proliferation of

6

papers on non-linear Knapsack problems (NKP), which arise from economies and dis-economies of scale
in modelling various problems such as capacity planning (Bitran and Tirupati, 1989), production plan-
ning (Ziegler, 1982; Ventura and Klein, 1988; Maloney and Klein, 1993), stratified sampling problems
(Bretthauer et al., 1999), financial models (Mathur et al., 1983), etc. NKP also arises as a subproblem in
solving service system design problems and facility location problems with stochastic demand (Elhedhli,
2005). NKP problem may be a convex or a non-convex problem in nature. Each of these types can
be further classified as continuous or integer knapsack problems, separable or non-separable knapsack
problems. In this paper, we aim to solve the concave separable integer knapsack problem (CSINK),
where concavity in the objective function arises due to the concave cost structure. There are a plethora
of applications that involve concave costs, such as capacity planning and fixed charge problems with
integer variables (Bretthauer and Shetty, 1995; Horst and Thoai, 1998; Horst and Tuy, 2013), and other
problems with economies of scale (Pardalos and Rosen, 1987). Specifically, applications of CSINK include
communication satellite selection (Witzgall, 1975), pluviometer selection in hydrological studies (Gallo
et al., 1980a; Caprara et al., 1999), compiler design (Johnson et al., 1993; Pisinger, 2007), weighted max-
imum b-clique problems (Park et al., 1996; Dijkhuizen and Faigle, 1993; Pisinger, 2007; Caprara et al.,
1999). Due to its wide applications, CSINK has attracted a lot of researchers to solve it efficiently.

Gallo et al. (1980a) reported one of the first approaches for the quadratic knapsack problem by
utilizing the concept of the upper plane, which is generated by the outer linearization of the concave
function. Researchers have also come up with different B&B-based algorithms to solve the concave
minimization version of the problem with integer variables (Marsten and Morin, 1978; Victor Cabot
and Selcuk Erenguc, 1986; Benson and Erenguc, 1990; Bretthauer et al., 1994; Caprara et al., 1999).
Chaillou et al. (1989) proposed a Lagrangian relaxation-based bound of the quadratic knapsack problem.
Moré and Vavasis (1990) proposed an algorithm that characterizes local minimizers when the objective
function is strictly concave and used this characterization in determining the global minimizer of a
concave knapsack problem with linear constraints. Michelon and Veilleux (1996) reported a Lagrangian
based decomposition technique for solving the concave quadratic knapsack problem. Later, Sun et al.
(2005) developed an iterative procedure of linearly underestimating the concave function and executing
domain cut and partition by utilizing the special structure of the problem. Most recently, Wang (2019)
reported an exact algorithm that combines the contour cut (Li et al., 2006) with a special cut to gradually
reduce the duality gap through an iterative process to solve CSINK. Wang showed that his proposed
algorithm outperformed the hybrid method proposed by Marsten and Morin (1978).

The model for CSINK is described below:

min
x

φ(x) =

n∑
j=1

φj(xj) (21)

subject to

Ax ≤ b (22)

x ∈ X = {x ∈ Zn | lj ≤ xj ≤ uj} (23)

where φj(xj), j = 1. . . . n are concave non-decreasing functions, A ∈ Rm×n, b ∈ Rm and l = (l1, . . . ln)T , u =
(u1, . . . un)T are upper and lower bounds of x respectively. In the next section, we discuss about the
dataset used for the computational experiments and present the results of the IA algorithm. We bench-
mark our method against Wang (2019).

3.1 Computational Experiments

In this section, we present the data generation technique, followed by a discussion on computational
results. All computational experiments are carried out on a PC with Pentium(R) Dual-core CPU i5-
6200U @2.3 GHz and 8 GB RAM. As described in Section 2, the IA algorithm is coded in C++, and
the MIP in step 5 of Algorithm 1 is solved using the default Branch&Cut solver of CPLEX 12.7.1.
The optimality gap (ε = 0.01) is calculated as UB−LB

LB × 100, where UB and LB denote the upper
bound and lower bound for the original problem, respectively. The algorithm is set to terminate using
ε = 0.01 in step 4 of Algorithm 1 or using a CPU time limit of 2 hours, whichever reaches first. We
compare the computational performance of our method against Wang (2019). The experiments by Wang
(2019) are done on a PC with Pentium(R) Dual-core CPU E6700 @3.2GHz, which is approximately 2.79
times slower than our system (https://www.cpubenchmark.net/singleCompare.php). Hence, for a fair
comparison, we scale the computational times of the IA algorithm by a factor of 2.79.

7

3.1.1 Data-Set

All our computational experiments are performed on random data-sets, generated using the follow-
ing scheme as described by Wang (2019). In all the test data-sets: A = {aij}n×m ∈ [−20,−10];

bi =
∑n
j=1 aij lj+r

(∑n
j=1 aijuj −

∑n
j=1 aij lj

)
; where r = 0.6; and lj = 1, uj = 5;n ∈ {30, . . . , 150},m ∈

{10, 15}. Further, we employ two different forms of concavity in the objective function (21): (i) poly-
nomial form; and (ii) non-polynomial form. The parameters settings for both categories are briefly
described as follows.

(i) Polynomial concave function:

φ(x) =

n∑
j=1

(cjx
4
j + djx

3
j + ejx

2
j + hjxj)

We use the following three kinds of polynomial concave functions, as used by Wang (2019). For
a fixed n and m, ten random test problems are generated from a uniform distribution using the
following scheme.

• Quadratic: cj = 0, dj = 0, ej ∈ [−15,−1], hj ∈ [−5, 5], j = 1, . . . , n.

• Cubic: cj = 0, dj ∈ (−1, 0), ej ∈ [−15,−1], hj ∈ [−5, 5], j = 1, . . . , n.

• Quartic: cj ∈ (−1, 0), dj ∈ (−5, 0), ej ∈ [−15,−1], hj ∈ [−5, 5], j = 1, . . . , n

(ii) Non-polynomial concave function:

φ(x) =

n∑
j=1

(cj ln(xj) + djxj)

Once again, we generate 10 random data instances for a fixed n and m using uniform distribution
with the following parameters: cj ∈ (0, 1), dj ∈ [−20,−10], j = 1, . . . , n.

3.1.2 Computational Results

Tables 1-4 provide a comparison of the computational performance of the IA algorithm against Wang
(2019). Since Wang (2019) report only the average, minimum, and maximum CPU times over 10 ran-
domly generated instances for each size of the problem, we also do the same for a meaningful comparison.
It is important to highlight that, as discussed earlier in this section, for a fair comparison, the CPU times
for the IA algorithm have been scaled by a factor of 2.79 before reporting in Tables 1-4. For each problem
size, the better of the two average CPU times (one for the IA algorithm and the other for Wang (2019))
is highlighted in boldface. Tables 1-3 provide the results corresponding to the three different polynomial
forms (quadratic, cubic and quartic). As evident from the tables, the IA algorithm consistently outper-
forms Wang (2019) over all the instances for the case of the quadratic objective function (21), and over
most of the instances for the other forms of the objective function except for the few easy instances.
Specifically, for the quadratic objective function, the IA algorithm takes 55.35 seconds on average, over
all the instances, which is less than one-sixth of 375.65 required by Wang (2019). For the cubic and the
quartic form of the objective function, the average times over all the instances taken by the IA algorithm
are 233.13 and 132.35, respectively, while the same taken by Wang (2019) are 450.12 and 259.32. Table 4
provides the results corresponding to the non-polynomial (logarithmic) form of the objective function
(21). Clearly, the IA algorithm consistently outperforms Wang (2019) over all the instances for the case
of the logarithmic objective function, taking an average of only 1.92 seconds, which is around 88 times
smaller than the average time of 169.18 seconds taken by Wang (2019).

To further see the difference in the performances of two methods, we present their performance
profiles (Dolan and Moré, 2002) in Figures 5-8. For this, let tp,s represent the CPU time to solve
instance p ∈ P using method s ∈ S. Using this notation, the performance ratio (rp,s), which is defined
as the ratio of the CPU time taken by a given method to that taken by the best method for that instance,
can be mathematically given as follows:

rp,s =
tp,s

min
s∈S

tp,s
(24)

8

Table 1: Experimental results for quadratic concave knapsack prob-
lem

CPU Time (seconds)

IA Algorithm∗ Wang (2019)

n×m Avg Min Max Avg Min Max

30×10 6.94 0.43 34.53 17.85 0.41 75.64
40×10 8.57 0.14 34.91 50.98 2.05 350.94
50×10 5.75 0.84 22.25 142.39 1.34 980.34
80×10 79.96 2.94 276.72 793.83 14.81 7212.39
150×10 85.83 1.43 538.69 1116.95 0.01 3232.39
20×15 18.85 0.84 131.93 31.77 2.88 237.75
30×15 102.02 0.79 395.04 140.91 1.14 587.64
40×15 134.85 3.65 408.48 710.48 2.45 3125.30

Avg 55.35 1.38 230.32 375.65 3.14 1975.30

∗Original CPU times are scaled by 2.79 for a fair comparison.

Table 2: Experimental results for cubic concave knapsack problem

CPU Time (seconds)

IA Algorithm∗ Wang (2019)

n×m Avg Min Max Avg Min Max

30×10 13.97 0.33 46.57 10.91 0.25 26.80
40×10 14.28 0.23 44.85 30.73 1.30 98.47
60×10 40.54 1.21 120.09 166.62 6.72 1002.75
80×10 237.87 2.12 1139.96 275.28 5.08 1672.88
90×10 271.76 0.39 1520.73 631.08 0.00 5457.95
20×15 38.36 1.91 152.15 153.48 1.41 1059.48
30×15 132.61 5.98 347.53 159.91 3.58 999.77
50×15 1115.69 84.94 4462.55 2172.94 36.08 12747.97

Avg 233.13 12.14 979.30 450.12 6.80 2883.26

∗Original CPU times are scaled by 2.79 for a fair comparison.

9

Table 3: Experimental results for quartic concave knapsack problem

CPU Time (seconds)

IA Algorithm∗ Wang (2019)

n×m Avg Min Max Avg Min Max

30×10 30.18 1.15 116.12 13.09 2.02 35.81
50×10 74.68 0.21 290.12 44.92 4.61 153.17
70×10 54.12 1.52 260.06 396.58 8.03 1994.47
100×10 188.88 4.50 1259.25 611.00 8.80 4963.13
20×15 101.06 9.41 353.96 117.90 3.03 402.61
30×15 115.11 1.14 564.25 188.39 3.22 1583.52
40×15 361.70 0.74 1405.47 443.32 6.09 1281.44

Avg 132.25 2.67 607.03 259.32 5.11 1487.73

∗Original CPU times are scaled by 2.79 for a fair comparison.

Table 4: Experimental results for logarithmic concave knap-
sack problem(φ(x) =

∑n
j=1(cjln(xj) + djxj))

CPU Time (seconds)

IA Algorithm∗ Wang (2019)

n×m Avg Min Max Avg Min Max

30×10 0.41 0.14 0.91 3.97 0.20 18.59
50×10 0.56 0.13 1.14 9.54 1.08 24.11
70×10 0.61 0.13 1.46 44.11 1.86 147.33
95×10 0.79 0.18 4.00 277.36 0.02 1484.20
30×15 1.36 0.15 5.97 12.70 0.94 39.55
50×15 3.16 0.41 12.60 289.21 9.11 1156.89
70×15 6.59 0.45 36.72 547.38 27.03 2100.30

Avg 1.92 0.23 8.97 169.18 5.75 710.14

∗Original CPU times are scaled by 2.79 for a fair comparison.

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

P(
lo

g 2
r p

s
)

IA Algorithm
Wang (2019)

Figure 5: Performance profile of quadratic
knapsack problem

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

P(
lo

g 2
r p

s
)

IA Algorithm
Wang (2019)

Figure 6: Performance profile of cubic knap-
sack problem

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

P(
lo

g 2
r p

s
)

IA Algorithm
Wang (2019)

Figure 7: Performance profile of quartic knap-
sack problem

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0
P(

lo
g 2

r p
s

)

IA Algorithm
Wang (2019)

Figure 8: Performance profile of log knapsack
problem

If we assume rps as a random variable, then the performance profile (ps(τ)) is the cumulative distribution
function of rps at 2τ , mathematically expressed as ps(τ) = P (rp,s ≤ 2τ). In other words, it gives the
probability that the CPU time taken by the method p does not exceed 2τ times that taken by the better
of the two methods. Further, for a given method p, the intercept of its performance profile on the y-axis
shows the proportion of the instances for which it performs the best. The performance profiles for the
polynomial functions are displayed in Figures 5-7, and the same for the non-polynomial function are
displayed in Figure 8. In the absence of the CPU times for each individual instance by Wang (2019),
we use the average computational times (after scaling by a factor of 2.79) for creating the performance
profiles. From Figures 5-7, it can be concluded that the IA algorithm outperforms Wang (2019) for 100%
of the instances for the quadratic objective function, while it is better for 87.5% and 71.4% of the instances
for the cubic and quartic objective functions, respectively. For the non-polynomial (logarithmic) form of
the objective function, Figure 8 shows the IA algorithm as outperforming Wang (2019) for 100% of the
data instances. Furthermore, for the instances (for quadratic and non-polynomial objective functions)
on which the performance of Wang (2019) is worse than the IA algorithm, it is unable to solve them
to optimality even after 16 = (24) times the CPU time taken by the IA algorithm. Next, we discuss
the formulation of the production-transportation problem and report the results of the IA algorithm
benchmarking it against two approaches.

11

4 Production-Transportation Problem

Transportation problem is a classical optimization problem, which entails finding the minimum cost
of transporting homogeneous products from a set of sources (e.g. factories) with their given supplies
to meet the given demands at a set of destinations (e.g. warehouses). The production-transportation
problem extends the classical transportation problem by introducing a production-related variable at
each of the given sources, which decides the supply available at that source. The problem entails finding
the production quantity at each source, besides the transportation quantities from supply sources to
meet the demands at the destinations, at the minimum total production and transportation cost. To
formally define a production-transportation problem, let G = (V,U,E) be a bipartite graph, where V
and U denote the sets of m sources and n destinations, respectively, and E denotes the set of m × n
transportation arcs between the sources and the destinations. Let cij be the transportation cost per unit
of the product on arc (i, j) ∈ E, and φi(yi) be the cost of producing yi units at source i ∈ V . Further,
let dj and ki represent the demand at destination j ∈ U and the production capacity at source i ∈ V ,
respectively. If we define xij as the amount of the product transported on the arc from i to j, and yi as
the production quantity at source i, then a production-transportation problem can be mathematically
stated as:

min
x,y

∑
(i,j)∈E

cijxij +
∑
i∈V

φi(yi) (25)

subject to ∑
j∈U

xij ≤ yi, ∀ i ∈ V (26)

yi ≤ ki, ∀ i ∈ V (27)∑
i∈V

xij ≥ dj , ∀ j ∈ U (28)

xij ≥ 0, ∀ (i, j) ∈ E (29)

yi ≥ 0, ∀ i ∈ V (30)

(25)-(30) specifically models the multiple sourcing version of the problem, by allowing any destination
j ∈ V to receive its shipment in parts from several supply sources i ∈ U . The single sourcing variant
of the problem, which is also common in the literature, requires that any destination j ∈ V receive its
shipment from only one supply source i ∈ U . This is modelled by imposing a binary restriction on the
x variables.

In this paper, we are interested in testing the efficacy of the IA algorithm, as described in Sec-
tion 2, in solving the non-linear production-transportation problem in which the production cost φi(yi)
is concave. To the best of our knowledge, Sharp et al. (1970) was the first to study a non-linear
production-transportation problem. However, the production cost φi(yi) was assumed to be convex,
which is relatively easier than its concave counterpart. The production-transportation problem can be
viewed as a capacitated minimum cost network flow problem (MCNF) having (m) variables representing
the production cost function and (mn) variables representing transportation cost function. For m� n,
the production-transportation problem with concave production cost has a low-rank concavity (Konno
et al., 1997). Guisewite and Pardalos (1993); Klinz and Tuy (1993); Kuno and Utsunomiya (1997);
Kuno (1997); Tuy et al. (1993a,b, 1996) have proposed methods specifically suited when the problem has
low-rank concavity. These methods belong to a group of polynomial or pseudo-polynomial algorithms
in n, which do not scale well for m > 3. More scalable approaches are B&B based algorithms, which
consist of two varieties. For the single source uncapacitated version of minimum concave cost network
flow problem, Gallo et al. (1980b); Guisewite and Pardalos (1991) implicitly enumerate the spanning tree
of the network.Falk and Soland (1969); Soland (1971); Horst (1976); Benson (1985); Locatelli and Thoai
(2000) use linear underestimators to approximate the concave function, which is improved by dividing
the feasible space. Later, Kuno and Utsunomiya (2000) proposed a Lagrangian relaxation-based B&B
to solve the multiple sourcing production-transportation problems with concave cost. Subsequently, Saif
(2016) used Lagrangian relaxation-based B&B approaches to solve both the multiple and single sourcing
versions of the problem.

The literature on production-transportation problems has also seen several other variants/extensions
of the basic problem. Holmberg and Tuy (1999) studied a production-transportation problem with con-
cave production cost and convex transportation cost, resulting in a difference of convex (DC) optimization

12

problem, which is solved using a B&B method. Nagai and Kuno (2005) studied production-transportation
problems with inseparable concave production costs, which is solved using a B&B method. Condotta
et al. (2013) studied a production scheduling-transportation problem with only one supply source and
one destination. The objective of the problem is to schedule the production of a number of jobs with
given release dates and processing times, and to schedule their transportation to the customer using a
number of vehicles with limited capacity so as to minimize the maximum lateness.

Next, we describe our computational experiments on both the multiple and single sourcing versions
of the production-transportation problem using our proposed IA algorithm.

4.1 Computational Experiments

In this section, we present the data generation technique, followed by computational results for the
multiple sourcing and single sourcing versions of the production-transportation problem. The choice
of the solver, platform, and server configuration remains the same as reported in Section 3.1. The
experiments are set to terminate using ε = 0.01 in step 4 of Algorithm 1 or a maximum CPU time limit,
whichever reaches earlier. A maximum CPU time of 30 minutes is used for multiple sourcing, and that
of 8.5 hours is used for single sourcing problems.

4.1.1 Data-Set

The data used in the experiments are generated using the scheme described by Kuno and Utsunomiya
(2000). The concave cost function, φi(yi) = γ

√
yi, where γ ∼ Uniform{10, 20}; number of sources,

m = |V | ∈ {5, . . . , 25} for multiple sourcing and m = |V | ∈ {5, . . . , 15} for single sourcing; number
of destinations, n = |U | ∈ {25, . . . , 100}; transportation cost, cij ∼ Uniform{1, 2, . . . , 10} ∀ (i, j) ∈ E;

production capacity at source i, ki = 200 ∀ i ∈ V ; demand at destination j, dj =
⌈
α
∑

i∈V ki
|U |

⌉
∀ j ∈ U ,

where α ∈ {0.60, 0.75, 0.90} is a measure of capacity tightness.

4.1.2 Computational Results

Tables 5-7 provide a comparison of the computational performance of the IA algorithm against those
reported by Kuno and Utsunomiya (2000) and Saif (2016). The columns Kuno and Utsunomiya (2000)
and Saif (2016) represent the computational results reported by the respective authors. The missing
values in some of the rows indicate that the authors did not provide results for the corresponding data
instances. Since Both Kuno and Utsunomiya (2000) and Saif (2016) reported only the average and the
maximum CPU times over 10 randomly generated test instances (each corresponding to a randomly
selected pair of values of γ and cij) for each size of the problem, we also do the same for a meaningful
comparison. For each problem size, the best average CPU time among the three methods is highlighted
in boldface. Following observations can be immediately made from the tables: (i) Of the very selected
instances for which Saif (2016) has reported the computational results, his method never performs the
best except for a few very easy instances that can be solved within a fraction of a second. (ii) Between
the remaining two methods, our IA algorithm outperforms Kuno and Utsunomiya (2000) on majority of
the instances for which the results have been reported by the latter. When α = 0.75, for which Kuno and
Utsunomiya (2000) have reported their results across all the problem sizes used in our experiments (refer
to Table 6), their method takes 58.49 seconds on average, compared to 6.07 seconds taken by our IA
algorithm. To further see the difference between the two methods, we present their performance profiles
(created based on the average CPU times) in Figure 9. The figure shows the IA algorithm to be better
on 68.75% of the instances, while the method by Kuno and Utsunomiya (2000) performs better on the
remaining 31.25%. Further, on the instances on which the method by Kuno and Utsunomiya (2000)
performs worse, it is unable to solve around 50% of them to optimality even after taking 16 (= 24) times
the CPU time taken by the IA algorithm.

For the production-transportation problem with single sourcing, we provide a comparison of the
computational performance of the IA algorithm only with Saif (2016) since the study by Kuno and
Utsunomiya (2000) is restricted to only the multiple sourcing version of the problem. The computational
results of the two methods for the single sourcing version are reported in Tables 8-10. For each problem
size, the better of the two average CPU times is highlighted in boldface. Once again, like the multiple
sourcing case, missing values in some of the rows indicate that Saif (2016) did not provide results for
those data instances. Please note that when the capacity is tight (i.e., α is high), the single sourcing
constraints (i.e., xij ∈ {0, 1} ∀(i, j) ∈ E) become increasingly difficult to satisfy as m = |V | starts

13

Table 5: Experimental results of production-transportation problem with multiple
sourcing (α = 0.6)

CPU Time (seconds)

IA Algorithm Kuno and Utsunomiya (2000) Saif (2016)

m×n Avg Max Avg Max Avg Max

5×25 0.63 1.72 0.21 0.37 0.35 0.66
5×50 1.30 3.58 1.65 2.43 0.86 1.89
5×75 1.24 2.69 - - - -
5×100 1.78 4.19 - - - -
10×25 1.28 3.11 3.13 8.03 2.43 5.41
10×50 10.04 30.35 71.46 239.17 20.43 34.48
10×75 16.78 98.36 - - - -
10×100 87.50 341.31 - - - -
15×25 5.29 31.35 0.44 1.25 - -
15×50 6.51 18.64 87.68 260.82 - -
15×75 188.26 880.14 - - - -
15×100 77.77 228.87 - - - -
20×75 188.22 1496.60 - - - -
20×100 97.79 800.77 - - - -
25×75 4.56 21.31 - - - -
25×100 7.64 39.42 - - - -

Avg 43.54 250.15 - - - -

- denotes that the result is not provided by the respective author

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

P(
lo

g 2
r p

s
)

IA Algorithm
K&U(2000)

Figure 9: Performance profile of production-transportation problem with multiple sourcing for
α = 0.75

14

Table 6: Experimental results of production-transportation problem with multiple
sourcing (α = 0.75)

CPU Time (seconds)

IA Algorithm Kuno and Utsunomiya (2000) Saif (2016)

m×n Avg Max Avg Max Avg Max

5×25 0.18 0.40 0.08 0.18 0.09 0.17
5×50 0.31 0.68 1.04 1.50 0.29 0.55
5×75 0.36 0.65 6.20 10.38 - -
5×100 0.51 1.12 19.25 30.48 - -
10×25 2.53 13.66 0.30 0.78 0.61 3.06
10×50 1.60 4.94 6.85 11.20 7.84 35.47
10×75 5.28 23.43 55.41 115.10 - -
10×100 18.49 74.50 334.64 1447.67 - -
15×25 1.10 4.69 0.30 0.43 - -
15×50 1.12 2.22 8.42 16.80 - -
15×75 3.10 7.27 130.84 395.43 - -
15×100 3.26 16.23 122.21 273.50 - -
20×75 15.93 133.99 11.85 17.32 - -
20×100 18.48 110.56 134.98 657.88 - -
25×75 23.62 62.69 12.76 16.85 - -
25×100 1.29 4.17 90.78 175.35 - -

Avg 6.07 28.83 58.49 198.18 - -

- denotes that the result is not provided by the respective author

15

Table 7: Experimental results of Production-Transportation problem with multiple
sourcing (α = 0.9)

CPU Time (seconds)

IA Algorithm Kuno and Utsunomiya (2000) Saif (2016)

m×n Avg Max Avg Max Avg Max

5×25 0.20 1.01 0.04 0.05 0.03 0.08
5×50 0.17 0.80 0.60 1.08 0.08 0.22
5×75 0.12 0.33 - - - -
5×100 0.25 0.74 - - - -
10×25 0.20 1.01 0.12 0.13 0.07 0.23
10×50 0.24 0.61 1.07 1.65 1.26 7.27
10×75 0.59 3.61 - - - -
10×100 0.28 0.75 - - - -
15×25 0.19 0.54 0.24 0.28 - -
15×50 0.21 0.37 1.48 1.78 - -
15×75 0.30 0.61 - - - -
15×100 0.33 0.58 - - - -
20×75 0.20 0.55 - - - -
20×100 0.15 0.25 - - - -
25×75 6.62 12.18 - - - -
25×100 7.50 16.37 - - - -

Avg 1.10 2.52 - - - -

- denotes that the result is not provided by the respective author

16

approaching n = |U |. For, this reason, the instances of sizes m = 10, n = 25; m = 15, n = 25; and
m = 15, n = 50 became infeasible for α = 0.9, which are not reported in Table 10. Clearly, the IA
algorithm outperforms the method by Saif (2016) by at least an order of magnitude on all the instances
for which they have provided their results. We further test the efficacy of the IA method on even
larger instances, the results for which are provided in Table 11. Some of these problem instances become
computationally very difficult to solve, for which we set a maximum CPU time limit of 8.5 hours. Clearly,
the IA algorithm is able to solve all these instances within less than a 1% optimality gap within the time
limit.

Table 8: Experimental results of Production-Transportation
problem with single sourcing (α = 0.6)

CPU Time (seconds)

IA Algorithm Saif (2016)

m×n Avg Max Avg Max

5×25 0.75 2.76 1.79 3.73
5×50 1.21 3.19 6.04 13.38
5×75 3.15 9.67 - -
5×100 4.68 27.89 - -
10×25 2.69 12.11 22.05 40.78
10×50 46.90 160.42 573.93 1710.85
10×75 220.10 851.83 - -
15×25 28.62 134.83 - -
15×50 1609.83 6364.17 - -

Avg 213.10 840.76 - -

- denotes that the result is not provided by the respective au-
thor

5 Conclusions

In this paper, we proposed an exact algorithm for solving concave minimization problems using a
piecewise-linear inner-approximation of the concave function. The inner-approximation of the concave
function results in a bilevel program, which is solved using a KKT-based approach. Our proposed algo-
rithm guarantees improvement in the lower bound at each iteration and terminates at the global optimal
solution. The algorithm has also been tested on two common application problems, namely, the con-
cave knapsack problem and the production-transportation problem. Our extensive computational results
show that our algorithm is able to significantly outperform the specialized methods that were reported in
the literature for these two classes of problems. We believe that the algorithm will be useful for exactly
solving a large number of other concave minimization applications for which practitioners often have to
resort to customized methods or heuristics for solving the problem.

17

Table 9: Experimental results of Production-Transportation
problem with single sourcing (α = 0.75)

CPU Time (seconds)

IA Algorithm Saif (2016)

m×n Avg Max Avg Max

5×25 0.27 0.63 1.44 2.59
5×50 0.50 1.06 4.17 6.65
5×75 0.87 1.31 - -
5×100 14.10 68.45 - -
10×25 1.45 8.50 27.92 53.88
10×50 62.51 327.83 455.51 1495.77
10×75 62.30 327.52 - -
15×25 24.31 229.30 - -
15×50 1211.16 8007.31 - -

Avg 153.05 996.88 - -

- denotes that the result is not provided by the respective au-
thor

Table 10: Experimental results of Production-Transportation
problem with single sourcing (α = 0.9)

CPU Time (seconds)

IA Algorithm Saif (2016)

m×n Avg Max Avg Max

5×25 0.10 0.22 0.35 0.45
5×50 0.57 2.42 1.04 2.39
5×75 0.81 5.44 - -
5×100 3.14 12.87 - -
10×50 0.12 0.20 23.37 24.59
10×75 75.31 427.96 - -
15×75 0.18 0.23 - -

Avg 11.46 64.19 - -

- denotes that the result is not provided by the respective au-
thor

18

Table 11: Experimental results of Production-Transportation problem with single sourcing

Optimality Gap (%) CPU Time (seconds)

m×n

10×100 15×75 15×100 10×100 15×75 15×100

α = 0.6
Avg 0.01 0.05 0.06 16478.31 9146.75 18612.52
Min 0.00 0.00 0.00 1036.88 30.43 344.72
Max 0.05 0.40 0.27 30600.00 30600.00 30600.00

α = 0.75
Avg 0.00 0.06 0.09 7042.87 25906.86 25568.05
Min 0.00 0.00 0.00 2.88 4.64 82.16
Max 0.02 0.25 0.25 30600.00 30600.00 30600.00

α = 0.9
Avg 0.02 0.00 0.01 12320.55 0.18 12645.17
Min 0.00 0.00 0.00 2.60 0.16 1.91
Max 0.09 0.00 0.03 30600.00 0.23 30600.00

References

Benson, H. P. (1985). A finite algorithm for concave minimization over a polyhedron. Naval Research
Logistics Quarterly, 32(1):165–177.

Benson, H. P. and Erenguc, S. S. (1990). An algorithm for concave integer minimization over a polyhe-
dron. Naval Research Logistics (NRL), 37(4):515–525.

Bitran, G. R. and Tirupati, D. (1989). Tradeoff curves, targeting and balancing in manufacturing
queueing networks. Operations Research, 37(4):547–564.

Bretthauer, K. M., Ross, A., and Shetty, B. (1999). Nonlinear integer programming for optimal allocation
in stratified sampling. European Journal of Operational Research, 116(3):667–680.

Bretthauer, K. M. and Shetty, B. (1995). The nonlinear resource allocation problem. Operations Research,
43(4):670–683.

Bretthauer, K. M., Victor Cabot, A., and Venkataramanan, M. (1994). An algorithm and new penalties
for concave integer minimization over a polyhedron. Naval Research Logistics (NRL), 41(3):435–454.

Caprara, A., Pisinger, D., and Toth, P. (1999). Exact solution of the quadratic knapsack problem.
INFORMS Journal on Computing, 11(2):125–137.

Carrillo, M. J. (1977). A relaxation algorithm for the minimization of a quasiconcave function on a
convex polyhedron. Mathematical Programming, 13(1):69–80.

Chaillou, P., Hansen, P., and Mahieu, Y. (1989). Best network flow bounds for the quadratic knapsack
problem. In Combinatorial Optimization, pages 225–235. Springer.

Condotta, A., Knust, S., Meier, D., and Shakhlevich, N. V. (2013). Tabu search and lower bounds for a
combined production–transportation problem. Computers & Operations Research, 40(3):886–900.

Dijkhuizen, G. and Faigle, U. (1993). A cutting-plane approach to the edge-weighted maximal clique
problem. European Journal of Operational Research, 69(1):121–130.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance profiles.
Mathematical Programming, 91(2):201–213.

19

Elhedhli, S. (2005). Exact solution of a class of nonlinear knapsack problems. Operations Research
Letters, 33(6):615–624.

Falk, J. E. and Hoffman, K. R. (1976). A successive underestimation method for concave minimization
problems. Mathematics of Operations Research, 1(3):251–259.

Falk, J. E. and Soland, R. M. (1969). An algorithm for separable nonconvex programming problems.
Management Science, 15(9):550–569.

Fayard, D. and Plateau, G. (1982). An algorithm for the solution of the 0–1 knapsack problem. Com-
puting, 28(3):269–287.

Fisher, M. L. (2004). The lagrangian relaxation method for solving integer programming problems.
Management Science, 50(12 supplement):1861–1871.

Floudas, C., Aggarwal, A., and Ciric, A. (1989). Global optimum search for nonconvex NLP and MINLP
problems. Computers & Chemical Engineering, 13(10):1117–1132.

Floudas, C. A., Pardalos, P. M., Adjiman, C., Esposito, W. R., Gümüs, Z. H., Harding, S. T., Klepeis,
J. L., Meyer, C. A., and Schweiger, C. A. (1999). Handbook of test problems in local and global
optimization, volume 33. Springer Science & Business Media.

Fontes, D. B. and Gonçalves, J. F. (2007). Heuristic solutions for general concave minimum cost network
flow problems. Networks: An International Journal, 50(1):67–76.

Gallo, G., Hammer, P. L., and Simeone, B. (1980a). Quadratic knapsack problems. In Combinatorial
optimization, pages 132–149. Springer.

Gallo, G., Sandi, C., and Sodini, C. (1980b). An algorithm for the min concave cost flow problem.
European Journal of Operational Research, 4(4):248–255.

Guisewite, G. M. and Pardalos, P. M. (1990). Minimum concave-cost network flow problems: Applica-
tions, complexity, and algorithms. Annals of Operations Research, 25(1):75–99.

Guisewite, G. M. and Pardalos, P. M. (1991). Global search algorithms for minimum concave-cost
network flow problems. Journal of Global Optimization, 1(4):309–330.

Guisewite, G. M. and Pardalos, P. M. (1993). A polynomial time solvable concave network flow problem.
Networks, 23(2):143–147.

Han, X., Ma, N., Makino, K., and Chen, H. (2017). Online knapsack problem under concave functions.
In International Workshop on Frontiers in Algorithmics, pages 103–114. Springer.

Holmberg, K. and Tuy, H. (1999). A production-transportation problem with stochastic demand and
concave production costs. Mathematical Programming, 85(1):157–179.

Horst, R. (1976). An algorithm for nonconvex programming problems. Mathematical Programming,
10(1):312–321.

Horst, R. and Thoai, N. V. (1998). An integer concave minimization approach for the minimum concave
cost capacitated flow problem on networks. Operations-Research-Spektrum, 20(1):47–53.

Horst, R. and Tuy, H. (2013). Global optimization: Deterministic approaches. Springer Science &
Business Media.

Johnson, E. L., Mehrotra, A., and Nemhauser, G. L. (1993). Min-cut clustering. Mathematical Program-
ming, 62(1-3):133–151.

Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Some selected applications. In Knapsack Problems,
pages 449–482. Springer.

Klinz, B. and Tuy, H. (1993). Minimum concave-cost network flow problems with a single nonlinear arc
cost. In Network Optimization Problems: Algorithms, Applications and Complexity, pages 125–145.
World Scientific.

20

Kolesar, P. J. (1967). A branch and bound algorithm for the knapsack problem. Management Science,
13(9):723–735.

Konno, H., Thach, P. T., and Tuy, H. (1997). Low-rank nonconvex structures. In Optimization on Low
Rank Nonconvex Structures, pages 95–117. Springer.

Kuno, T. (1997). A pseudo-polynomial algorithm for solving rank three concave production-
transportation problems. Acta Mathematica Vietnamica, 22:159–182.

Kuno, T. and Utsunomiya, T. (1997). A pseudo-polynomial primal-dual algorithm for globally solving a
production-transportation problem. Journal of Global Optimization, 11(2):163–180.

Kuno, T. and Utsunomiya, T. (2000). A lagrangian based branch-and-bound algorithm for production-
transportation problems. Journal of Global Optimization, 18(1):59–73.

Li, D., Sun, X., and Wang, F. (2006). Convergent lagrangian and contour cut method for nonlinear integer
programming with a quadratic objective function. SIAM Journal on Optimization, 17(2):372–400.

Li, X., Tomasgard, A., and Barton, P. I. (2011). Nonconvex generalized benders decomposition for
stochastic separable mixed-integer nonlinear programs. Journal of Optimization Theory and Applica-
tions, 151(3):425.

Locatelli, M. and Thoai, N. V. (2000). Finite exact branch-and-bound algorithms for concave minimiza-
tion over polytopes. Journal of Global Optimization, 18(2):107–128.

Majthay, A. and Whinston, A. (1974). Quasi-concave minimization subject to linear constraints. Discrete
Mathematics, 9(1):35–59.

Maloney, B. M. and Klein, C. M. (1993). Constrained multi-item inventory systems: An implicit ap-
proach. Computers & Operations research, 20(6):639–649.

Marsten, R. E. and Morin, T. L. (1978). A hybrid approach to discrete mathematical programming.
Mathematical Programming, 14(1):21–40.

Martello, S., Pisinger, D., and Toth, P. (1999). Dynamic programming and strong bounds for the 0-1
knapsack problem. Management Science, 45(3):414–424.

Mathur, K., Salkin, H. M., and Morito, S. (1983). A branch and search algorithm for a class of nonlinear
knapsack problems. Operations Research Letters, 2(4):155–160.

Michelon, P. and Veilleux, L. (1996). Lagrangean methods for the 0–1 quadratic knapsack problem.
European Journal of Operational Research, 92(2):326–341.

Moré, J. J. and Vavasis, S. A. (1990). On the solution of concave knapsack problems. Mathematical
Programming, 49(1-3):397–411.

Murty, K. G. (1968). Solving the fixed charge problem by ranking the extreme points. Operations
Research, 16(2):268–279.

Nagai, H. and Kuno, T. (2005). A simplicial branch-and-bound algorithm for production-transportation
problems with inseparable concave production cost. Journal of the Operations Research Society of
Japan, 48(2):97–110.

Pardalos, P. M. and Rosen, J. B. (1987). Constrained global optimization: algorithms and applications,
volume 268. Springer.

Park, K., Lee, K., and Park, S. (1996). An extended formulation approach to the edge-weighted maximal
clique problem. European Journal of Operational Research, 95(3):671–682.

Pisinger, D. (2007). The quadratic knapsack problem—a survey. Discrete Applied Mathematics,
155(5):623–648.

Rockafellar, R. T. (1970). Convex analysis. Princeton University Press.

21

Ryoo, H. S. and Sahinidis, N. V. (1996). A branch-and-reduce approach to global optimization. Journal
of Global Optimization, 8(2):107–138.

Saif, A. (2016). Supply Chain Network Design with Concave Costs: Theory and Applications. PhD
thesis, University of Waterloo.

Sharp, J. F., Snyder, J. C., and Greene, J. H. (1970). A decomposition algorithm for solving the mul-
tifacility production-transportation problem with nonlinear production costs. Econometrica: Journal
of the Econometric Society, pages 490–506.

Soland, R. M. (1971). An algorithm for separable nonconvex programming problems II: Nonconvex
constraints. Management Science, 17(11):759–773.

Soland, R. M. (1974). Optimal facility location with concave costs. Operations Research, 22(2):373–382.

Strekalovsky, A. S. (2015). On local search in dc optimization problems. Applied Mathematics and
Computation, 255:73–83.

Sun, X., Wang, F., and Li, D. (2005). Exact algorithm for concave knapsack problems: Linear underes-
timation and partition method. Journal of Global Optimization, 33(1):15–30.

Taha, H. A. (1973). Concave minimization over a convex polyhedron. Naval Research Logistics Quarterly,
20(3):533–548.

Tawarmalani, M. and Sahinidis, N. V. (2004). Global optimization of mixed-integer nonlinear programs:
A theoretical and computational study. Mathematical Programming, 99(3):563–591.

Tuy, H. (1964). Concave programming under linear constraints. Soviet Math., 5:1437–1440.

Tuy, H., Dan, N. D., and Ghannadan, S. (1993a). Strongly polynomial time algorithms for certain
concave minimization problems on networks. Operations Research Letters, 14(2):99–109.

Tuy, H., Ghannadan, S., Migdalas, A., and VÄarbrand, P. (1993b). Strongly polynomial algorithm for
a production-transportation problem with concave production cost. Optimization, 27(3):205–227.

Tuy, H., Ghannadan, S., Migdalas, A., and Värbrand, P. (1996). A strongly polynomial algorithm for a
concave production-transportation problem with a fixed number of nonlinear variables. Mathematical
Programming, 72(3):229–258.

Ventura, J. A. and Klein, C. M. (1988). A note on multi-item inventory systems with limited capacity.
Operations Research Letters, 7(2):71–75.

Victor Cabot, A. and Selcuk Erenguc, S. (1986). A branch and bound algorithm for solving a class of
nonlinear integer programming problems. Naval Research Logistics Quarterly, 33(4):559–567.

Wang, F. (2019). A new exact algorithm for concave knapsack problems with integer variables. Inter-
national Journal of Computer Mathematics, 96(1):126–134.

Witzgall, C. (1975). Mathematical methods of site selection for electronic message systems (ems). STIN,
76:18321.

Ziegler, H. (1982). Solving certain singly constrained convex optimization problems in production plan-
ning. Operations Research Letters, 1(6):246–252.

Zwart, P. B. (1974). Global maximization of a convex function with linear inequality constraints. Oper-
ations Research, 22(3):602–609.

22

Appendix

A Illustrative Example for Concavity in Objective Function

To illustrate the algorithm, we consider a small-size numerical example:

min
x

φ(x) = −5x
3
2
1 + 8x1 − 30x2 (31)

subject to − 9x1 + 5x2 ≤ 9 (32)

x1 − 6x2 ≤ 6 (33)

3x1 + x2 ≤ 9 (34)

x ∈ X = {xj ∈ Zn|1 ≤ xj ≤ 7, j = 1, 2} (35)

Iteration 1: We replace the concave function −x
3
2
1 by a new variable t1.

min
x

φ(x) = 5t1 + 8x1 − 30x2

subject to − 9x1 + 5x2 ≤ 9

x1 − 6x2 ≤ 6

3x1 + x2 ≤ 9

x ∈ X = {xj ∈ Zn|1 ≤ xj ≤ 7, j = 1, 2}

t1 ≥ −x
3
2
1

Next, we replace the concave constraints with inner-approximation generated using two points, x1 ∈
{1, 7}, which gives us the relaxation of the problem (31)-(35) as bilevel program. Let g(x1) = −x

3
2
1 , then

g(1) = −1, g(7) = −18.52.

min
x

φ(x) = 5t1 + 8x1 − 30x2 (36)

subject to − 9x1 + 5x2 ≤ 9 (37)

x1 − 6x2 ≤ 6 (38)

3x1 + x2 ≤ 9 (39)

x ∈ X = {xj ∈ Zn|1 ≤ xj ≤ 7, j = 1, 2} (40)

µ ∈ argmax
µ

{−µ1 − 18.52µ2 : µ1 + µ2 = 1, µ1 + 7µ2 = x1,−µ1 ≤ 0− µ2 ≤ 0} (41)

t1 ≥ −µ1 − 18.52µ2 (42)

Let γ1, γ2, γ3, and, γ4 be the Lagrange multipliers for the constraints in (41), then the KKT conditions
for the lower level program in (41) can be written as follows:

1 + γ1 + γ2 − γ3 = 0 (43)

18.52 + γ1 + 7γ2 − γ4 = 0 (44)

− µ1γ3 = 0 (45)

− µ2γ4 = 0 (46)

µ1, µ2, γ3, γ4 ≥ 0 (47)

γ1, γ2 − unrestricted (48)

We linearize equations (45) and (46) using the BigM values.

µ1 ≤MZ1 (49)

γ3 ≤M(1− Z1) (50)

µ2 ≤MZ2 (51)

γ4 ≤M(1− Z2) (52)

Z1, Z2 ∈ {0, 1} (53)

23

The relaxed model for the original problem ((31)-(35)) is given below as a mixed integer linear program
(MILP).

[EX1− 1] min 5t1 + 8x1 − 30x2

subject to t1 ≥ −µ1 − 18.52µ2

µ1 + 7µ2 = x1

µ1 + µ2 = 1

(37)− (40), (43)− (44), (47)− (53)

The above formulation can be solved using an MILP solver to arrive at the following solution, x1 =
2, x2 = 3, objective value = −93.6. Hence, the lower bound is -93.6 and the upper bound is -88.14.
Iteration 2: The solution obtained from iteration 1 gives an additional point, x1 = 2, to approximate

g(x1) = −x
3
2
1 , where g(2) = −2.83. The updated problem with an additional point is given as follows:

min
x

φ(x) = 5t1 + 8x1 − 30x2 (54)

subject to (37)− (40) (55)

µ ∈ argmax
µ

{
− µ1 − 18.52µ2 − 2.83µ3 : (56)

3∑
i=1

µi = 1, µ1 + 7µ2 + 2µ3 = x1,−µi ≤ 0 ∀ i = 1, 2, 3

}
(57)

t1 ≥ −µ1 − 18.52µ2 − 2.83µ3 (58)

Let γ1, γ2, γ3, γ4, and, γ5 be the Lagrange Multipliers for the constraints in (57), the the following repre-
sents the KKT conditions for (57).

1 + γ1 + γ2 − γ3 = 0 (59)

18.52 + γ1 + 7γ2 − γ4 = 0 (60)

2.83 + γ1 + 2γ2 − γ5 = 0 (61)

− µ1γ3 = 0 (62)

− µ2γ4 = 0 (63)

− µ3γ5 = 0 (64)

µ1, µ2, γ3, γ4, γ5 ≥ 0 (65)

γ1, γ2 − unrestricted (66)

We once again linearize equation (62)- (64).

µ1 ≤MZ1 (67)

γ3 ≤M(1− Z1) (68)

µ2 ≤MZ2 (69)

γ4 ≤M(1− Z2) (70)

µ3 ≤MZ3 (71)

γ5 ≤M(1− Z3) (72)

Z1, Z2, Z3 ∈ {0, 1} (73)

A tighter relaxed problem for (31)-(35) as compared to the one in iteration 1 is given as follows:

[EX1− 2] min 5t1 + 8x1 − 30x2

subject to t1 ≥ −µ1 − 18.52µ2 − 2.83µ3

µ1 + µ2 + µ3 = 1

µ1 + 7µ2 + 2µ3 = x1

(37)− (40), (59)− (61), (65)− (73)

Solution of the above formulation is x1 = 2, x2 = 3, objective value = −88.15. The lower bound is
-88.15 and the upper bound is -88.14. Additional iterations would lead to further tightening of the
bounds.

24

B Illustrative Example for Concavity in Constraints

The proposed algorithm can also solve the class of problems in which concavity is present in the con-
straints. We illustrate this using an example problem that has been taken from Floudas et al. (1999)
(refer to Section 12.2.2 in the handbook).

min
x,y

− 0.7y + 5(x1 − 0.5)2 + 0.8 (74)

subject to x2 ≥ −e(x1−0.2) (75)

x2 − 1.1y ≤ −1 (76)

x1 − 1.2y ≤ 0.2 (77)

0.2 ≤ x1 ≤ 1 (78)

− 2.22554 ≤ x2 ≤ −1 (79)

y ∈ {0, 1} (80)

The above problem has a convex objective function, but it is nonconvex because of equation (75). Let
us start the iterations with two points, x1 ∈ {0.2, 1}. Let h(x1) = −e(x1−0.2), then h(0.2) = −1, h(1) =
−2.22. Next, we reformulate the problem (74)-(80) by replacing the concave constraint with its inner-
approximation generated using two points.

min
x

φ(x) = −0.7y + 5(x1 − 0.5)2 + 0.8 (81)

subject to (76)− (80) (82)

µ ∈ argmax
µ

{−µ1 − 2.22µ2 : µ1 + µ2 = 1, 0.2µ1 + µ2 = x1,−µ1 ≤ 0− µ2 ≤ 0} (83)

x2 ≥ −µ1 − 2.22µ2 (84)

Let λ1, λ2, λ3, and, λ4 be the Lagrange multipliers of the constraints in (83) then KKT conditions for
(83) can be written as:

1 + λ1 + 0.2λ2 − λ3 = 0 (85)

2.22 + λ1 + λ2 − λ4 = 0 (86)

− µ1λ3 = 0 (87)

− µ2λ4 = 0 (88)

µ1, µ2, λ3, λ4 ≥ 0 (89)

λ1, λ2 − unrestricted (90)

We linearize equations (87) and (88) using a BigM value.

µ1 ≤MZ1 (91)

λ3 ≤M(1− Z1) (92)

µ2 ≤MZ2 (93)

λ4 ≤M(1− Z2) (94)

Z1, Z2 ∈ {0, 1} (95)

At iteration 1 we solve the following quadratic program:

[EX2− 1] min − 0.7y + 5(x1 − 0.5)2 + 0.8

subject to x2 ≥ −µ1 − 2.22µ2

0.2µ1 + µ2 = x1

µ1 + µ2 = 1

(76)− (80), (85)− (86), (89)− (95)

The solution of the EX2 − 1 is given as, x1 = 0.921, x2 = −2.1, y = 1, objective value = 0.9875.
The above solution gives an additional point x1 = 0.921 to approximate the h(x1) = e(x1−0.2), where

25

h(0.921) = 2.06. Hence the updated problem is as follows:

min
x

φ(x) = −0.7y + 5(x1 − 0.5)2 + 0.8 (96)

subject to (76)− (80) (97)

µ ∈ argmax
µ

{
− µ1 − 2.22µ2 − 2.06µ3 : (98)

3∑
i=1

µi = 1, 0.2µ1 + µ2 + 0.921µ3 = x1,−µi ≤ 0 ∀ i = 1, 2, 3

}
(99)

x2 ≥ −µ1 − 2.22µ2 − 2.06µ3 (100)

Let λ1, λ2, λ3, λ4, and, γ5 be Lagrange multipliers for the constraints of equation (99) then the corre-
sponding KKT conditions are as follows:

1 + λ1 + 0.2λ2 − λ3 = 0 (101)

2.22 + λ1 + λ2 − λ4 = 0 (102)

2.06 + λ1 + 0.921λ2 − λ5 = 0 (103)

− µ1λ3 = 0 (104)

− µ2λ4 = 0 (105)

− µ3λ5 = 0 (106)

µ1, µ2, λ3, λ4, λ5 ≥ 0 (107)

λ1, λ2 − unrestricted (108)

Upon linearization of (104)-(106) using a BigM value we get:

µ1 ≤MZ1 (109)

λ3 ≤M(1− Z1) (110)

µ2 ≤MZ2 (111)

λ4 ≤M(1− Z2) (112)

µ3 ≤MZ3 (113)

λ5 ≤M(1− Z3) (114)

Z1, Z2, Z3 ∈ {0, 1} (115)

At iteration 2 we solve the following quadratic program:

[EX2− 2] min − 0.7y + 5(x1 − 0.5)2 + 0.8

subject to x2 ≥ −µ1 − 2.22µ2 − 2.06µ3

µ1 + µ2 + µ3 = 1

0.2µ1 + µ2 + 0.921µ3 = x1

(76)− (80), (101)− (103), (107)− (115)

The solution of EX2− 2 is x1 = 0.9419, x2 = −2.1, y = 1, objective value = 1.0769.
The new point x1 = 0.9419 is used in iteration 3, where the solution is x1 = 0.9419, x2 = −2.1, y = 1

and the lower bound is 1.0765. The algorithm can be terminated when the violation for the concave
constraint is small. In this case, we stop further iterations of the algorithm. The known global optimal
solution for the problem is x1 = 0.9419, x2 = −2.1, y = 1 with an optimal objective value of 1.0765
(Floudas et al., 1999).

26

	Introduction
	Algorithm Description
	The Initial Set
	Convergence Results

	Concave Knapsack Problem
	Computational Experiments
	Data-Set
	Computational Results

	Production-Transportation Problem
	Computational Experiments
	Data-Set
	Computational Results

	Conclusions
	Illustrative Example for Concavity in Objective Function
	Illustrative Example for Concavity in Constraints

